An Immunomodulatory Polysaccharide–Protein Complex Isolated from the Polypore Fungus Royoporus badius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Identification of Mushroom Species
2.3. Preparation of Crude Extracts from R. badius
2.4. Cell Line and Assessment for Immunomodulatory Activity
2.5. Cell Line and Assessment for Antiproliferative Activity
2.6. Purification of Immunomodulatory Polysaccharide
2.7. Molecular Weight Distribution and Purification by HPLC
2.8. Monosaccharide Composition Analysis
2.9. Methylation and Linkage Analysis
2.10. FTIR Spectroscopy Analysis
2.11. Proteinase-K Enzyme Assay
3. Results
3.1. Identification of Royoporus badius
3.2. Assessment of Crude Extracts for Immunomodulatory and Antiproliferative Activities
3.3. Purification of Immunomodulatory Polysaccharide IMPP-Rb from R. badius
3.4. Chemical Analysis of IMPP-Rb
3.5. Immunomodulatory Activity of IMPP-Rb
3.6. Effect of Proteinase-K on IMPP-Rb Immunomodulatory Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Javed, S.; Barad, A.; Myhre, V.; Li, W.M.; Reimer, K.; Massicotte, H.B.; Tackaberry, L.E.; Payne, G.W.; Egger, K.N.; et al. Growth-inhibitory and immuno-modulatory activities of fungi from north central British Columbia. Int. J. Med. Mushrooms 2017, 19, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Deo, G.; Khatra, J.; Buttar, S.; Li, W.M.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lee, C.H. Anti-proliferative, immuno-stimulatory and anti-inflammatory activities of extracts derived from mushrooms collected in Haida Gwaii, British Columbia, Canada. Int. J. Med. Mushrooms 2019, 21, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Zeb, M.; Lee, C.H. Medicinal properties and bioactive compounds from wild mushrooms native to North America. Molecules 2021, 26, 251. [Google Scholar] [CrossRef] [PubMed]
- Jeitler, M.; Michalsen, A.; Frings, D.; Hubner, M.; Fischer, M.; Koppold-Liebscher, D.A.; Murthy, V.; Kessler, C.S. Significance of medicinal mushrooms in integrative oncology: A narrative review. Front. Pharmacol. 2020, 11, 580656. [Google Scholar] [CrossRef] [PubMed]
- Glaeser, J.A.; Smith, K.T. Decay fungi associated with oaks and other hardwoods in the western United States. In Proceedings of the 6th Western Hazard Tree Workshop, Department of Agriculture, Forest Service, Medford, OR, USA, 14–18 June 2010; pp. 19–31. [Google Scholar]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
- Sivanesan, I.; Muthu, M.; Gopal, J.; Oh, J.-W. Mushroom polysaccharide-assisted anticarcinogenic mycotherapy: Reviewing its clinical trials. Molecules 2022, 27, 4090. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; Feng, X.; Li, L.; Hao, J.; Wang, D.; Wang, Q. Mushroom polysaccharides as potential candidates for alleviating neurodegenerative diseases. Nutrients 2022, 14, 4833. [Google Scholar] [CrossRef]
- Roszczyk, A.; Turlo, J.; Zagozdzon, R.; Kaleta, B. Immunomodulatory properties of polysaccharides from Lentinula edodes. Int. J. Mol. Sci. 2022, 23, 8980. [Google Scholar] [CrossRef]
- Luan, F.; Peng, X.; Zhao, G.; Zeng, J.; Zou, J.; Rao, Z.; Liu, Y.; Zhang, X.; Ma, H.; Zeng, N. Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp: A review. Food Chem. 2022, 397, 133731. [Google Scholar] [CrossRef]
- He, Z.; Lin, J.; He, Y.; Liu, S. Polysaccharide-peptide from Trametes versicolor: The potential medicine for colorectal cancer. Biomedicines 2022, 10, 2841. [Google Scholar] [CrossRef] [PubMed]
- De Palma, M.; Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, B.F.; Abdullah, N.; Aminudin, N.; Lee, H.B.; Tan, P.J. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tiger milk mushrooms) in Malaysia—A review. J. Ethnopharmacol. 2015, 169, 441–458. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Chen, L.; Huang, X.; Cheung, P.C.K. Immunomodulatory activity of polysaccharide-protein complex from the mushroom sclerotia of Polyporus rhinocerus in murine macrophages. J. Agri. Food Chem. 2016, 64, 3206–321416. [Google Scholar] [CrossRef]
- Zeb, M.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Lu, G.; Heiss, C.; Azadi, P.; Lee, C.H. Structural elucidation and immuno-stimulatory activity of a novel polysaccharide containing glucuronic acid from the fungus Echinodontium tinctorium. Carbohydr. Polym. 2021, 258, 117700. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, G.; Zhao, H.; Dong, N.; Wu, B.; Chen, Y.; Lu, Q. Natural-derived polysaccharides from plants, mushrooms, and seaweeds for the treatment of inflammatory bowel disease. Front. Pharmacol. 2021, 12, 651813. [Google Scholar] [CrossRef]
- Javed, S.; Li, W.M.; Zeb, M.; Yaqoob, A.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Cheung, P.C.K.; Payne, G.W.; Lee, C.H. Anti-inflammatory activity of the wild mushroom, Echinodontium tinctorium, in RAW264.7 macrophage cells and mouse microcirculation. Molecules 2019, 24, 3509. [Google Scholar] [CrossRef] [Green Version]
- Gordien, A.Y.; Gray, A.I.; Ingleby, K.; Franzblau, S.G.; Seidel, V. Activity of Scottish plant, lichen, and fungal endophyte extracts against Mycobacterium aurum and Mycobacterium tuberculosis. Phytother. Res. 2010, 24, 692–698. [Google Scholar] [CrossRef]
- Radzki, W.; Slawinska, A.; Skrzypczak, K.; Michalak-Majewska, M. The impact of drying of wild-growing mushrooms on the content and antioxidant capacity of water-soluble polysaccharides. Int. J. Med. Mushrooms 2019, 21, 393–400. [Google Scholar] [CrossRef]
- Radzki, W.; Slawinska, A.; Jablonska-Rys, E.; Gustaw, W. Antioxidant capacity and polyphenolic content of dried wild mushrooms from Poland. Int. J. Med. Mushrooms 2014, 16, 65–75. [Google Scholar] [CrossRef]
- Barad, A.; Mackedenski, S.; Li, W.M.; Li, X.J.; Lim, B.C.C.; Rashid, F.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; et al. Anti-proliferative activity of a purified polysaccharide isolated from the basidiomycete fungus Paxillus involutus. Carbohydr Polym. 2018, 181, 923–930. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zeb, M.; Li, W.M.; Heiss, C.; Black, I.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Azadi, P.; Lee, C.H. Isolation and characterization of an anti-proliferative polysaccharide from the North American fungus Echinodontium tinctorium. Sci. Rep. 2022, 12, 17298. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, Y.; Gad, E.; Wenner, C.A.; Chang, A.; Larson, E.R.; Dang, Y.; Martzen, M.; Standish, L.J.; Disis, M.L. Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumour growth via stimulation of CD8 T cells and NK cells. Clin. Cancer Res. 2010, 17, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doskocil, I.; Havlik, J.; Verlotta, R.; Tauchen, J.; Vesela, L.; Macakova, K.; Opletal, L.; Kokoska, L.; Rada, V. In vitro immunomodulatory activity, cytotoxicity and chemistry of some central European polypores. Pharmaceutic. Biol. 2016, 54, 2369–2376. [Google Scholar] [CrossRef] [Green Version]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr. Polym. 2016, 136, 358–375. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, F.; Xu, Z.; Ding, Z. Bioactive mushroom polysaccharides: A review on monosaccharide composition, biosynthesis and regulation. Molecules 2017, 22, 955. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Chang, Y.; Zhang, L. Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Progress Mol. Biol. Transl. Sci. 2019, 163, 361–381. [Google Scholar]
- Yang, A.; Fan, H.; Zhao, Y.; Chen, X.; Zhu, Z.; Zha, X.; Zhao, Y.; Chai, X.; Li, J.; Tu, P.; et al. An immuno-stimulating proteoglycan from the medicinal mushroom Huaier up-regulates NF-B and MAPK signaling via Toll-like receptor 4. J. Biol. Chem. 2019, 294, 2628–2641. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.-D.; Wu, Q.-W.; Zhao, J.; Su, T.; Lu, Y.-M.; Zhang, W.-N.; Wang, Y.; Chen, Y. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int. J. Biol. Macro. 2019, 28, 732–739. [Google Scholar] [CrossRef]
- Biswas, P.; Delfanti, F.; Bernasconi, S.; Mengozzi, M.; Cota, M.; Polentarutti, N.; Mantovani, A.; Lazzarin, A.; Sozzani, S.; Poli, G. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 1998, 91, 258–625. [Google Scholar] [CrossRef] [PubMed]
- Beutler, B. Innate immunity: An overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemattractant protein-1 (MCP-1): An overview. J. InterferonCytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Nie, Q.; Liu, X.; Zhang, S.; Nie, S.; Huang, D.; Wang, S.; Zhu, F.; Xie, M. Ganoderma atrum polysaccharide modulates TNF-α secretion nd mRNA expression in macrophages of S-180 tumor-bearing mice. Food Hydr. 2016, 53, 24–30. [Google Scholar] [CrossRef]
Monosaccharide Residue | Mass (µg) | Mol % |
---|---|---|
Glucose (Glc) | 12.7 | 49.2 |
Galactose (Gal) | 2.9 | 11.3 |
Mannose (Man) | 2.8 | 10.8 |
Rhamnose (Rha) | 2.3 | 9.6 |
Galacturonic acid (GalA) | 2.3 | 8.2 |
Xylose (Xyl) | 1.1 | 5.2 |
Fucose (Fuc) | Trace | 2.8 |
N-Acetyl glucosamine (GlcNAc) | Trace | 1.8 |
Arabinose (Ara) | Trace | 1.2 |
Total= | 100 |
Monosaccharide | Linkage Type | Relative Area (%) |
---|---|---|
Rhamnose (Rha) | t-Rha | 1.3 |
2-Rha | 3.1 | |
Fucose (Fuc) | t-Fuc | 2.1 |
Xylose (Xyl) | 4-Xyl | 3.5 |
Galacturonic acid (GalA) | t-GalA | 1.2 |
4-GalA | 2.9 | |
Mannose (Man) | t-Man | 8.2 |
3-Man | 3.5 | |
4-Man | 7.7 | |
6-Man | 4.2 | |
3,4-Man | 5.4 | |
4,6-Man | 1.1 | |
Galactose (Gal) | t-Gal | 1.6 |
3,4-Gal | 1.2 | |
2,4-Gal | 1.7 | |
4,6-Gal | 1.1 | |
Glucose (Glc) | t-Glc | 8.0 |
3-Glc | 5.2 | |
4-Glc | 20.7 | |
3,4-Glc | 1.9 | |
3,6-Glc | 3.1 | |
4,6-Glc | 2.6 | |
3,4,6-Glc | 1.1 | |
2,3,4,6-Glc * | 1.9 |
Cytokine (Abbreviation) | Cytokine (Full Name) | Fold ± S.D. * |
---|---|---|
CCL11 | Eotaxin | 1.86 ± 1.21 |
G-CSF | Granulocyte-colony stimulating factor | 927.18 ± 1122.83 |
GM-CSF | Granulocyte macrophage-colony stimulating factor | 138.01 ± 158.85 |
IFNγ | Interferon gamma | 1.00 ± 0 |
IL-1α | Interleukin-1α | 3.93 ± 0.73 |
IL-1β | Interleukin-1β | 2.34 ± 0.76 |
IL-2 | Interleukin-2 | 3.38 ± 0.85 |
IL-4 | Interleukin-4 | 2.56 ± 0.39 |
IL-5 | Interleukin-5 | 1.00 ± 0 |
IL-6 | Interleukin-6 | 22.32 ± 26.75 |
IL-9 | Interleukin-9 | 1.15 ± 0.06 |
IL-10 | Interleukin-10 | 4.22 ± 3.45 |
IL-12 p70 | Interleukin-12 | 7.31 ± 6.75 |
IL-15 | Interleukin-15 | 3.65 ± 2.02 |
IL-17 | Interleukin-17 | 20.4 ± 0.42 |
IP-10 | Interferon gamma-induced protein-10 | 463.94 ± 574.54 |
LIF | Leukemia inhibitory factor | 121.06 ± 103.07 |
MCP-1 | Monocyte chemo attractant protein-1 | 1.61 ± 0.32 |
MIP-2 | Macrophage inflammatory protein-2 | 224.13 ± 19.63 |
MIP-1α | Macrophage inflammatory protein-1α | 39.68 ± 29.28 |
MIP-1β | Macrophage inflammatory protein-1β | 445.88 ± 113.55 |
RANTES (CCL5) | Regulated on activation, normal T cell expressed and secreted [Chemokine (C-C motif) ligand 5] | 8.10 ± 3.37 |
TNF-α | Tumor necrosis factor-α | 144 ± 43.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.C.C.; Zeb, M.; Li, W.-M.; Tang, J.Z.; Heiss, C.; Tackaberry, L.E.; Massicotte, H.B.; Egger, K.N.; Reimer, K.; Azadi, P.; et al. An Immunomodulatory Polysaccharide–Protein Complex Isolated from the Polypore Fungus Royoporus badius. J. Fungi 2023, 9, 87. https://doi.org/10.3390/jof9010087
Lim BCC, Zeb M, Li W-M, Tang JZ, Heiss C, Tackaberry LE, Massicotte HB, Egger KN, Reimer K, Azadi P, et al. An Immunomodulatory Polysaccharide–Protein Complex Isolated from the Polypore Fungus Royoporus badius. Journal of Fungi. 2023; 9(1):87. https://doi.org/10.3390/jof9010087
Chicago/Turabian StyleLim, Bryan C. C., Mehreen Zeb, Wai-Ming Li, John Z. Tang, Christian Heiss, Linda E. Tackaberry, Hugues B. Massicotte, Keith N. Egger, Kerry Reimer, Parastoo Azadi, and et al. 2023. "An Immunomodulatory Polysaccharide–Protein Complex Isolated from the Polypore Fungus Royoporus badius" Journal of Fungi 9, no. 1: 87. https://doi.org/10.3390/jof9010087
APA StyleLim, B. C. C., Zeb, M., Li, W. -M., Tang, J. Z., Heiss, C., Tackaberry, L. E., Massicotte, H. B., Egger, K. N., Reimer, K., Azadi, P., & Lee, C. H. (2023). An Immunomodulatory Polysaccharide–Protein Complex Isolated from the Polypore Fungus Royoporus badius. Journal of Fungi, 9(1), 87. https://doi.org/10.3390/jof9010087