A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Samples Description
2.2. Total DNA Extraction, Bioinformatic Analyses and Fungal Identification
2.3. Fungal Diversity, Distribution and Predictive Functional Profiling
2.4. Statistical Analyses
3. Results
3.1. Influence of Environmental Paramenters in Lake Clustering
3.2. Fungal Taxonomy
3.3. Fungal Diversity and Distribution
3.4. Predicitive Functional Profiling of Fungal Communities
4. Discussion
4.1. Fungal Diversity
4.2. Fungal Phyla
4.3. Fungal Genera
4.4. Fungal Ecology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, V.N.; Vaz, A.B.; Rosa, C.A.; Rosa, L.H. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol. Ecol. 2012, 82, 459–471. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, N.F.; Zhang, Y.Q.; Liu, H.Y.; Yu, L.Y. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 2016, 71, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Pienitz, R.; Doran, P.T.; Lamoureux, S.F. Origin and geomorphology of lakes in the polar regions. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems; Vincent, W.F., Laybourn-Parry, J., Eds.; Oxford University Press: New York, NY, USA, 2008; pp. 25–41. [Google Scholar]
- Rautio, M.; Dufresne, F.; Laurion, I.; Bonilla, S.; Vincent, W.F.; Christoffersen, K.S. Shallow freshwater ecosystems of the circumpolar Arctic. Écoscience 2011, 18, 204–222. [Google Scholar] [CrossRef]
- Hodgson, D.A. Antarctic lakes. In Encyclopedia of Lakes and Reservoirs; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 26–31. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Vieira, R.; Lírio, J.M.; Rosa, C.A.; Rosa, L.H. Diversity and ecology of fungal assemblages present in lakes of Antarctica. In Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications; Rosa, L.H., Ed.; Springer: Cham, Switzerland, 2019; pp. 69–97. [Google Scholar] [CrossRef]
- Vincent, W.F.; Hobbie, J.E.; Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems; Vincent, W.F., Laybourn-Parry, J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 1–24. [Google Scholar]
- Quayle, W.C.; Convey, P.; Peck, L.S.; Ellis-Evans, J.C.; Butler, H.G.; Peat, H.J. Ecological responses of maritime Antarctic lakes to regional climate change. In Antarctic Peninsula Climate Variability: Historical and Palaeoenvironmental Perspectives; Domack, E., Burnett, A., Leventer, A., Convey, P., Kirby, M., Bindschadler, R., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 159–170. [Google Scholar] [CrossRef]
- Rosa, L.H.; Zani, C.L.; Cantrell, C.L.; Duke, S.O.; van Dijck, P.; Desideri, A.; Rosa, C.A. Fungi in Antarctica: Diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications; Rosa, L.H., Ed.; Springer: Cham, Switzerland, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Vieira, R.; Muniz, M.C.; Zani, C.L.; Alves, T.; Junior, P.A.; Murt, S.M.F.; Barbosa, E.C.; Oliveira, J.G.; Ceravolo, I.P.; et al. Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 2020, 24, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Camacho, A.; Rochera, C.; Picazo, A. Effect of experimentally increased nutrient availability on the structure, metabolic activities, and potential microbial functions of a maritime Antarctic microbial mat. Front. Microb. 2022, 13, 900158. [Google Scholar] [CrossRef] [PubMed]
- Selbmann, L.; de Hoog, G.S.; Mazzaglia, A.; Friedmann, E.I.; Onofri, S. Fungi at the edge of life: Cryptendolithic black fungi from Antarctic desert. Stud. Mycol. 2005, 51, 1–32. [Google Scholar]
- Gonçalves, V.N.; Cantrell, C.L.; Wedge, D.E.; Ferreira, M.C.; Soares, M.A.; Jacob, M.R.; Oliveira, F.S.; Galante, D.; Rodrigues, F.; Alves, T.M.A.; et al. Fungi associated with rocks of the Atacama Desert: Taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ. Microbiol. 2016, 18, 232–245. [Google Scholar] [CrossRef]
- Gunde-Cimerman, N.; Zalar, P.; de Hoog, G.S.; Plemenitaš, A. Hypersaline waters in salterns: Natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 2000, 32, 235–340. [Google Scholar] [CrossRef]
- Marchetta, A.; Gerrits van den Ende, B.; Al-Hatmi, A.M.S.; Hagen, F.; Zalar, P.; Sudhadham, M.; Gunde-Cimerman, N.; Urzì, C.; de Hoog, G.S.; De Leo, F. Global molecular diversity of the halotolerant fungus Hortaea werneckii. Life 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D.L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
- Hyde, K.D. The numbers of fungi. Fungal Divers. 2022, 114, 1. [Google Scholar] [CrossRef]
- Peay, K.G.; Kennedy, P.G.; Talbot, J.M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 2016, 14, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Grossart, H.P.; Van den Wyngaert, S.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Ellis-Evans, J.C. Fungi from maritime Antarctic freshwater environments. Br. Antarct. Surv. Bull. 1985, 68, 37–45. [Google Scholar]
- Brunati, M.; Rojas, J.L.; Sponga, F.; Ciciliato, I.; Losi, D.; Göttlich, E.; de Hoog, G.S.; Genilloud, O.E.; Marinelli, F. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar. Genom. 2009, 2, 43–50. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Teixeira, D.R.; Vieira, R.; Lírio, J.M.; Felizardo, J.P.; Abuchacra, R.C.; Cardoso, R.P.; Zani, C.L.; Alves, T.M.A.; Junior, P.A.S.; et al. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol. 2020, 124, 601–611. [Google Scholar] [CrossRef]
- Connell, L.; Segee, B.; Redman, R.; Rodriguez, R.J.; Staudige, H. Biodiversity and abundance of cultured microfungi from the permanently ice-covered Lake Fryxell, Antarctica. Life 2018, 8, 37. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Ogaki, M.B.; Texeira, E.A.A.; de Mendes, G.C.A.; Convey, P.; Rosa, C.A.; Rosa, L.H. Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. Braz. J. Microbiol. 2022. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Camara, P.E.A.S.; Pinto, O.H.B.; Lirio, J.M.; Coria, S.H.; Vieira, R.; Carvalho-Silva, M.; Convey, P.; Rosa, C.A.; Rosa, L.H. Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles 2021, 25, 257–265. [Google Scholar] [CrossRef]
- de Souza, L.M.D.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; Carvalho-Silva, M.; de Oliveira, F.S.; Rosa, C.A.; Câmara, P.E.A.S.; Rosa, L.H. Diversity, distribution and ecology of fungal communities present in Antarctic lake sediments uncovered by DNA metabarcoding. Sci. Rep. 2022, 12, 8407. [Google Scholar] [CrossRef]
- Rosa, L.H.; Ogaki, M.B.; Lirio, J.M.; Vieira, R.; Coria, S.H.; Pinto, O.H.B.; Carvalho Silva, M.; Convey, P.; Rosa, C.A.; Camara, P.E.A.S. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, northeastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Rojas-Jimenez, K.; Wurzbacher, C.; Bourne, E.C.; Chiuchiolo, A.; Priscu, J.C.; Grossart, H.P. Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Sci. Rep. 2017, 7, 15348. [Google Scholar] [CrossRef]
- Comeau, A.M.; Vincent, W.F.; Bernier, L.; Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 2016, 6, 30120. [Google Scholar] [CrossRef]
- Perini, L.; Gostinčar, C.; Gunde-Cimerman, N. Fungal and bacterial diversity of Svalbard subglacial ice. Sci. Rep. 2019, 27, 20230. [Google Scholar] [CrossRef]
- Guglielmin, M.; Azzaro, M.; Buzzini, P.; Battistel, D.; Roman, M.; Ponti, S.; Turchetti, B.; Sannino, C.; Borruso, L.; Papale, M.; et al. Possible unique ecosystem in the endoglacial hypersaline brines in Antarctica. Sci. Rep. 2023, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Pirrung, M.; McCue, L.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef] [PubMed]
- Weißbecker, C.; Schnabel, B.; Heintz-Buschart, A. Dadasnakea Snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. GigaScience 2020, 9, giaa135. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Gonçalves, V.N.; de Souza, L.M.D.; Lirio, J.M.; Coria, S.H.; Lopes, F.A.C.; Convey, P.; Carvalho-Silva, M.; de Oliveira, F.S.; Camara, P.E.A.S.; Rosa, L.H. Diversity and ecology of fungal assemblages present in lake sediments at Clearwater Mesa, James Ross Island, Antarctica, assessed using metabarcoding of environmental DNA. Fungal Biol. 2022, 126, 640–647. [Google Scholar] [CrossRef]
- Monchy, S.; Sanciu, G.; Jobard, M.; Rasconi, S.; Gerphagnon, M.; Chabé, M.; Cian, A.; Meloni, D.; Niquil, N.; Christaki, U.; et al. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ. Microbiol. 2011, 13, 1433–1453. [Google Scholar] [CrossRef] [PubMed]
- Wurzbacher, C.; Warthmann, N.; Bourne, E.; Attermeyer, K.; Allgaier, M.; Powell, J.R.; Detering, H.; Mbedi, S.; Grossart, H.P.; Monaghan, M.T. High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 2016, 16, 17–44. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, N.F.; Zhang, Y.Q.; Liu, H.Y.; Yu, L.Y. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci. Rep. 2015, 5, 14524. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; da Silva, T.H.; Ogaki, M.B.; Pinto, O.H.B.; Stech, M.; Convey, P.; Caravalho-Silva, M.; Rosa, C.A.; Camara, P.E.A.S. DNA metabarcoding high-throughput sequencing uncovers cryptic fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci. Rep. 2020, 10, 21986. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; Pinto, O.H.B.; Convey, P.; Caravalho-Silva, M.; Rosa, C.A.; Camara, P.E.A.S. DNA metabarcoding to assess the diversity of airborne fungi present in air over Keller Peninsula, King George Island, Antarctica. Microb. Ecol. 2021, 82, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; da Costa Coelho, L.; Pinto, O.H.B.; Carvalho-Silva, M.; Convey, P.; Rosa, C.A.; Camara, P.E.A.S. Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease. Extremophiles 2021, 25, 471–481. [Google Scholar] [CrossRef]
- da Silva, T.H.; Camara, P.E.; Pinto, O.H.B.; Carvalho-Silva, M.; Oliveira, F.S.; Convey, P.; Rosa, C.A.; Rosa, L.H. Diversity of fungi present in permafrost in the south Shetland Islands, maritime Antarctic. Microb. Ecol. 2022, 83, 58–67. [Google Scholar] [CrossRef]
- Ogaki, M.B.; Pinto, O.H.B.; Vieira, R.; Neto, A.A.; Convey, P.; Carvalho-Silva, M.; Rosa, C.A.; Camara, P.E.A.S.; Rosa, L.H. Fungi present in Antarctic deepsea sediments assessed using DNA metabarcoding. Microb. Ecol. 2021, 82, 157–164. [Google Scholar] [CrossRef]
- Rosa, L.H.; de Menezes, G.C.A.; Pinto, O.H.B.; Convey, P.; Carvalho-Silva, M.; Simoes, J.C.; Rosa, C.A.; Camara, P.E.A.S. Fungal diversity in seasonal snow of Martel Inlet, King George Island, South Shetland Islands, assessed using DNA metabarcoding. Polar Biol. 2022, 45, 627–636. [Google Scholar] [CrossRef]
- Kagami, M.; de Bruin, A.; Ibelings, B.W.; Van Donk, E. Parasitic chytrids: Their effects on phytoplankton communities and foodweb dynamics. Hydrobiologia 2007, 578, 113–129. [Google Scholar] [CrossRef]
- Ishida, S.; Nozaki, D.; Grossart, H.P.; Kagami, M. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ. Microbial. 2015, 7, 435–441. [Google Scholar] [CrossRef]
- Kagami, M.; Miki, T.; Takimoto, G. Mycoloop: Chytrids in aquatic food webs. Front. Microbiol. 2014, 5, 166. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, R.A.; Dagar, S.; Griffith, G.W.; Pratt, C.J.; Ypussef, N.H.; Elshahed, M.S. Taxonomy of the anaerobic gut fungi (Neocallimastigomycota): A review of classification criteria and description of currenttaxa. Int. J. Syst. Evol. Microbiol. 2022, 72, 005322. [Google Scholar] [CrossRef] [PubMed]
- Letcher, P.M.; Velez, C.G.; Schultz, S.; Powell, M.J. New taxa are delineated in Alphamycetaceae (Rhizophydiales, Chytridiomycota). Nova Hedwig. 2012, 94, 9–29. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Ozerskaya, S.M.; Ivanushkina, N.E.; Chigineva, N.I.; Vasilenko, O.V.; Spirina, E.V.; Gilichinskii, D.A. Fungal diversity in the Antarctic active layer. Microbiology 2014, 83, 94–101. [Google Scholar] [CrossRef]
- Henríquez, M.; Vergara, K.; Norambuena, J.; Beiza, A.; Maza, F.; Ubilla, P.; Araya, I.; Chávez, R.; San-Martín, A.; Darias, J.; et al. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J. Microbiol. Biotechnol. 2014, 30, 65–76. [Google Scholar] [CrossRef]
- Arenz, B.E.; Blanchette, R.A. Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can. J. Microbiol. 2009, 55, 46–56. [Google Scholar] [CrossRef]
- Fell, J.W.; Statzell, A.; Hunter, I.L.; Phaff, H.J. Leucosporidium gen. nov. the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek 1969, 35, 433–462. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Schäfer, A.M.; Begerow, D. Leucosporidium drummii sp. nov., a member of the Microbotryomycetes isolated from soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 728–734. [Google Scholar] [CrossRef]
- Laich, F.; Chávez, R.; Vaca, I. Leucosporidium escuderoi f. a., sp. nov., a basidiomycetous yeast associated with an Antarctic marine sponge. Antonie van Leeuwenhoek 2014, 105, 593–601. [Google Scholar] [CrossRef]
- de García, V.; Coelho, M.A.; Maia, T.M.; Rosa, L.H.; Vaz, A.M.; Rosa, C.A.; Sampaio, J.P.; Gonçalves, P.; van Broock, M.; Libkind, D. Sex in the cold: Taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Res. 2015, 15, fov019. [Google Scholar] [CrossRef] [PubMed]
- Vaz, A.B.; Rosa, L.H.; Vieira, M.L.; Garcia, V.D.; Brandão, L.R.; Teixeira, L.C.; Rosa, C.A. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz. J. Microbiol. 2011, 42, 937–947. [Google Scholar] [CrossRef]
- Tsuji, M.; Fujiu, S.; Xiao, N.; Hanada, Y.; Kudoh, S.; Kondo, H.; Tsuda, S.; Hoshino, T. Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctic. FEMS Microbiol. Lett. 2013, 346, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, J.; Flyen, A.-C.; Nunez, M. Wood-decaying fungi in protected buildings and structures on Svalbard. Agarica 2010, 29, 5–14. [Google Scholar]
- De Leo, F.; Marchetta, A.; Urzì, C. Black fungi on stone-built Heritage: Current knowledge and future outlook. Appl. Sci. 2022, 12, 3969. [Google Scholar] [CrossRef]
- Walsh, E.; Duan, W.; Mehdi, M.; Naphri, K.; Khiste, S.; Scalera, A.; Zhang, N. Cadophora meredithiae and C. interclivum, new species from roots of sedge and spruce in a western Canada subalpine forest. Mycologia 2018, 110, 201–214. [Google Scholar] [CrossRef]
- Zabouri, Y.; Cheriguene, A.; Chougrani, F.; Merzouk, Y.; Marchetta, A.; Urzi, C.; De Leo, F. Antifungal activity of lactic acid bacteria against phytopathogenic Alternaria alternata species and their molecular characterization. J. Food Nutr. Res. 2021, 60, 18–28. [Google Scholar]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of soil fungi. Eur. J. Soil Sci. 2007, 59, 1007. [Google Scholar] [CrossRef]
- Iliushin, V.A. First find of Cadophora antarctica Rodr. Andrade, Stchigel, Mac Cormack & Cano in the Arctic. Czech Polar Rep. 2020, 10, 147–152. [Google Scholar] [CrossRef]
- Brück, S.A.; Contato, A.G.; Gamboa-Trujillo, P.; de Oliveira, T.B.; Cereia, M.; de Moraes Polizeli, M.L.T. Prospection of psychrotrophic filamentous fungi isolated from the High Andean Paramo Region of Northern Ecuador: Enzymatic activity and molecular identification. Microorganisms 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Kirtsideli, I.Y.; Vlasov, D.Y.; Barantsevich, E.P.; Krylenkov, V.A.; Sokolov, V.T. Microfungi from soil of polar island Izvestia Tsik (Kara Sea). Mikol. I Fitopatol. 2014, 48, 365–371. [Google Scholar]
- Zalar, P.; Gunde-Cimerman, N. Cold-Adapted Yeasts in Arctic Habitats in Cold-Adapted Yeasts. In Biodiversity, Adaptation Strategies and Biotechnological Significance; Buzzini, P., Margesin, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 49–74. [Google Scholar]
- Arenz, B.E.; Held, B.W.; Jurgens, J.A.; Farrell, R.L.; Blanchette, R.A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil. Biol. Biochem. 2006, 38, 3057–3064. [Google Scholar] [CrossRef]
- Bridge, P.D.; Spooner, B.M. Non-lichenized Antarctic fungi: Transient visitors or members of a cryptic ecosystem? Fungal Ecol. 2012, 5, 381–394. [Google Scholar] [CrossRef]
- Connell, L.B.; Staudigel, H. Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2013, 2, 798–809. [Google Scholar] [CrossRef]
- Aptroot, A. A world key to the species of Anthracothecium and Pyrenula. Lichenologist 2012, 44, 5–53. [Google Scholar] [CrossRef]
- Connell, L.; Redman, R.; Craig, S.; Scorzetti, G.; Iszard, M.; Rodriguez, R. Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb. Ecol. 2008, 56, 448–459. [Google Scholar] [CrossRef]
- Butinar, L.; Strmole, T.; Gunde-Cimerman, N. Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microb. Ecol. 2011, 61, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Crous, P.W.; Groenewald, J.Z. They seldom occur alone. Fungal Biol. 2016, 120, 1392–1415. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.H.; Pinto, O.H.B.; Šantl-Temkiv, T.; Convey, P.; Caravalho-Silva, M.; Rosa, C.A.; Camara, P.E.A.S. DNA metabarcoding high-throughput sequencing of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci. Rep. 2020, 10, 21793. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.M.D.; Ogaki, M.B.; Câmara, P.E.A.S.; Pinto, O.H.B.; Convey, P.; Caravalho-Silva, M.; Rosa, C.A.; Rosa, L.H. Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: A temporal microcosm experiment. Extremophiles 2021, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- de Menezes, G.C.A.; Câmara, P.E.A.S.; Pinto, O.H.B.; Caravalho-Silva, M.; Oliveira, F.S.; Souza, C.D.; Schaefer, C.E.G.R.; Convey, P.; Rosa, C.A.; Rosa, L.H. Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 2021, 25, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Schütte, U.M.; Henning, J.A.; Ye, Y.; Bowling, A.; Ford, J.; Genet, H.; Waldrop, M.P.; Turetsky, M.R.; White, J.R.; Bever, J.D. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: Does fungal community change mediate plant productivity response? J. Ecol. 2019, 107, 1737–1752. [Google Scholar] [CrossRef]
Area | Lake | Sample ID | Coordinates | Physical-Chemical Parameters | ||||
---|---|---|---|---|---|---|---|---|
Water Temperature(°C) | pH | O2 % | Cond (uS/cm) | |||||
Ny-Ålesund(Arctic) | Solvannet | L1 | 78°55′33.121″ N | 11°56′19.618″ E | 6.53 | 8.19 | 100.77 | 398 |
Glacier | L2 | 78°55′2.64″ N | 11°47′26.52″ E | 8.83 | 7.85 | 98.67 | 150 | |
Knudsenheia | L3 | 78°56′40.801″ N | 11°51′34.74″ E | 9.00 | 8.40 | 106.50 | 2660 | |
Storvatnet | L4 | 78°55′27.181″ N | 11°52′43.68″ E | 7.90 | 8.09 | 102.67 | 241 | |
Tvillingvatnet | L5 | 78°55′3.4788″ N | 11°51′55321″ E | 8.13 | 7.82 | 102.47 | 222 | |
Livingston Island(Antarctica) | Argentina | LA | 62°40′22.39″ S | 60°24′18.12″ W | 0.20 | 5.56 | 66.00 | 65 |
Sofia | LS | 62°40′12.19″ S | 60°23′17.90″ W | 0.33 | 5.47 | 84.48 | 20 | |
Deception Island(Antarctica) | Balleneros | LB | 62°58′51.1″ S | 60°34′27.1″ W | 6.04 | 3.60 | 83.80 | 423 |
Telefon | LT | 62°55′39.9″ S | 60°41′21.3″ W | 7.37 | 6.03 | 86.12 | 467 | |
Zapatilla | LZ | 62°59′00.24″ S | 60°40′29.07″ W | 6.80 | 5.30 | 84.65 | 81 |
Arctic | Antarctic | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phylum | Genus | Solvannet | Glacier | Knudsenheia | Storvatnet | Tvillingvatnet | Argentina | Sofia | Balleneros | Telefon | Zapatilla | ||||||||
L1-w | L2-w | L3-w | L3-s | L4-w | L4-s | L5-w | L5-s | LA-w | LA-s | LS-w | LS-s | LB-w | LB-s | LT-w | LT-s | LZ-w | LZ-s | ||
Ascomycota | Alatospora | ||||||||||||||||||
Alfaria | |||||||||||||||||||
Alternaria | |||||||||||||||||||
Antarctolichenia | |||||||||||||||||||
Arthroderma | |||||||||||||||||||
Aspergillus | |||||||||||||||||||
Beauveria | |||||||||||||||||||
Cadophora | |||||||||||||||||||
Candida | |||||||||||||||||||
Cladosporium | |||||||||||||||||||
Coleophoma | |||||||||||||||||||
Collophora | |||||||||||||||||||
Coniosporium | |||||||||||||||||||
Debaryomyces | |||||||||||||||||||
Geomyces | |||||||||||||||||||
Haptocillium | |||||||||||||||||||
Helicodendron | |||||||||||||||||||
Heydenia | |||||||||||||||||||
Hyaloscypha | |||||||||||||||||||
Iodophanus | |||||||||||||||||||
Knufia | |||||||||||||||||||
Mastodia | |||||||||||||||||||
Metschnikowia | |||||||||||||||||||
Nectriopsis | |||||||||||||||||||
Neobulgaria | |||||||||||||||||||
Penicillium | |||||||||||||||||||
Polyphilus | |||||||||||||||||||
Pseudeurotium | |||||||||||||||||||
Pseudogymnoascus | |||||||||||||||||||
Scolecolachnum | |||||||||||||||||||
Tetracladium | |||||||||||||||||||
Thelebolus | |||||||||||||||||||
Ulvella | |||||||||||||||||||
Basidiomycota | Amylocorticiellum | ||||||||||||||||||
Camptobasidium | |||||||||||||||||||
Coriolopsis | |||||||||||||||||||
Cryolevonia | |||||||||||||||||||
Cryptococcus | |||||||||||||||||||
Cutaneotrichosporon | |||||||||||||||||||
Cystofilobasidium | |||||||||||||||||||
Glaciozyma | |||||||||||||||||||
Hyphodermella | |||||||||||||||||||
Leucosporidium | |||||||||||||||||||
Malassezia | |||||||||||||||||||
Mrakia | |||||||||||||||||||
Naganishia | |||||||||||||||||||
Phenoliferia | |||||||||||||||||||
Pseudobensingtonia | |||||||||||||||||||
Scopuloides | |||||||||||||||||||
Sidera | |||||||||||||||||||
Vishniacozyma | |||||||||||||||||||
Chytridiomycota | Betamyces | ||||||||||||||||||
Entophlyctis | |||||||||||||||||||
Lobulomyces | |||||||||||||||||||
Zygophlyctis | |||||||||||||||||||
Mortierellomycota | Entomortierella | ||||||||||||||||||
Mortierella |
Polar Region | Matrice | Sample | Observed | Chao1 | ACE | Shannon (H′) | Simpson | InvSimpson | Fisher |
---|---|---|---|---|---|---|---|---|---|
Arctic | Water | L1-w | 274 | 274.38 | 275.00 | 2.89 | 0.88 | 8.38 | 37.17 |
L2-w | 563 | 563.40 | 564.21 | 4.80 | 0.98 | 53.50 | 80.69 | ||
L3-w | 184 | 185.75 | 186.92 | 1.72 | 0.57 | 2.34 | 22.62 | ||
L4-w | 585 | 587.02 | 589.17 | 4.10 | 0.95 | 19.78 | 86.61 | ||
L5-w | 470 | 471.49 | 473.39 | 2.99 | 0.86 | 7.40 | 66.10 | ||
mean | 415.2 | 416.41 | 417.74 | 3.3 | 0.85 | 18.28 | 58.64 | ||
Sediment | L3-s | 461 | 461.63 | 461.93 | 3.17 | 0.83 | 5.80 | 64.12 | |
L4-s | 645 | 645.32 | 645.81 | 4.41 | 0.96 | 26.24 | 95.50 | ||
L5-s | 885 | 885.68 | 886.39 | 4.69 | 0.97 | 29.46 | 132.98 | ||
mean | 663.7 | 664.21 | 664.71 | 4.09 | 0.92 | 20.5 | 97.54 | ||
Antarctica | Water | LA-w | 102 | 111.55 | 113.20 | 2.45 | 0.85 | 6.58 | 10.86 |
LB-w | 489 | 489.08 | 489.32 | 4.01 | 0.95 | 19.44 | 66.15 | ||
LS-w | 390 | 390.75 | 390.92 | 4.82 | 0.98 | 43.99 | 54.75 | ||
LT-w | 222 | 222.00 | 222.00 | 3.34 | 0.89 | 9.44 | 26.57 | ||
LZ-w | 243 | 244.91 | 244.85 | 2.55 | 0.83 | 5.83 | 30.79 | ||
mean | 289.2 | 291.66 | 292.06 | 3.43 | 0.9 | 17.06 | 37.83 | ||
Sediment | LA-s | 636 | 636.53 | 637.06 | 3.98 | 0.92 | 13.33 | 89.92 | |
LB-s | 409 | 409.06 | 409.39 | 3.87 | 0.95 | 20.38 | 55.38 | ||
LS-s | 481 | 481.33 | 481.97 | 4.49 | 0.97 | 30.32 | 66.56 | ||
LT-s | 186 | 186.00 | 186.00 | 2.79 | 0.85 | 6.68 | 21.76 | ||
LZ-s | 398 | 398.13 | 398.37 | 3.80 | 0.94 | 15.41 | 53.39 | ||
mean | 422 | 422.21 | 422.56 | 3.79 | 0.93 | 17.22 | 57.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchetta, A.; Papale, M.; Rappazzo, A.C.; Rizzo, C.; Camacho, A.; Rochera, C.; Azzaro, M.; Urzì, C.; Lo Giudice, A.; De Leo, F. A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes. J. Fungi 2023, 9, 1095. https://doi.org/10.3390/jof9111095
Marchetta A, Papale M, Rappazzo AC, Rizzo C, Camacho A, Rochera C, Azzaro M, Urzì C, Lo Giudice A, De Leo F. A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes. Journal of Fungi. 2023; 9(11):1095. https://doi.org/10.3390/jof9111095
Chicago/Turabian StyleMarchetta, Alessia, Maria Papale, Alessandro Ciro Rappazzo, Carmen Rizzo, Antonio Camacho, Carlos Rochera, Maurizio Azzaro, Clara Urzì, Angelina Lo Giudice, and Filomena De Leo. 2023. "A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes" Journal of Fungi 9, no. 11: 1095. https://doi.org/10.3390/jof9111095
APA StyleMarchetta, A., Papale, M., Rappazzo, A. C., Rizzo, C., Camacho, A., Rochera, C., Azzaro, M., Urzì, C., Lo Giudice, A., & De Leo, F. (2023). A Deep Insight into the Diversity of Microfungal Communities in Arctic and Antarctic Lakes. Journal of Fungi, 9(11), 1095. https://doi.org/10.3390/jof9111095