Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. ZER Solution Preparation
2.2. Culture of Microorganisms
2.3. Minimum Inhibition Concentration (MIC), Minimum Fungicidal Concentration (MFC) and Survival Curve
2.4. Biofilm Formation and Treatments
2.5. Efficacy Evaluation of ZER
2.6. Statistical Analyses
3. Results
3.1. MIC, MFC and Survival Curve
3.2. Efficacy of ZER on Biofilm Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukaremera, L.; Lee, K.K.; Mora-Montes, H.M.; Gow, N.A.R. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front. Immunol. 2017, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The landscape of candidemia during the coronavirus disease 2019 (COVID-19) pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Eggimann, P.; Garbino, J.; Pittet, D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 2003, 3, 685–702. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans biofilm. Pathog. Dis. 2016, 74, 4. [Google Scholar] [CrossRef]
- Nobile, C.J.; Schneider, H.A.; Nett, J.E.; Sheppard, D.C.; Filler, S.G.; Andes, D.R.; Mitchell, A.P. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. CB 2008, 18, 1017–1024. [Google Scholar] [CrossRef]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol. 2007, 22, 7945–7947. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.J.; Qian, H.; Tan, L.; Zhang, Z.; Liu, H.; Pan, Y.; Zhao, Y. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus. Front. Microl. 2020, 11, 813. [Google Scholar] [CrossRef]
- Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.; Hoff, B.; VanHandel, M.; Andes, D. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 2007, 51, 510–520. [Google Scholar] [CrossRef]
- Taff, H.T.; Nett, J.E.; Zarnowski, R.; Ross, K.M.; Sanchez, H.; Cain, M.T.; Hamaker, J.; Mitchell, A.P.; Andes, D.R. A Candida biofilm-induced pathway for matrix glucan delivery: Implications for drug resistance. PLoS Pathog. 2012, 8, e1002848. [Google Scholar] [CrossRef]
- Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.; de Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Huang, B.; Ding, Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: A Bayesian network meta-analysis. J. Prosthet. Dent. 2021, 125, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Morad, H.; Wild, A.M.; Wiehr, S.; Davies, G.; Maurer, A.; Pichler, B.J.; Thornton, C.R. Pre-clinical Imaging of Invasive Candidiasis Using ImmunoPET/MR. Front. Microbiol. 2018, 9, 1996. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.; Ahmad, A.; Setapar, S.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Cur. Drug. Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric on Aspergillus flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef]
- Abdul, A.B.; Abdelwahab, A.S.; Al-Zubairi, A.S.; Elhassan, M.M.; Murali, S.M. Anticancer and Antimicrobial Activities of Zerumbone from the Rhizomes of Zingiber zerumbet. Int. J. Pharmacol. 2008, 4, 301–304. [Google Scholar] [CrossRef]
- Sidahmed, H.M.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.; Fai, L.M.; Vadivelu, J. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) Smith. PLoS ONE 2015, 10, e0121060. [Google Scholar] [CrossRef]
- Sulaiman, M.R.; Mohamad, T.A.S.T.; Mossadeq, W.M.S.; Moin, S.; Yusof, M.; Mokhtar, A.F.; Zakaria, Z.A.; Israf, D.A.; Lajis, N. Antinociceptive activity of the essential oil of Zingiber zerumbet. Planta Med. 2010, 76, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.O.; Kumar, R.K.; Rabinarayan, A.; Kumar, M.S. Pharmacognostical and phytochemical studies of Zingiber zerumbet (L.) Smith rhizome. Int. J. Res. Ayurveda Pharm. 2011, 2, 698–703. [Google Scholar]
- Kalantari, K.; Moniri, M.; Boroumand Moghaddam, A.; Abdul Rahim, R.; Bin Ariff, A.; Izadiyan, Z.; Mohamad, R. A Review of the Biomedical Applications of Zerumbone and the Techniques for Its Extraction from Ginger Rhizomes. Molecules 2017, 22, 1645. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.S.; Eom, Y.B. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can. J. Microbiol. 2019, 65, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.; Tzeng, T.F.; Liu, I.M. Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. J. Tissue Viability 2017, 26, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chaudhari, A.K.; Das, S.; Dubey, N.K. Zingiber zerumbet L. essential oil-based chitosan nanoemulsion as an efficient green preservative against fungi and aflatoxin B1 contamination. J. Food Sci. 2021, 86, 149–160. [Google Scholar]
- Lee, J.H.; Kim, Y.G.; Choi, P.; Ham, J.; Park, J.G.; Lee, J. Antibiofilm and antivirulence activities of 6-Gingerol and 6-Shogaol against Candida albicans due to hyphal inhibition. Front. Cell. Infect. Microbiol. 2018, 8, 299. [Google Scholar] [CrossRef]
- Shin, D.S.; Eom, Y.B. Efficacy of zerumbone against dual-species biofilms of Candida albicans and Staphylococcus aureus. Microb. Pathog. 2019, 137, 103768. [Google Scholar] [CrossRef]
- Kim, H.R.; Rhee, K.J.; Eom, Y.B. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 2019, 57, 99–106. [Google Scholar] [CrossRef]
- Kim, H.R.; Shin, D.S.; Jang, H.I.; Eom, Y. B Anti-biofilm and anti-virulence effects of zerumbone against Acinetobacter baumannii. Microbiology 2020, 166, 717–726. [Google Scholar] [CrossRef]
- Panariello, B.; Klein, M.I.; Alves, F.; Pavarina, A.C. DNase increases the efficacy of antimicrobial photodynamic therapy on Candida albicans biofilms. Photodiagn. Photodyn. Ther. 2019, 27, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Prakash, A.; Meletiadis, J.; Sharma, C.; Chowdhary, A. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida and associated tentative epidemiological cutoff values. Antimicrob. Agents Chemother. 2017, 61, e00485-17. [Google Scholar] [CrossRef] [PubMed]
- Panariello, B.; Klein, M.I.; Mima, E.; Pavarina, A.C. Fluconazole impacts the extracellular matrix of fluconazole-susceptible and -resistant Candida albicans and Candida glabrata biofilms. J. Oral Microbiol. 2018, 10, 1476644. [Google Scholar] [CrossRef] [PubMed]
- Panariello, B.H.D.; Klein, M.I.; Pavarina, A.C.; Duarte, S. Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J. Oral Microbiol. 2017, 9, 1385372. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Rice, K.C.; Mann, E.E.; Endres, J.L.; Weiss, E.C.; Cassat, J.E.; Smeltzer, M.S.; Bayles, K.W. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2007, 104, 8113–8118. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Paramonova, E.; Krom, B.P.; van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology 2009, 155, 1997–2003. [Google Scholar] [CrossRef]
- Haneef, J.; Shaharyar, M.; Husain, A.; Rashid, M.; Mishra, R.; Siddique, N.A.; Pal, M. Analytical methods for the detection of undeclared synthetic drugs in traditional herbal medicines as adulterants. Drug Test. Anal. 2013, 5, 607–613. [Google Scholar] [CrossRef]
- Solimini, R.; Busardò, F.P.; Rotolo, M.C.; Ricci, S.; Mastrobattista, L.; Mortali, C.; Graziano, S.; Pellegrini, M.; di Luca, N.M.; Palmi, I. Hepatotoxicity associated to synthetic cannabinoids use. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1–6. [Google Scholar]
- Ramsey, J.T.; Shropshire, B.C.; Nagy, T.R.; Chambers, K.D.; Li, Y.; Korach, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar] [PubMed]
- Kader, M.G.; Habib, M.R.; Nikkon, F.; Yeasmin, T.; Rashid, M.A.; Rahman, M.M.; Gibbons, S. Zederone from the rhizomes of Zingiber zerumbet and its anti-staphylococcal activity. Boletín Latinoam. Caribe Plantas Med. Aromáticas. 2010, 9, 63–68. [Google Scholar]
- Tan, J.W.; Israf, D.A.; Tham, C.L. Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Front. Pharmacol. 2018, 9, 652. [Google Scholar] [CrossRef] [PubMed]
- Baby, S.; Dan, M.; Thaha, A.R.; Johnson, A.J.; Kurup, R.; Balakrishnapillai, P.; Lim, C.K. High content of zerumbone in volatile oils of Zingiber zerumbet from southern India and Malaysia. Flavour Fragr. J. 2009, 24, 301–308. [Google Scholar] [CrossRef]
- Macros-Arias, C.; Eraso, E.; Madariaga, L.; Quindos, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 2011, 11, 119. [Google Scholar]
- Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef]
- Nett, J.E.; Andes, D.R. Contributions of the Biofilm Matrix to Candida Pathogenesis. J. Fungi 2020, 6, 21. [Google Scholar] [CrossRef]
- Cattò, C.; de Vincenti, L.; Borgonovo, G.; Bassoli, A.; Marai, S.; Villa, F.; Cappitelli, F.; Saracchi, M. Sub-lethal concentrations of Perilla frutescens essential oils affect phytopathogenic fungal biofilms. J. Environ. Manag. 2019, 245, 264–272. [Google Scholar] [CrossRef]
- Nunes, T.; Rosa, L.M.; Vega-Chacón, Y.; Mima, E. Fungistatic action of N-Acetylcysteine on Candida albicans biofilms and its interaction with antifungal agents. Microorganisms 2020, 8, 980. [Google Scholar] [CrossRef]
- Sims Jr, K.R.; Maceren, J.P.; Liu, Y.; Rocha, G.R.; Koo, H.; Benoit, D.S. Dual antibacterial drug-loaded nanoparticles synergistically improve treatment of Streptococcus mutans biofilms. Acta Biomater. 2020, 115, 418–431. [Google Scholar] [CrossRef]
- Zarnowski, R.; Westler, W.M.; Lacmbouh, G.A.; Marita, J.M.; Bothe, J.R.; Bernhardt, J.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Sanchez, H.; Hatfield, R.D.; et al. Novel entries in a fungal biofilm matrix encyclopedia. mBio 2014, 5, e01333-14. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Yumoto, H.; Sapaar, B.; Matsuo, T.; Ichikawa, T.; Miyake, Y. Pathogenic factors in Candida biofilm-related infectious diseases. J. Appl. Microbiol. 2017, 122, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Sherry, L.; Lappin, D.F.; Nile, C.J.; Smith, K.; Williams, C.; Munro, C.A.; Ramage, G. Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiol. 2014, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Bassi, R.C.; Boriollo, M. Amphotericin B, fluconazole, and nystatin as development inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical models in vitro. J. Prosthet. Dent. 2022, 127, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Pereira, C.A.; Klein, M.I.; Lobo, C.; Gorayb-Pereira, A.L.; Jordão, C.C.; Pavarina, A.C. DNase enhances photodynamic therapy against fluconazole-resistant Candida albicans biofilms. Oral Dis. 2022, 29, 1855–1867. [Google Scholar] [CrossRef]
- Moreira da Silva, T.; Pinheiro, C.D.; Puccinelli Orlandi, P.; Pinheiro, C.C.; Soares Pontes, G. Zerumbone from Zingiber zerumbet (L.) smith: A potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement. Altern. Med. 2018, 18, 301. [Google Scholar] [CrossRef]
- Bowen, W.H.; Burne, R.A.; Wu, H.; Koo, H. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018, 26, 229–242. [Google Scholar] [CrossRef]
Component | Strain | Factor | Interation | |
---|---|---|---|---|
Concentration | Time | Concentration versus Time | ||
CFU/mL | CaS | p < 0.001 | p < 0.001 | p < 0.001 |
CaR | p = 0.004 | p = 0.012 | p < 0.001 | |
Dry-Weight (mg) | CaS | p < 0.001 | p = 0.092 | p = 0.959 |
CaR | p = 0.860 | p = 0.936 | p = 0.992 | |
Insoluble Dry-weight (mg) | CaS | p < 0.001 | p = 0.150 | p = 0.257 |
CaR | p < 0.001 | p = 0.013 | p = 0.101 | |
Soluble proteins (µg) | CaS | p = 0.081 | p < 0.001 | p = 0.122 |
CaR | p < 0.001 | p < 0.001 | p < 0.001 | |
Insoluble proteins (µg) | CaS | p = 0.089 | p = 0.078 | p = 0.014 |
CaR | p = 0.698 | p = 0.424 | p = 0.047 | |
WSP (µg) | CaS | p < 0.001 | p = 0.089 | p = 0.040 |
CaR | p < 0.001 | p = 0.051 | p = 0.039 | |
ASP (µg) | CaS | p < 0.001 | p = 0.737 | p = 0.916 |
CaR | p < 0.001 | p = 0.069 | p = 0.021 | |
eDNA (ng) | CaS | p < 0.001 | p = 0.253 | p = 0.001 |
CaR | p < 0.001 | p < 0.001 | p = 0.002 |
Component | Groups | 5 min | 10 min | 20 min | |||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | ||
CFU/mL | Control | 8.33 × 105 Aa | 1.71 × 105 | 1.16 × 106 Ba | 1.24 × 105 | 2.17 × 106 Ca | 2.77 × 105 |
ZER-128 | 1.63 × 105 Ab | 4.96 × 104 | 2.40 × 105 Bb | 7.82 × 104 | 4.13 × 105 Cb | 1.30 × 105 | |
ZER-256 | 1.10 × 105 Ac | 3.02 × 104 | 1.73 × 105 Bc | 5.21 × 104 | 1.73 × 105 Bc | 3.94 × 104 | |
Dry-Weight (mg) | Control | 5.733 Aa | 0.939 | 5.266 Aa | 0.695 | 5.566 Aa | 0.752 |
ZER-128 | 3.400 Ab | 0.898 | 3.066 Ab | 0.574 | 3.383 Ab | 0.829 | |
ZER-256 | 2.349 Ac | 0.383 | 2.166 Ac | 0.389 | 2.450 Ac | 0.566 | |
Insoluble Dry-weight (mg) | Control | 1.200 Aa | 0.062 | 1.198 Aa | 0.053 | 1.128 Aa | 0.115 |
ZER-128 | 1.119 Ab | 0.099 | 1.096 Ab | 0.085 | 1.110 Aa | 0.055 | |
ZER-256 | 0.663 Ac | 0.035 | 0.641 Ac | 0.069 | 0.624 Ab | 0.060 | |
Soluble proteins (µg) | Control | 0.024 Aa | 0.002 | 0.022 Ba | 0.001 | 0.021 Ba | 0.001 |
ZER-128 | 0.023 Aab | 0.002 | 0.022 ABa | 0.001 | 0.021 Ba | 0.001 | |
ZER-256 | 0.022 Ab | 0.002 | 0.022 Aa | 0.001 | 0.021 Aa | 0.001 | |
Insoluble proteins (µg) | Control | 0.010 Aa | 0.001 | 0.010 ABa | 0.002 | 0.011 Ba | 0.002 |
ZER-128 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | 0.011 Aa | 0.002 | |
ZER-256 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | 0.009 Ab | 0.001 | |
WSP (µg) | Control | 0.090 Aa | 0.009 | 0.092 Aa | 0.014 | 0.091 Aa | 0.004 |
ZER-128 | 0.083 Aa | 0.006 | 0.071 Bb | 0.017 | 0.069 Bb | 0.017 | |
ZER-256 | 0.033 Ab | 0.003 | 0.032 Ac | 0.002 | 0.031 Ac | 0.001 | |
ASP (µg) | Control | 0.100 Aa | 0.008 | 0.101 Aa | 0.009 | 0.100 Aa | 0.006 |
ZER-128 | 0.100 Aa | 0.012 | 0.096 Aab | 0.002 | 0.094 Aab | 0.009 | |
ZER-256 | 0.092 Aa | 0.010 | 0.094 Ab | 0.002 | 0.092 Ab | 0.007 | |
eDNA (ng) | Control | 35.904 ABa | 2.99 | 35.189 Aa | 4.52 | 39.356 Ba | 6.05 |
ZER-128 | 22.452 Ab | 4.00 | 22.167 Ab | 3.82 | 21.669 Ab | 5.27 | |
ZER-256 | 14.903 Ac | 1.05 | 11.720 ABc | 2.54 | 8.541 Bc | 1.78 |
Component | Groups | 5 min | 10 min | 20 min | |||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | ||
CFU/mL | Control | 4.91 × 106 Aa | 5.13 × 105 | 4.97 × 106 Aa | 3.92 × 105 | 4.85 × 106 Aa | 5.02 × 105 |
ZER-128 | 2.63 × 106 Ab | 1.37 × 105 | 2.27 × 106 Bb | 2.05 × 105 | 2.51 × 106 Cb | 2.27 × 105 | |
ZER-256 | 1.61 × 106 Ac | 2.52 × 105 | 1.07 × 106 Bc | 1.72 × 105 | 5.73 × 105 Cc | 3.94 × 104 | |
Dry-Weight (mg) | Control | 4.967 Aa | 0.496 | 5.000 Aa | 0.572 | 5.033 Aa | 0.450 |
ZER-128 | 4.950 Aa | 0.444 | 4.900 Aa | 0.357 | 4.950 Aa | 0.683 | |
ZER-256 | 4.900 Aa | 0.463 | 5.000 Aa | 0.621 | 4.967 Aa | 0.558 | |
Insoluble Dry-weight (mg) | Control | 1.211 Aa | 0.066 | 1.196 Aa | 0.049 | 1.179 Aa | 0.073 |
ZER-128 | 1.131 Ab | 0.071 | 1.123 Ab | 0.057 | 1.131 Aa | 0.045 | |
ZER-256 | 1.108 Ab | 0.049 | 1.069 ABb | 0.050 | 1.016 Bb | 0.054 | |
Soluble proteins (µg) | Control | 0.024 Aa | 0.001 | 0.026 Aa | 0.002 | 0.025 Aa | 0.002 |
ZER-128 | 0.024 Aa | 0.001 | 0.022 Bb | 0.001 | 0.021 Bb | 0.001 | |
ZER-256 | 0.024 Aa | 0.002 | 0.021 Bb | 0.001 | 0.021 Bb | 0.001 | |
Insoluble proteins (µg) | Control | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 |
ZER-128 | 0.010 Aa | 0.000 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | |
ZER-256 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | 0.010 Aa | 0.001 | |
WSP (µg) | Control | 0.090 Aa | 0.009 | 0.093 Aa | 0.014 | 0.092 Aa | 0.004 |
ZER-128 | 0.084 Ab | 0.006 | 0.072 Ab | 0.017 | 0.070 Ab | 0.017 | |
ZER-256 | 0.053 Ac | 0.003 | 0.053 Ac | 0.002 | 0.051 Ac | 0.001 | |
ASP (µg) | Control | 0.098 Aa | 0.005 | 0.098 Aa | 0.005 | 0.099 Aa | 0.004 |
ZER-128 | 0.096 Aa | 0.005 | 0.096 Aab | 0.004 | 0.095 Ab | 0.002 | |
ZER-256 | 0.096 Aa | 0.004 | 0.094 Ab | 0.003 | 0.089 Bc | 0.002 | |
eDNA (ng) | Control | 61.571 Aa | 3.387 | 61.523 Aa | 3.473 | 60.940 Aa | 2.715 |
ZER-128 | 59.119 Aa | 3.596 | 58.000 Ab | 4.478 | 55.003 Bb | 3.251 | |
ZER-256 | 55.320 Ab | 2.976 | 51.889 Bc | 2.324 | 46.708 Cc | 3.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu-Pereira, C.A.; Gorayb-Pereira, A.L.; Menezes Noveletto, J.V.; Jordão, C.C.; Pavarina, A.C. Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms. J. Fungi 2023, 9, 576. https://doi.org/10.3390/jof9050576
Abreu-Pereira CA, Gorayb-Pereira AL, Menezes Noveletto JV, Jordão CC, Pavarina AC. Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms. Journal of Fungi. 2023; 9(5):576. https://doi.org/10.3390/jof9050576
Chicago/Turabian StyleAbreu-Pereira, César Augusto, Ana Luiza Gorayb-Pereira, João Vinícius Menezes Noveletto, Cláudia Carolina Jordão, and Ana Cláudia Pavarina. 2023. "Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms" Journal of Fungi 9, no. 5: 576. https://doi.org/10.3390/jof9050576
APA StyleAbreu-Pereira, C. A., Gorayb-Pereira, A. L., Menezes Noveletto, J. V., Jordão, C. C., & Pavarina, A. C. (2023). Zerumbone Disturbs the Extracellular Matrix of Fluconazole-Resistant Candida albicans Biofilms. Journal of Fungi, 9(5), 576. https://doi.org/10.3390/jof9050576