Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine
Abstract
:1. Introduction
- (1)
- Identify priority survey areas in Eastern Europe (with a special focus on Ukraine) where future outbreaks of Bd could occur (“hotspots”), but perhaps what was equally important was the recognition of locations that may be environmental refuges (“coldspots”) from infection (especially for amphibians that have certain sensitive conservation status) [23];
- (2)
- Identify bioclimatic and other environmental conditions that constrain the geographic distribution of this pathogen in the study area.
2. Materials and Methods
3. Results and Discussion
3.1. SDMs Based on Selected WorldClim v.2 Predictors
3.2. SDMs Based on Selected ENVIREM Predictors
3.3. SDMs Based on Selected Topographical Variables from the EarthEnv Dataset
3.4. SDMs Based on Selected Land Cover Variables from the EarthEnv Dataset
3.5. SDMs Based on Selected Soil Feature Variables from the Land-Atmosphere Interaction Research Group Dataset
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howard, S.D.; Bickford, D.P. Amphibians over the edge: Silent extinction risk of Data Deficient species. Divers. Distrib. 2014, 20, 837–846. [Google Scholar] [CrossRef]
- Catenazzi, A. State of the world’s amphibians. Annu. Rev. Environ. Resour. 2015, 40, 91–119. [Google Scholar] [CrossRef]
- IUCN; Conservation International; NatureServe. An Analysis of Amphibians on the 2008 IUCN Red List. 2008. Available online: www.iucnredlist.org/amphibians (accessed on 21 July 2020).
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Scheele, B.C.; Pasmans, F.; Skerratt, L.F.; Berger, L.; Martel, A.; Beukema, W.; Acevedo, A.A.; Burrowes, P.A.; Carvalho, T.; Catenazzi, A.; et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019, 363, 1459–1463. [Google Scholar] [CrossRef]
- Miller, C.A.; Tasse Taboue, G.C.; Ekane, M.; Robak, M.; Sesink Clee, P.R.; Richards-Zawacki, C.; Fokam, E.B.; Fuashi, N.A.; Anthony, N.M. Distribution modeling and lineage diversity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a central African amphibian hotspot. PLoS ONE 2018, 13, e0199288. [Google Scholar] [CrossRef]
- Allain, S.J.R.; Duffus, A.L.J. Emerging infectious disease threats to European herpetofauna. Herpetol. J. 2019, 29, 189–206. [Google Scholar] [CrossRef]
- Bosch, J.; Martínez-Solano, I. Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Penalara Natural Park, Spain. Oryx 2006, 40, 84–89. [Google Scholar] [CrossRef]
- Berger, L.; Speare, R.; Daszak, P.; Green, D.E.; Cunningham, A.A.; Goggin, C.L.; Slocombe, R.; Ragan, M.A.; Hyatt, A.D.; McDonald, K.R.; et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. USA 1998, 95, 9031–9036. [Google Scholar] [CrossRef]
- Daum, J.M.; Davis, L.R.; Bigler, L.; Woodhams, D.C. Hybrid advantage in skin peptide immune defenses of water frogs (Pelophylax esculentus) at risk from emerging pathogens. Infect. Genet. Evol. 2012, 12, 1854–1864. [Google Scholar] [CrossRef]
- Woodhams, D.C.; Bigler, L.; Marschang, R. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses. BMC Vet. Res. 2012, 8, 197. [Google Scholar] [CrossRef]
- Fisher, M.C.; Garner, T.W.J.; Walker, S.F. Global Emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 2009, 63, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Rebollar, E.A.; Hughey, M.C.; Harris, R.N.; Domangue, R.J.; Medina, D.; Ibáñez, R.; Belden, L.K. The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panamá. PLoS ONE 2014, 9, e95484. [Google Scholar] [CrossRef] [PubMed]
- Zimkus, B.M.; Baláž, V.; Belasen, A.M.; Bell, R.C.; Channing, A.; Doumbia, J.; Fokam, E.B.; Gonwouo, L.N.; Greenbaum, E.; Gvoždík, V.; et al. Chytrid Pathogen (Batrachochytrium dendrobatidis) in African Amphibians: A Continental Analysis of Occurrences and Modeling of Its Potential Distribution. Herpetologica 2020, 76, 201–215. [Google Scholar] [CrossRef]
- Olson, D.H.; Aanensen, D.M.; Ronnenberg, K.L.; Powell, C.I.; Walker, S.F.; Bielby, J.; Garner, T.W.J.; Weaver, G.; Fisher, M.C. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 2013, 8, e56802. [Google Scholar] [CrossRef]
- Rodder, D.; Kielgast, J.; Bielby, J.; Schmidtlein, S.; Bosch, J.T.; Garner, W.J.; Veith, M.; Walker, S.; Fisher, M.C.; Lötters, S. Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 2009, 1, 52–66. [Google Scholar] [CrossRef]
- Liu, X.; Rohr, J.R.; Li, Y.M. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proc. Biol. Sci. 2013, 280, 20122506. [Google Scholar] [CrossRef]
- Chai, S.-L.; Zhang, J.; Nixon, A.; Nielsen, S. Using risk assessment and habitat suitability models to prioritise invasive species for management in a changing climate. PLoS ONE 2016, 11, e0165292. [Google Scholar] [CrossRef]
- Xie, G.Y.; Olson, D.H.; Blaustein, A.R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS ONE 2016, 11, e0160746. [Google Scholar] [CrossRef]
- Kaiser, B.A.; Burnett, K.M. Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resour. Energy Econ. 2010, 32, 566–585. [Google Scholar] [CrossRef]
- Srivastava, V.; Lafond, V.; Griess, V.C. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Guimarães, A.; Silva, P.H.D.; Carneiro, F.M.; Silva, D.P. Using distribution models to estimate blooms of phytosanitary cyanobacteria in Brazil. Biota Neotrop. 2020, 20, e20190756. [Google Scholar] [CrossRef]
- Zumbado-Ulate, H.; García-Rodríguez, A.; Vredenburg, V.T.; Searle, C. Infection with Batrachochytrium dendrobatidis is common in tropical lowland habitats: Implications for amphibian conservation. Ecol. Evol. 2019, 9, 4917–4930. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlon, S.J.; Rieux, A.; Farrer, R.A.; Rosa, G.M.; Waldman, B.; Bataille, A.; Kosch, T.A.; Murray, K.A.; Brankovics, B.; Fumagalli, M.; et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 2018, 360, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Batrachochytrium dendrobatidis. GBIF.org GBIF Occurrence. Available online: https://www.gbif.org/occurrence/download/0215556-230224095556074 (accessed on 5 May 2023).
- Greenberg, D.A.; Palen, W.J.; Mooers, A.Ø. Amphibian species traits, evolutionary history and environment predict Batrachochytrium dendrobatidis infection patterns, but not extinction risk. Evol. Appl. 2017, 10, 1130–1145. [Google Scholar] [CrossRef] [PubMed]
- Schatz, A.M.; Kramer, A.M.; Drake, J.M. Accuracy of climate-based forecasts of pathogen spread. R. Soc. Open Sci. 2017, 4, 160975. [Google Scholar] [CrossRef]
- Harmos, K.; Bosch, J.; Thumsová, B.; Martínez-Silvestre, A.; Velarde, R.; Voros, J. Amphibian mortality associated with chytridiomycosis in Central-Eastern Europe. Herpetol. Notes 2021, 14, 1213–1218. [Google Scholar]
- Saare, L.; Laasmaa, A.; Anslan, S.; Rannap, R.; Tedersoo, L. Surveying for Batrachochytrium dendrobatidis and B. salamandrivorans in wild and captive amphibian populations in Estonia and Latvia. Dis. Aquat. Org. 2021, 145, 101–109. [Google Scholar] [CrossRef]
- Palomar, G.; Jakóbik, J.; Bosch, J.; Kolenda, K.; Kaczmarski, M.; Jośko, P.; Roces-Díaz, J.V.; Stachyra, P.; Thumsová, B.; Zieliński, P.; et al. Emerging infectious diseases of amphibians in Poland: Distribution and environmental drivers. Dis. Aquat. Org. 2021, 147, 1–12. [Google Scholar] [CrossRef]
- Balaz, V.; Vojar, J.; Civiš, P.; Šandera, M.; Rozínek, R. Chytridiomycosis risk among Central European amphibians based on surveillance data. Dis. Aquat. Org. 2014, 112, 1–8. [Google Scholar] [CrossRef]
- Baláž, V.; Vörös, J.; Civiš, P.; Vojar, J.; Hettyey, A.; Sós, E.; Dankovics, R.; Jehle, R.; Christiansen, D.G.; Clare, F.; et al. Assessing Risk and Guidance on Monitoring of Batrachochytrium dendrobatidis in Europe through Identification of Taxonomic Selectivity of Infection. Conserv. Biol. 2014, 28, 213–223. [Google Scholar] [CrossRef]
- Kolenda, K.; Najbar, A.; Ogielska, M.; Baláž, V. Batrachochytrium dendrobatidis is present in Poland and associated with reduced fitness in wild populations of Pelophylax lessonae. Dis. Aquat. Org. 2017, 124, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Lastra González, D.; Baláž, V.; Vojar, J.; Chajma, P. Dual Detection of the Chytrid Fungi Batrachochytrium spp. with an Enhanced Environmental DNA Approach. J. Fungi 2021, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, A.A.; Pupina, A.; Pupins, M.; Čeirāns, A.; Baláž, V. Survey for Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Latvian water frogs. J. Wildl. Dis. 2022, 58, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Blooi, M.F.; Pasmans, J.E.; Longcore, A.; Spitzen-van der Sluijs, A.; Vercammen, F.; Martel, A. Duplex Real-Time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J. Clin. Microbiol. 2013, 51, 4173–4177. [Google Scholar] [CrossRef]
- Osorio-Olvera, L.; Lira-Noriega, A.; Soberón, J.; Townsend Peterson, A.; Falconi, M.; Contreras-Díaz, R.G.; Martínez-Meyer, E.; Barve, V.; Barve, N. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 2020, 11, 1199–1206. [Google Scholar] [CrossRef]
- Bradley, B.A.; Blumenthal, D.M.; Wilcove, D.S.; Ziska, L.H. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef]
- Gallien, L.; Douzet, R.; Pratte, S.; Zimmermann, N.E.; Thuiller, W. Invasive species distribution models—How violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 2012, 21, 1126–1136. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Rome, Q.; Villemant, C.; Courchamp, F. Can species distribution models really predict the expansion of invasive species? PLoS ONE 2018, 13, e0193085. [Google Scholar] [CrossRef]
- Loo, S.E.; Nally, R.M.; Lake, P.S. Forecasting New Zealand mudsnail invasion range: Model comparisons using native and invaded ranges. Ecol. Appl. 2007, 17, 181–189. [Google Scholar] [CrossRef]
- Dullinger, S.; Kleinbauer, I.; Peterseil, J.; Smolik, M.; Essl, F. Niche based distribution modelling of an invasive alien plant: Effects of population status, propagule pressure and invasion history. Biol. Invasions 2009, 11, 2401–2414. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions, Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Kriticos, D.J. Regional climate-matching to estimate current and future sources of biosecurity threats. Biol. Invasions 2012, 14, 1533–1544. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martinez-Meyer, E.; Nakamura, M.; Araújo, M. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Schweiger, O.; Kühn, I. Origin of climatic data can determine the transferability of species distribution models. NeoBiota 2020, 59, 61–76. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef]
- Tytar, V.M.; Baidashnikov, O. Associations between habitat quality and body size in the Carpathian land snail Vestia turgida: Species distribution model selection and assessment of performance. Zoodiversity 2021, 55, 25–40. [Google Scholar] [CrossRef]
- Chadaeva, V.; Pshegusov, R. Identification of degradation factors in mountain semiarid rangelands using spatial distribution modelling and ecological niche theory. Geocarto Int. 2022, 37, 15235–15251. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef]
- Leemans, R.; De Groot, R.S. Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Pearson, R.G.; Dawson, T.P.; Liu, C. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data. Ecography 2004, 27, 285–298. [Google Scholar] [CrossRef]
- Chauvier, Y.; Thuiller, W.; Brun, P.; Lavergne, S.; Descombes, P.; Karger, D.N.; Renaud, J.; Zimmermann, N.E. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 2021, 91, e01433. [Google Scholar] [CrossRef]
- Tuanmu, M.-N.; Jetz, W. Consensus land cover. Glob. Ecol. Biogeogr. 2014, 23, 1031–1045. [Google Scholar] [CrossRef]
- Domisch, S.; Amatulli, G.; Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2015, 2, 150073. [Google Scholar] [CrossRef]
- Gage, H.; Dayton, L.; Fitzgerald, A. Habitat suitability models for desert amphibians. Biol. Conserv. 2006, 132, 40–49. [Google Scholar] [CrossRef]
- Roe, N.A.; Ducey, M.J.; Lee, T.D.; Fraser, O.L.; Colter, R.A.; Hallett, R.A. Soil chemical variables improve models of understorey plant species distributions. J. Biogeogr. 2022, 49, 753–766. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Schmid, H.; Bollmann, K. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 2013, 36, 971–983. [Google Scholar] [CrossRef]
- Leroy, B.; Meynard, C.N.; Bellard, C.; Courchamp, F. ‘virtualspecies’: An R package to generate virtual species distributions. Ecography 2016, 39, 599–607. [Google Scholar] [CrossRef]
- Buse, J.; Griebeler, E.M. Incorporating classified dispersal assumptions in predictive distribution models—A case study with grasshoppers and bush-crickets. Ecol. Model. 2011, 222, 2130–2141. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N. Habitat Suitability and Distribution Models: With Applications in R (Ecology, Biodiversity and Conservation); Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Puschendorf, R.; Carnaval, A.C.; VanDerWal, J.; Zumbado-Ulate, H.; Chaves, G.; Bolaños, F.; Alford, R.A. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: Proposing climatic refuges as a conservation tool. Divers. Distrib. 2009, 15, 401–408. [Google Scholar] [CrossRef]
- Carlson, C.J. ‘embarcadero’: Species distribution modelling with Bayesian additive regression trees in R. Methods Ecol. Evol. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A system for feature selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Velazco, S.J.E.; Rose, M.B.; Andrade, A.F.A.; Minoli, I.; Franklin, J. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods Ecol. Evol. 2022, 13, 1661–1669. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jimenez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Boyce, M.S.; Vernier, P.R.; Nielsen, S.E.; Schmiegelow, F.K.A. Evaluating resource selection functions. Ecol. Model. 2002, 157, 281–300. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Angelieri, C.C.; Adams-Hosking, C.; Ferraz, K.M.; de Souza, M.P.; McAlpine, C.A. Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS ONE 2016, 11, e0145232. [Google Scholar] [CrossRef]
- Waltari, E.; Guralnick, R.P. Ecological niche modeling of montane mammals in the Great Basin, North America: Examining past and present connectivity of species across basins and ranges. J. Biogeogr. 2008, 36, 148–161. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, W.; Böhne, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. Discuss. 2015, 8, 2271–2312. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 27 March 2023).
- R Core Team 2020. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 12 December 2022).
- Driscoll, D.M.; Fong, J.M.Y. Continentality: A basic climatic parameter reexamined. Int. J. Climatol. 1992, 12, 185–192. [Google Scholar] [CrossRef]
- Ron, S.R. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 2005, 37, 209–221. [Google Scholar] [CrossRef]
- Thorpe, C.J.; Lewis, T.R.; Fisher, M.C.; Wierzbicki, C.J.; Kulkarni, S.; Pryce, D.; Davies, L.; Watve, A.; Knight, M.E. Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Ghats, India. R. Soc. Open Sci. 2018, 5, 180211. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.H.; Ronnenberg, K.L.; Glidden, C.K.; Christiansen, K.R.; Blaustein, A.R. Global patterns of the fungal pathogen Batrachochytrium dendrobatidis support conservation urgency. Front. Vet. Sci. 2021, 8, 685877. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, J.S.; Annis, S.L.; Longcore, J.E. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 2004, 96, 9–15. [Google Scholar] [CrossRef]
- López, M.; Rebollar, E.A.; Harris, R.N.; Vredenburg, V.T.; Hero, J.-M. Temporal variation of the skin bacterial community and Batrachochytrium dendrobatidis infection in the terrestrial cryptic frog Philoria loveridgei. Front. Microbiol. 2017, 8, 2535. [Google Scholar] [CrossRef]
- Esser, L.F. The 19 Bioclimatic Variables. 2021. Available online: https://luizfesser.wordpress.com/2021/03/08/the-19-bioclimatic-variables/ (accessed on 10 December 2022).
- Cervellini, M.; Zannini, P.; Di Musciano, M.; Fattorini, S.; Jiménez-Alfaro, B.; Rocchini, D.; Field, R.; Vetaas, O.R.; Irl, S.D.; Beierkuhnlein, C.; et al. A grid-based map for the Biogeographical Regions of Europe. Biodivers. Data J. 2020, 8, e53720. [Google Scholar] [CrossRef]
- Buckley, L.B.; Jetz, W. Environmental and historical constraints on global patterns of amphibian richness. Proc. Biol. Sci. 2007, 274, 1167–1173. [Google Scholar] [CrossRef]
- Sun, G.; Domec, J.-C.; Amatya, D.M. Forest evapotranspiration: Measurement and modelling at multiple scales. In Forest Hydrology: Processes, Management and Assessment; Amatya, D.M., Williams, T.M., Bren, L., de Long, C., Eds.; CABI Publishers: London, UK, 2016; pp. 32–50. [Google Scholar]
- James, T.Y.; Toledo, L.F.; Rödder, D.; Leite, D.S.; Belasen, A.M.; Betancourt-Román, C.M.; Jenkinson, T.S.; Soto-Azat, C.; Lambertini, C.; Longo, A.V.; et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 2015, 5, 4079–4097. [Google Scholar] [CrossRef]
- Davidson, C.; Williamson, C.; Vincent, K.; Simonich, S.; Yip, K.; Hero, J.M.; Kriger, K. Anuran population declines occur on an elevational gradient in the Western Hemisphere. Herpetol. Conserv. Biol. 2013, 8, 503–518. [Google Scholar]
- Li, Z.; Qi, W.; Keping, S.; Jiang, F. Prevalence of Batrachochytrium dendrobatidis in amphibians from 2000 to 2021: A global systematic review and meta-analysis. Front. Vet. Sci. 2021, 8, 79123. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.W.; Mcnulty, S.A.; Titus, V.R. No safe space: Prevalence and distribution of Batrachochytrium dendrobatidisin amphibians in a highly-protected landscape. Herpetol. Conserv. Biol. 2018, 13, 373–382. [Google Scholar]
- Kriger, K.M.; Hero, J.-M. The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Divers. Distrib. 2007, 13, 781–788. [Google Scholar] [CrossRef]
- Blooi, M.; Laking, A.E.; Martel, A.; Haesebrouck, F.; Jocque, M.; Brown, T.; Green, S.; Vences, M.; Bletz, M.C.; Pasmans, F. Host niche may determine disease-driven extinction risk. PLoS ONE 2017, 12, e0181051. [Google Scholar] [CrossRef] [PubMed]
- Jourgholami, M.; Karami, S.; Tavankar, F.; Lo Monaco, A.; Picchio, R. Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests 2021, 12, 49. [Google Scholar] [CrossRef]
- Reeves, R.A.; Pierce, C.L.; Vandever, M.W.; Muths, E.; Smalling, K.L. Amphibians, pesticides, and the amphibian chytrid fungus in restored wetlands in agricultural landscapes. Herpetol. Conserv. Biol. 2017, 12, 68–77. [Google Scholar]
- Davidson, C.; Benard, M.F.; Shaffer, H.B.; Parker, J.M.; O’Leary, C.; Conlon, J.M.; Rollins-Smith, L.A. Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environ. Sci. Technol. 2007, 41, 1771–1776. [Google Scholar] [CrossRef]
- Brannelly, L.A.; Richards-Zawacki, C.L.; Pessier, A.P. Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Dis. Aquat. Org. 2012, 101, 95–104. [Google Scholar] [CrossRef]
- Hansen, N.A.; Scheele, B.C.; Driscoll, D.A.; Lindenmayer, D.B. Amphibians in agricultural landscapes: The habitat value of crop areas, linear plantings and remnant woodland patches. Anim. Conserv. 2019, 22, 72–82. [Google Scholar] [CrossRef]
- Tyler, M.J.; Wassersug, R.; Smith, B. How frogs and humans interact: Influences beyond habitat destruction, epidemics and global warming. Appl. Herpetol. 2007, 4, 1–18. [Google Scholar] [CrossRef]
- Tytar, V.; Nekrasova, O.; Pupins, M. Positive Relationships Between Human Impact and Biodiversity: The Case of the Fire-Bellied Toad (Bombina bombina) in Europe. In Proceedings of the 12th International Scientific and Practical Conference “Environment. Technology. Resources”, Rezekne, Latvia, 20–22 June 2019; Rezekne Academy of Technologies: Rezekne, Latvia, 2019; Volume 1, pp. 311–314. [Google Scholar] [CrossRef]
- Kurylenko, V.G.; Verves, Y.A. Amphibians and Reptiles of Ukraine; Genesa: Kiev, Ukraine, 1999. (In Russian) [Google Scholar]
- Cohen, J.M.; Civitello, D.J.; Brace, A.J.; Feichtinger, E.M.; Rohr, J.R. Spatial scale modulates the strength of ecological processes driving disease distributions. Proc. Natl. Acad. Sci. USA 2016, 113, E3359. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Rybak, M.; Lepe-Lopez, M.; Peñafiel-Ricaurte, A.; Valenzuela-Sánchez, A.; Valdivia, C.; Mardones, F.O.; Bacigalupe, L.D.; Puschendorf, R.; Cunningham, A.A.; Azat, C. Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient. Sci. Rep. 2021, 11, 17383. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.J.; Gilbert, C.C.; Kamilar, J.M. Ecological niche modeling of the genus Papio. Am. J. Phys. Anthropol. 2018, 166, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.; Roberts, A.A.; Voyles, J.; Longcore, J.E.; Murray, K.A.; Skerratt, L.F. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 2016, 19, 89–99. [Google Scholar] [CrossRef]
- Lips, K.R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 2016, 371, 20150465. [Google Scholar] [CrossRef]
Groups of Intercorrelated Variables from the WorldClim v.2 Dataset at a Cutoff of 0.7 | |
---|---|
Cluster Group | Bioclimatic Variables (Codes) |
1. | Temperature Seasonality (bio4) *, Temperature Annual Range (bio7) |
2. | Annual Precipitation (bio12) *, Precipitation of Wettest Month (bio13) |
3. | Annual Mean Temperature (bio1), Isothermality (bio3), Min. Temperature of Coldest Month (bio6) * |
4. | Mean Diurnal Range (bio2), Max. Temperature of Warmest Month (bio5) * |
5. | Precipitation of Driest Month (bio14), Precipitation Seasonality (bio15) * |
*—Selected variable | |
Groups of Intercorrelated Variables from the ENVIREM Dataset at a Cutoff of 0.7 | |
Cluster Group | ENVIREM Variables |
1. | Topographic wetness index *, terrain roughness index |
2. | Continentality * |
3. | Mean monthly PET1 of the wettest quarter * |
4. | Growing degree days with mean temperature greater than 0 °C *, growing degree days with mean temperature greater than 5 °C, max. temperature of the coldest month, number of months with mean temp greater than 10 °C, mean monthly PET of coldest quarter, mean monthly PET of driest quarter, thermicity index |
5. | Emberger’s pluviothermic quotient, PET seasonality * |
6. | Annual PET *, Thornthwaite aridity index, climatic moisture index, min. temp. of the warmest month, mean monthly PET of warmest quarter |
*—Selected variable; PET1—potential evapotranspiration | |
Groups of Intercorrelated Topographical Variables from the EarthEnv Dataset at a Cutoff of 0.7 | |
Cluster Group | Topographical Variables |
1. | Aspect cosine (mean) * |
2. | Northness (mean) * |
3. | Aspect sine (mean), eastness (mean) * |
4. | Topographic position index (mean) * |
5. | Roughness (min), slope (min), terrain ruggedness index (min) * |
6. | Elevation (min, max, mean *) |
7. | Aspect cosine (min, max), aspect sine (min, max), eastness (min, max), eastness (min, max), northness (min, max), roughness (max, mean), slope (max, mean *), topographic position index (min, max), terrain ruggedness index (max, mean) |
*—Selected variable | |
Groups of Intercorrelated Land Cover Variables from the EarthEnv Dataset at a Cutoff of 0.7 | |
Cluster Group | Land Cover Variables |
1. | Evergreen/Deciduous Needleleaf Trees * |
2. | Evergreen Broadleaf Trees * |
3. | Deciduous Broadleaf Trees * |
4. | Mixed/Other Trees *, Snow/Ice |
5. | Shrubs * |
6. | Herbaceous Vegetation, Cultivated and Managed Vegetation * |
7. | Regularly Flooded Vegetation * |
8. | Urban/Built-up * |
9. | Barren * |
10. | Open Water * |
*—Selected variable | |
Groups of Intercorrelated Soil Feature Variables from the Land-Atmosphere Interaction Research Group Dataset at a Cutoff of 0.7 | |
Cluster Group | Soil Feature Variables |
1 | Bulk density * |
2 | Cation exchange capacity * |
3 | Clay content * |
4 | Gravel content * |
5 | Organic carbon * |
6 | pH (H2O) *, pH (KCl) |
7 | Sand content * |
8 | Silt content * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tytar, V.; Nekrasova, O.; Pupins, M.; Skute, A.; Kirjušina, M.; Gravele, E.; Mezaraupe, L.; Marushchak, O.; Čeirāns, A.; Kozynenko, I.; et al. Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine. J. Fungi 2023, 9, 607. https://doi.org/10.3390/jof9060607
Tytar V, Nekrasova O, Pupins M, Skute A, Kirjušina M, Gravele E, Mezaraupe L, Marushchak O, Čeirāns A, Kozynenko I, et al. Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine. Journal of Fungi. 2023; 9(6):607. https://doi.org/10.3390/jof9060607
Chicago/Turabian StyleTytar, Volodymyr, Oksana Nekrasova, Mihails Pupins, Arturs Skute, Muza Kirjušina, Evita Gravele, Ligita Mezaraupe, Oleksii Marushchak, Andris Čeirāns, Iryna Kozynenko, and et al. 2023. "Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine" Journal of Fungi 9, no. 6: 607. https://doi.org/10.3390/jof9060607
APA StyleTytar, V., Nekrasova, O., Pupins, M., Skute, A., Kirjušina, M., Gravele, E., Mezaraupe, L., Marushchak, O., Čeirāns, A., Kozynenko, I., & Kulikova, A. A. (2023). Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine. Journal of Fungi, 9(6), 607. https://doi.org/10.3390/jof9060607