In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organisms
2.2. Identification Methods
2.3. Susceptibility Testing
2.4. Characterization of Mutations in the Sterol 14 Alpha-Demethylase-Encoding Gene
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, C.R. Detection of the ‘big five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv. Appl. Microbiol. 2020, 110, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Bruggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Verweij, P.E. Aspergillus fumigatus and pan-azole resistance: Who should be concerned? Curr. Opin. Infect. Dis. 2020, 33, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.; Verweij, P.; Castanheira, M.; Dannaoui, E.; White, P.; Arendrup, M. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. Triazole resistance in Aspergillus spp.: A worldwide problem? J. Fungi 2016, 2, 21. [Google Scholar] [CrossRef]
- Camps, S.M.; van der Linden, J.W.; Li, Y.; Kuijper, E.J.; van Dissel, J.T.; Verweij, P.E.; Melchers, W.J. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: A case study and review of the literature. Antimicrob. Agents Chemother. 2012, 56, 10–16. [Google Scholar] [CrossRef]
- Howard, S.J.; Pasqualotto, A.C.; Anderson, M.J.; Leatherbarrow, H.; Albarrag, A.M.; Harrison, E.; Gregson, L.; Bowyer, P.; Denning, D.W. Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 2013, 56, 434–441. [Google Scholar] [CrossRef]
- Badali, H.; Canete-Gibas, C.; McCarthy, D.; Patterson, H.; Sanders, C.; David, M.P.; Mele, J.; Fan, H.; Wiederhold, N.P. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Fumigati Isolates in Clinical Samples from the United States. J. Clin. Microbiol. 2022, 60, e0028022. [Google Scholar] [CrossRef]
- Schelenz, S.; Owens, K.; Guy, R.; Rautemaa-Richardson, R.; Manuel, R.J.; Richardson, M.; Moore, C.; Enoch, D.A.; Micallef, C.; Howard, P.; et al. National mycology laboratory diagnostic capacity for invasive fungal diseases in 2017: Evidence of sub-optimal practice. J. Infect. 2019, 79, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, R.; Thomas, C.; Gardiner, B.J.; Lee, S.J.; Fleming, S.; Wei, A.; Coutsouvelis, J.; Ananda-Rajah, M. When Azoles Cannot Be Used: The Clinical Effectiveness of Intermittent Liposomal Amphotericin Prophylaxis in Hematology Patients. Open Forum Infect. Dis. 2021, 8, ofab113. [Google Scholar] [CrossRef]
- Garbati, M.A.; Alasmari, F.A.; Al-Tannir, M.A.; Tleyjeh, I.M. The role of combination antifungal therapy in the treatment of invasive aspergillosis: A systematic review. Int. J. Infect. Dis. 2012, 16, e76–e81. [Google Scholar] [CrossRef]
- van der Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Zhang, S.; O’Donnell, K.; Sutton, D. Fusarium and other opportunistic hyaline fungi. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J., Carroll, K., Funke, G., Pfaller, M., Landry, M., Richter, S., Warnock, D., Eds.; ASM Press: Washington DC, USA, 2015. [Google Scholar] [CrossRef]
- Castanheira, M.; Collingsworth, T.D.; Davis, A.P.; Deshpande, L.M.; Pfaller, M.A. Isavuconazole nonwildtype Aspergillus fumigatus isolates from a global surveillance study display alterations in multiple genes involved in the ergosterol biosynthesis pathway not previously associated with resistance to other azoles. Mycoses 2021, 64, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Woosley, L.N.; Messer, S.A.; Jones, R.N.; Castanheira, M. Significance of molecular identification and antifungal susceptibility of clinically significant yeasts and moulds in a global antifungal surveillance program. Mycopathologia 2012, 174, 259–271. [Google Scholar] [CrossRef]
- CLSI. M38Ed3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- CLSI. M59Ed3; Epidemiological Cutoff Values for Antifungal Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Espinel-Ingroff, A.; Chowdhary, A.; Gonzalez, G.M.; Lass-Florl, C.; Martin-Mazuelos, E.; Meis, J.; Pelaez, T.; Pfaller, M.A.; Turnidge, J. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob. Agents Chemother. 2013, 57, 3823–3828. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Diekema, D.J.; Fothergill, A.; Johnson, E.; Pelaez, T.; Pfaller, M.A.; Rinaldi, M.G.; Canton, E.; Turnidge, J. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J. Clin. Microbiol. 2010, 48, 3251–3257. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M61Ed2; Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- EUCAST. v10.0. Breakpoint Tables for Interpretation of MICs and Zone Diameters. European Committee on Antimicrobial Susceptibility Testing, 2020. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 1 March 2020).
- Pfaller, M.; Boyken, L.; Hollis, R.; Kroeger, J.; Messer, S.; Tendolkar, S.; Diekema, D. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J. Clin. Microbiol. 2011, 49, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rhomberg, P.R.; Wiederhold, N.P.; Gibas, C.; Sanders, C.; Fan, H.; Mele, J.; Kovanda, L.L.; Castanheira, M. In vitro activity of isavuconazole versus opportunistic fungal pathogens from two mycology reference laboratories. Antimicrob. Agents Chemother. 2018, 62, e01230. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 24 February 2023).
- Sievert, D.; Kirby, A.; McDonald, L.C. The CDC response to antibiotic and antifungal resistance in the environment. Med 2021, 2, 365–369. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. 2021. Available online: https://www.who.int/publications/i/item/9789240027336 (accessed on 24 February 2023).
- CDC. Antibiotic Resistance Threats in the United States; CDC: Atlanta, GA, USA, 2019.
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 24 February 2023).
- Messer, S.A.; Carvalhaes, C.G.; Castanheira, M.; Pfaller, M.A. In vitro activity of isavuconazole versus opportunistic filamentous fungal pathogens from the SENTRY Antifungal Surveillance Program, 2017–2018. Diagn. Microbiol. Infect. Dis. 2020, 97, 115007. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species From 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Nunnally, N.S.; Bandea, A.; Kuykendall, R.; Beer, K.; Lockhart, S.R. Detection of TR34/L98H CYP51A mutation through passive surveillance for azole-resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob. Agents Chemother. 2018, 62, e02240. [Google Scholar] [CrossRef]
- Buil, J.B.; Hagen, F.; Chowdhary, A.; Verweij, P.E.; Meis, J.F. Itraconazole, voriconazole, and posaconazole CLSI MIC distributions for wild-type and azole-resistant Aspergillus fumigatus isolates. J. Fungi 2018, 4, 103. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Azole-resistant aspergillosis: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, S436–S444. [Google Scholar] [CrossRef]
Organism (No. of Isolates) | No. and Cumulative % of Isolates Inhibited at MIC (mg/L) of: | MIC50 | MIC90 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | >8 | |||
Aspergillus fumigatus | ||||||||||||
Isavuconazole (660) | 0 0.0 | 3 0.5 | 49 7.9 | 422 71.8 | 138 92.7 | 26 96.7 | 13 98.6 | 5 99.4 | 4 100.0 | 0.5 | 1 | |
Itraconazole (660) | 0 0.0 | 36 5.5 | 295 50.2 | 282 92.9 | 27 97.0 | 10 98.5 | 4 99.1 | 6 100.0 | 0.5 | 1 | ||
Voriconazole (660) | 0 0.0 | 1 0.2 | 13 2.1 | 311 49.2 | 284 92.3 | 29 96.7 | 16 99.1 | 3 99.5 | 1 99.7 | 2 100.0 | 0.5 | 0.5 |
Posaconazole (660) | 0 0.0 | 7 1.1 | 118 18.9 | 331 69.1 | 186 97.3 | 16 99.7 | 0 99.7 | 1 99.8 | 1 100.0 | 0.25 | 0.5 |
Year/Antifungal Agent (ref) | No. Tested | Mode (mg/L) | Range | % > ECV |
---|---|---|---|---|
2001–2009 (27) | ||||
Isavuconazole | NA | NA | NA | NA |
Itraconazole | 1221 | 0.25 | 0.015 to >8 | 2.0 |
Posaconazole | 1312 | 0.03 | 0.007 to 2 | 3.5 |
Voriconazole | 1312 | 0.25 | 0.06 to 4 | 1.4 |
2015–2017 (28) | ||||
Isavuconazole | 1189 | 0.5 | 0.12 to 32 | 3.8 |
Itraconazole | 876 | 1 | 0.12 to 32 | 4.2 |
Posaconazole | 817 | 0.25 | 0.008 to 4 | 2.1 |
Voriconazole | 1122 | 0.5 | 0.12 to 32 | 1.9 |
2017–2020 (This study) | ||||
Isavuconazole | 660 | 0.5 | 0.12 to >8 | 7.3 |
Itraconazole | 660 | 0.5 | 0.25 to >8 | 7.1 |
Posaconazole | 660 | 0.25 | 0.06 to 8 | 2.7 |
Voriconazole | 660 | 0.25 | 0.06 to >8 | 3.3 |
Study Year | Site Code | Continent | Country | City | ISC | ITC | VRC | PSC | CYP51A | CYP51B |
---|---|---|---|---|---|---|---|---|---|---|
2018 | 203 | Asia-W. Pacific | Australia | Perth | 1 | 1 | 2 | 0.25 | wild-type | Q42L |
2020 | 260 | Asia-W. Pacific | New Zealand | Auckland | 8.1 | 8.1 | 8 | 8 | G138C | wild-type |
2017 | 603 | Asia-W. Pacific | Thailand | Bangkok | 2 | 1 | 0.5 | 0.25 | F46Y, M172V, N248T, D255E, E427K | Q42L |
2018 | 131 | Europe | Belgium | Antwerp | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2019 | 131 | Europe | Belgium | Antwerp | 8.1 | 8 | 8.1 | 0.5 | Y121F, M172I, T289A, G448S, TR46 | wild-type |
2018 | 302 | Europe | Czech Republic | Hradec Kralove | 2 | 2 | 1 | 0.5 | F46Y, M172V, N248T, D255E, E427K | wild-type |
2020 | 91 | Europe | France | Caen Cedex | 4 | 4 | 1 | 1 | wild-type | Q42L |
2018 | 377 | Europe | Italy | Milan | 8 | 8 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 8.1 | 8.1 | 8.1 | 4 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 1 | 0.5 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2019 | 377 | Europe | Italy | Milan | 4 | 2 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 377 | Europe | Italy | Milan | 2 | 2 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 329 | Europe | Slovenia | Ljubljana | 4 | 8.1 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 303 | Europe | UK | Leeds | 4 | 8.1 | 2 | 0.5 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 4 | 4 | 2 | 0.5 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 8 | 8 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 32 | North America | Canada | Winnipeg | 1 | 2 | 0.5 | 0.5 | I242V | wild-type |
2018 | 2 | North America | USA | Indianapolis | 1 | 2 | 1 | 1 | I242V | wild-type |
2018 | 122 | North America | USA | Burlington | 2 | 2 | 1 | 0.5 | F46Y, M172V, E427K | wild-type |
2018 | 806 | North America | USA | Richmond | 1 | 2 | 0.5 | 0.5 | I242V | wild-type |
2019 | 806 | North America | USA | Richmond | 8.1 | 8.1 | 4 | 0.5 | G448S | wild-type |
2019 | 129 | North America | USA | New Brunswick | 2 | 2 | 1 | 0.5 | wild-type | Q42L |
2020 | 122 | North America | USA | Burlington | 1 | 2 | 0.5 | 0.5 | F46Y, M172V, N248T, D255E, E427K | wild-type |
2020 | 456 | North America | USA | Birmingham | 1 | 2 | 0.5 | 0.25 | I242V | wild-type |
2020 | 129 | North America | USA | New Brunswick | 2 | 2 | 1 | 0.5 | wild-type | Q42L |
2020 | 129 | North America | USA | New Brunswick | 0.5 | 2 | 0.5 | 0.25 | wild-type | Q42L |
2020 | 614 | Asia-W. Pacific | Australia | Melbourne | 2 | 2 | 1 | 0.5 | wild-type | K82Q, F149V, P383L |
2020 | 381 | Europe | Germany | Hamburg | 8 | 8.1 | 4 | 1 | L98H, TR34 | wild-type |
2018 | 122 | North America | USA | Burlington | 2 | 1 | 0.5 | 0.25 | A9T | wild-type |
Azole Phenotype (No. Tested) | MIC50 | MIC90 | Range | ECV a | |
---|---|---|---|---|---|
%WT | %NWT | ||||
WT (594) | |||||
Isavuconazole | 0.5 | 1 | 0.12 to 1 | 100.0 | 0.0 |
Itraconazole | 0.5 | 1 | 0.25 to 1 | 100.0 | 0.0 |
Posaconazole | 0.25 | 0.5 | 0.06 to 1 | 99.8 | 0.0 |
Voriconazole | 0.25 | 0.5 | 0.06 to 1 | 100.0 | 0.0 |
NWT (no CYP51 alteration) (34) | |||||
Isavuconazole | 2 | 4 | 0.5 to 8 | 32.4 | 67.6 |
Itraconazole | 2 | 4 | 0.5 to 8 | 47.1 | 52.9 |
Posaconazole | 0.5 | 1 | 0.25 to 1 | 82.4 | 17.6 |
Voriconazole | 0.5 | 2 | 0.5 to 4 | 85.3 | 14.7 |
NWT (with CYP51 alteration) (32) | |||||
Isavuconazole | 4 | >8 | 0.5 to >8 | 21.9 | 78.1 |
Itraconazole | 2 | >8 | 1 to >8 | 9.4 | 90.6 |
Posaconazole | 0.5 | 1 | 0.25 to 8 | 65.6 | 34.4 |
Voriconazole | 2 | 4 | 0.5 to >8 | 46.9 | 53.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfaller, M.A.; Carvalhaes, C.G.; Deshpande, L.M.; Rhomberg, P.R.; Castanheira, M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. J. Fungi 2023, 9, 608. https://doi.org/10.3390/jof9060608
Pfaller MA, Carvalhaes CG, Deshpande LM, Rhomberg PR, Castanheira M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. Journal of Fungi. 2023; 9(6):608. https://doi.org/10.3390/jof9060608
Chicago/Turabian StylePfaller, Michael A., Cecilia G. Carvalhaes, Lalitagauri M. Deshpande, Paul R. Rhomberg, and Mariana Castanheira. 2023. "In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations" Journal of Fungi 9, no. 6: 608. https://doi.org/10.3390/jof9060608
APA StylePfaller, M. A., Carvalhaes, C. G., Deshpande, L. M., Rhomberg, P. R., & Castanheira, M. (2023). In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. Journal of Fungi, 9(6), 608. https://doi.org/10.3390/jof9060608