Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock
Abstract
:1. Introduction
2. Material and Methods
2.1. Isolate Revival, Maintenance and Single Hyphal Tip Culture
2.2. DNA Extraction and PCR
2.3. Interspecific Hybridization Testing
2.3.1. Cloning
2.3.2. PCR-RFLP (Restriction Fragment Length Polymorphism)
2.3.3. Flow Cytometry (FC)
2.4. Characterization of Isolate P3
2.4.1. Effect of Temperature on Growth Rate
2.4.2. Hymexazol Sensitivity
2.4.3. Pathogenicity Tests Using Eucalyptus Globulus
Damping-Off Test Analysis
Data Analysis
3. Results
3.1. Cloning Analysis
3.2. PCR-RFLP (Restriction Fragment Length Polymorphism)
3.3. Flow Cytometry
3.4. Characterization of P3 Isolate, Recovered in the UK for the First Time
Colony Morphology, Growth Rate at Different Temperatures and Hymexazol Sensitivity
3.5. Pathogenicity Tests on Eucalyptus Globulus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Ferguson, A.J.; Jeffers, S.N. Detecting Multiple Species of Phytophthora in Container Mixes from Ornamental Crop Nurseries. Plant Dis. 1999, 83, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora Infestations in European Nurseries Put Forest, Semi-Natural and Horticultural Ecosystems at High Risk of Phytophthora Diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef]
- Drew, J.; Anderson, N.; Andow, D. Conundrums of a Complex Vector for Invasive Species Control: A Detailed Examination of the Horticultural Industry. Biol. Invasions 2010, 12, 2837–2851. [Google Scholar] [CrossRef]
- Pérez-Sierra, A.M.; Jung, T. Phytophthora in Woody Ornamental Nurseries. CABI Plant Prot. Ser. CABI Int. 2013, 166–177. [Google Scholar] [CrossRef]
- Hong, C.; Richardson, P.A.; Kong, P. Pathogenicity to Ornamental Plants of Some Existing Species and New Taxa of Phytophthora from Irrigation Water. Plant Dis. 2008, 92, 1201–1207. [Google Scholar] [CrossRef]
- Brasier, C.M. The Biosecurity Threat to the UK and Global Environment from International Trade in Plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical Patterns and Determinants of Invasion by Forest Pathogens in Europe. New Phytol. 2013, 197, 238–250. [Google Scholar] [CrossRef]
- Stukenbrock, E.H. The Role of Hybridization in the Evolution and Emergence of New Fungal Plant Pathogens. Phytopathology 2016, 106, 104–112. [Google Scholar] [CrossRef]
- Jung, T.; Jung, M.H.; Scanu, B.; Seress, D.; Kovács, G.M.; Maia, C.; Pérez-Sierra, A.; Chang, T.-T.; Chandelier, A.; Heungens, K.; et al. Six New Phytophthora Species from ITS Clade 7a Including Two Sexually Functional Heterothallic Hybrid Species Detected in Natural Ecosystems in Taiwan. Pers.-Mol. Phylogeny Evol. Fungi 2017, 38, 100–135. [Google Scholar] [CrossRef]
- Jafari, F.; Mostowfizadeh-Ghalamfarsa, R.; Safaiefarahani, B.; Burgess, T.I. Potential Host Range of Four Phytophthora Interspecific Hybrids from Clade 8a. Plant Pathol. 2020, 69, 1281–1290. [Google Scholar] [CrossRef]
- Schardl, C.L.; Craven, K.D. Interspecific Hybridization in Plant-Associated Fungi and Oomycetes: A Review. Mol. Ecol. 2003, 12, 2861–2873. [Google Scholar] [CrossRef]
- Ersek, T.; Man In’t Veld, W.A. Phytophthora Species Hybrids: A Novel Threat to Crops and Natural Ecosystems. In Phytophthora: A Global Perspective; CABI: Wallingford, UK, 2013; pp. 37–47. [Google Scholar]
- Kroon, L.P.N.M. The Genus Phytophthora. In Phylogeny, Speciation and Host Specificity; Wageningen University: Wageningen, The Netherlands, 2010; ISBN 9789085856689. [Google Scholar]
- Érsek, T.; Nagy, Z.Á. Species Hybrids in the Genus Phytophthora with emphasis on the Alder Pathogen Phytophthora alni: A Review. Eur. J. Plant Pathol. 2008, 122, 31–39. [Google Scholar] [CrossRef]
- Brasier, C.M.; Kirk, S.A.; Delcan, J.; Cooke, D.E.L.; Jung, T.; Man In’t Veld, W.A. Phytophthora Alni Sp. Nov. and Its Variants: Designation of Emerging Heteroploid Hybrid Pathogens Spreading on Alnus Trees. Mycol. Res. 2004, 108, 1172–1184. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Vettraino, A.M.; Cech, T.; Vannini, A. The Impact of Invasive Phytophthora species on European Forests. In Phytophthora: A Global Perspective; CABI: Wallingford, UK, 2013; pp. 146–158. [Google Scholar]
- Bjelke, U.; Boberg, J.; Oliva, J.; Tattersdill, K.; Mckie, B.G. Dieback of Riparian alder caused by the Phytophthora alni Complex: Projected Consequences for Stream Ecosystems. Freshw. Biol. 2016, 61, 565–579. [Google Scholar] [CrossRef]
- Brasier, C.M.; Kirk, S.A. Comparative aggressiveness of standard and variant hybrid alder Phytophthoras, Phytophthora cambivora and Other Phytophthora species on Bark of Alnus, Quercus and Other Woody Hosts. Plant Pathol. 2001, 50, 218–229. [Google Scholar] [CrossRef]
- Bertier, L.; Brouwer, H.; de Cock, A.W.A.M.; Cooke, D.E.L.; Olsson, C.H.B.; Höfte, M. The Expansion of Phytophthora Clade 8b: Three New Species Associated with Winter Grown Vegetable Crops. Persoonia Mol. Phylogeny Evol. Fungi 2013, 31, 63–76. [Google Scholar] [CrossRef]
- Safaiefarahani, B.; Mostowfizadeh-Ghalamfarsa, R.; Hardy, G.E.S.J.; Burgess, T.I. Species from within the Phytophthora cryptogea Complex and Related Species, P. erythroseptica and P. sansomeana, Readily Hybridize. Fungal Biol. 2016, 120, 975–987. [Google Scholar] [CrossRef]
- Nagel, J.H.; Gryzenhout, M.; Slippers, B.; Wingfield, M.J.; Hardy, G.E.S.J.; Stukely, M.J.C.; Burgess, T.I. Characterization of Phytophthora Hybrids from ITS Clade 6 Associated with Riparian Ecosystems in South Africa and Australia. Fungal Biol. 2013, 117, 329–347. [Google Scholar] [CrossRef]
- Burgess, T.I. Molecular Characterization of Natural Hybrids Formed between Five Related Indigenous Clade 6 Phytophthora species. PLoS ONE 2015, 10, e0134225. [Google Scholar] [CrossRef]
- Van Poucke, K.; Haegeman, A.; Goedefroit, T.; Focquet, F.; Leus, L.; Jung, M.H.; Nave, C.; Redondo, M.A.; Husson, C.; Kostov, K.; et al. Unravelling Hybridization in Phytophthora using Phylogenomics and Genome Size Estimation. IMA Fungus 2021, 12, 16. [Google Scholar] [CrossRef]
- Puertolas, A.; Bonants, P.J.M.; Boa, E.; Woodward, S. Application of Real-Time PCR for the Detection and Quantification of Oomycetes in Ornamental Nursery Stock. J. Fungi 2021, 7, 87. [Google Scholar] [CrossRef] [PubMed]
- Brown, W. A method of isolating single strains of fungi by cutting out a hyphal tip. In Annals of Botany; JSTOR: Ann Arbor, MI, USA, 1924; Volume 38, pp. 402–404. [Google Scholar]
- Zelaya-Molina, L.X.; Ortega, M.A.; Dorrance, A.E. Easy and Efficient Protocol for Oomycete DNA Extraction Suitable for Population Genetic Analysis. Biotechnol. Lett. 2011, 33, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Robideau, G.P.; De Cock, A.W.A.M.; Coffey, M.D.; Voglmayr, H.; Brouwer, H.; Bala, K.; Chitty, D.W.; Désaulniers, N.; Eggertson, Q.A.; Gachon, C.M.M.; et al. DNA Barcoding of Oomycetes with Cytochrome c Oxidase Subunit I and Internal Transcribed Spacer. Mol. Ecol. Resour. 2011, 11, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Hudspeth, D.S.S.; Nadler, S.A.; Hudspeth, M.E.S. A COX2 Molecular Phylogeny of the Peronosporomycetes. Mycologia 2000, 92, 674–684. [Google Scholar] [CrossRef]
- Kroon, L.P.N.M.; Bakker, F.T.; Van Den Bosch, G.B.M.; Bonants, P.J.M.; Flier, W.G. Phylogenetic Analysis of Phytophthora species Based on Mitochondrial and Nuclear DNA Sequences. Fungal Genet. Biol. 2004, 41, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Mojtaba, M.; Helga, F. Pythium brassicum Sp. Nov.: A Novel Plant Family-Specific Root Pathogen. Plant Dis. 2014, 98, 1619–1625. [Google Scholar]
- Vilhar, B.; Greilhuber, J.; Koce, J.D.; Temsch, E.M.; Dermastia, M. Plant Genome Size Measurement with DNA Image Cytometry. Ann. Bot. 2001, 87, 719–728. [Google Scholar] [CrossRef]
- Loureiro, J.; Rodriguez, E.; Doležel, J.; Santos, C. Comparison of Four Nuclear Isolation Buffers for Plant DNA Flow Cytometry. Ann. Bot. 2006, 98, 679–689. [Google Scholar] [CrossRef]
- Bertier, L.; Leus, L.; D’hondt, L.; De Cock, A.W.A.M.; Höfte, M. Host Adaptation and Speciation through Hybridization and Polyploidy in Phytophthora. PLoS ONE 2013, 8, e85385. [Google Scholar] [CrossRef]
- Pérez-Sierra, A.; López-García, C.; León, M.; García-Jiménez, J.; Abad-Campos, P.; Jung, T. Previously Unrecorded Low-Temperature Phytophthora species Associated with Quercus Decline in a Mediterranean Forest in Eastern Spain. For. Pathol. 2013, 43, 331–339. [Google Scholar] [CrossRef]
- Henricot, B.; Pérez Sierra, A.; Jung, T. Phytophthora Pachypleura Sp. Nov., a New species Causing Root Rot of Aucuba japonica and other Ornamentals in the United Kingdom. Plant Pathol. 2014, 63, 1095–1109. [Google Scholar] [CrossRef]
- Safaiefarahani, B.; Mostowfizadeh-Ghalamfarsa, R.; Hardy, G.E.S.J.; Burgess, T.I. Re-Evaluation of the Phytophthora cryptogea Species Complex and the Description of a New Species, Phytophthora pseudocryptogea Sp. Nov. Mycol. Prog. 2015, 14, 108. [Google Scholar] [CrossRef]
- Jeffers, S.N.; Martin, S.B. Comparison of Two Media Selective for Phytophthora and Pythium Species. Plant Dis. 1986, 70, 1038–1043. [Google Scholar] [CrossRef]
- Kato, S.; Coe, R.; New, L.; Dick, M.W. Sensitivities of Various Oomycetes to Hymexazol and Metalaxyl. J. Gen. Microbiol. 1990, 136, 2127–2134. [Google Scholar] [CrossRef]
- Binagwa, P.H.; Bonsi, C.K.; Msolla, S.N. Evaluation of Common Bean (Phaseolus vulgaris) Genotypes for Resistance to Root Rot Disease Caused by Pythium aphanidermatum and Pythium splendens under Screen House. J. Nat. Sci. Res. 2016, 6, 36–43. [Google Scholar]
- Wei, L.; Zhang, S.; Li, W.; Xue, A.G.; Cober, E.R.; Babcock, C.; Zhang, J.; Wu, J.; Liu, L. Pathogenicity of Pythium species Causing Seed Rot and Damping-off in Soybean under Controlled Conditions. Phytoprotection 2010, 91, 3–10. [Google Scholar] [CrossRef]
- Benavent-Celma, C.; Puertolas, A.; McLaggan, D.; van West, P.; Woodward, S. Pathogenicity and Host Range of Pythium kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK. J. Fungi 2021, 7, 479. [Google Scholar] [CrossRef]
- Broders, K.D.; Lipps, P.E.; Paul, P.A.; Dorrance, A.E. Characterization of Pythium Spp. Associated with Corn and Soybean Seed and Seedling Disease in Ohio. Plant Dis. 2007, 91, 727–735. [Google Scholar] [CrossRef]
- Rojas, J.A.; Jacobs, J.L.; Napieralski, S.; Karaj, B.; Bradley, C.A.; Chase, T.; Esker, P.D.; Giesler, L.J.; Jardine, D.J.; Malvick, D.K.; et al. Oomycete Species Associated with Soybean Seedlings in North America-Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. Phytopathology 2017, 107, 293–304. [Google Scholar] [CrossRef]
- Aslam, S.; Tahir, A.; Aslam, M.F.; Alam, M.W.; Shedayi, A.A.; Sadia, S. Recent Advances in Molecular Techniques for the Identification of Phytopathogenic Fungi—A Mini Review. J. Plant Interact. 2017, 12, 493–504. [Google Scholar] [CrossRef]
- Villa, N.O.; Kageyama, K.; Asano, T.; Suga, H. Phylogenetic Relationships of Pythium and Phytophthora species Based on ITS RDNA, Cytochrome Oxidase II and β-Tubulin Gene Sequences. Mycologia 2006, 98, 410–422. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Matsumoto, C.; Kageyama, K.; Suga, H.; Hyakumachi, M. Phylogenetic Relationships of Pythium species based on ITS and 5.8S Sequences of the Ribosomal DNA. Mycoscience 1999, 40, 321–331. [Google Scholar] [CrossRef]
- Lee, S.B.; Taylor, J.W. Phylogeny of Five Fungus-like Protoctistan Phytophthora species, inferred from the Internal Transcribed Spacers of Ribosomal DNA. Mol. Biol. Evol. 1992, 9, 636–653. [Google Scholar]
- Crawford, A.R.; Bassam, B.J.; Drenth, A.; Maclean, D.J.; Irwin, J.A.G. Evolutionary Relationships among Phytophthora species deduced from RDNA Sequence Analysis. Mycol. Res. 1996, 100, 437–444. [Google Scholar] [CrossRef]
- Cooke, D.E.L.; Duncan, J.M. Phylogenetic Analysis of Phytophthora species Based on ITS1 and ITS2 Sequences of the Ribosomal RNA Repeat. Mycol. Res. 1997, 101, 667–677. [Google Scholar] [CrossRef]
- Fürster, H.; Cummings, M.P.; Coffey, M.D. Phylogenetic Relationships of Phytophthora species Based on Ribosomal ITS I DNA Sequence Analysis with Emphasis on Waterhouse Groups V and VI. Mycol. Res. 2000, 104, 1055–1061. [Google Scholar] [CrossRef]
- Abad, Z.G.; Burgess, T.; Redford, A.J.; Bienapfl, J.C.; Mathew, R.; Srivastava, S.K.; Jennings, K.C. IDphy: An International Online Resource for Molecular and Morphological Identification of Phytophthora. Plant Dis. 2022, 107, 987–998. [Google Scholar] [CrossRef]
- Shen, Q.; Geiser, D.M.; Royse, D.J. Molecular Phylogenetic Analysis of Grifola Frondosa (Maitake) Reveals a Species Partition Separating Eastern North American and Asian Isolates. Mycologia 2002, 94, 472–482. [Google Scholar] [CrossRef]
- Martin, F.N. Maternal Inheritance of Mitochondrial DNA in Sexual Crosses of Pythium sylvaticum. Curr. Genet. 1989, 16, 373–374. [Google Scholar] [CrossRef]
- Érsek, T.; English, J.T.; Schoelz, J.E. Creation of Species Hybrids of Phytophthora with Modifyied Host Ranges Using Zoospore Fusion. Phytopathology 1995, 85, 1343–1347. [Google Scholar] [CrossRef]
- Nechwatal, J.; Mendgen, K. Evidence for the Occurrence of Natural Hybridization in Reed-Associated Pythium species. Plant Pathol. 2009, 58, 261–270. [Google Scholar] [CrossRef]
- Brasier, C.M. Episodic Selection as a Force in Fungal Microevolution, with Special Reference to Clonal Speciation and Hybrid Introgression. Can. J. Bot. 1995, 73, 1213–1221. [Google Scholar] [CrossRef]
- Simamora, A.V.; Stukely, M.J.C.; Barber, P.A.; Hardy, G.E.S.J.; Burgess, T.I. Age-Related Susceptibility of Eucalyptus species to Phytophthora boodjera. Plant Pathol. 2017, 66, 501–512. [Google Scholar] [CrossRef]
- Hamm, P.B.; Hansen, E.M. Pathogenicity of Phytophthora species to Pacific Northwest Conifers. Eur. J. For. Pathol. 1982, 12, 167–174. [Google Scholar] [CrossRef]
- Wardlaw, T.J.; Palzer, C. Paizer Stem Diseases in Nursery Seedlings Caused by Phytophthora cactorum, P. citricola and Pythium anandrum. Australas. Plant Pathol. 1985, 14, 5. [Google Scholar] [CrossRef]
- Hendrix, F.F.; Campbell, W.A. Pythiums as Plant Pathogens. Annu. Rev. Phytopathol. 1973, 11, 77–98. [Google Scholar] [CrossRef]
- van der Plaats-Niterink, A.J. Monograph of the Genus Pythium. In Studies in Mycology; Centraalbureau Voor Schimmelcultures: Utrecht, The Netherlands, 1981; p. 242. [Google Scholar]
- Larkin, R.P.; English, J.T.; Mihail, J.D. Identification, Distribution and Comparative Pathogenicity of Pythium spp Associated with Alfalfa Seedlings. Soil Biol. Biochem. 1995, 27, 357–364. [Google Scholar] [CrossRef]
- Oliveira, L.S.S.; Jung, T.; Milenković, I.; Tarigan, M.; Horta Jung, M.; Lumbangaol, P.D.M.; Sirait, B.A.; Durán, A. Damping-off, Root Rot and Wilting Caused by Pythium myriotylum on Acacia crassicarpa in Sumatra, Indonesia. For. Pathol. Press 2021, 51, e12687. [Google Scholar] [CrossRef]
- Benavent-Celma, C.; López-García, N.; Ruba, T.; Ściślak, M.E.; Street-Jones, D.; van West, P.; Woodward, S.; Witzell, J. Current Practices and Emerging Possibilities for Reducing the Spread of Oomycete Pathogens in Terrestrial and Aquatic Production Systems in the European Union. Fungal Biol. Rev. 2021, 40, 19–36. [Google Scholar] [CrossRef]
Locus | Primer Name | Reference | Sequence 5′ to 3′ |
---|---|---|---|
ITS a,b,c | ITS 4 alt | [27] | TCCTCCGCTTATTGATATG |
ITS 5 alt | TGAAAAGTCGTAACAAGGTT | ||
COX I a,b,c | OomCoxI-Levup | [28] | TCAWCWMGATGGCTTTTTTCAAC |
Fm85mod | RRHWACKTGACTDATRATACCAAA | ||
OomCoxI-Levlo | CYTCHGGRTGWCCRAAAAACCAAA | ||
COX II a,c | COII-HF | [29] | GGCAAATGGGTTTTCAAGATCC |
COII-HR | CCATGATTAATACCACAAATTTCACTA | ||
β-tubulin a,c | TUBUF2 | [30] | CGGTAACAACTGGGCCAAGG |
TUBUR1 | CCTGGTACTGCTGGTACTCAG | ||
β-tubulin a,b,c | BT5 | [31] | GTATCATGTGCACGTACTCGG |
BT6 | CAAGAAAGCCTTACGACGGA |
Species | Primer (Enzyme) | |
---|---|---|
ITS (Taq I) | ITS (EcoRV) | |
P. cryptogea | 6 cuts | 1 cut |
P3 | 7 cuts | 1 cut |
COX I (Taq I) | COX I (EcoRV) | |
P. cryptogea | 2 cuts | Does not cut |
P3 | Varied: 1, 4, 5 (depending on cloning colony) | Does not cut |
TUBU5_6 (Taq I) | TUBU5_6 (EcoRV) | |
P. cryptogea | 5 cuts | Does not cut |
P3 | Varied: 5, 6, 7, 11 cuts (depending on cloning colony) | Varied: 1 cut or doesn’t cut (depending on cloning colony) |
COX II (Taq I) | COX II (EcoRV) | |
P. cryptogea | 1 cut | Does not cut |
P3 | Does not cut | Does not cut |
Species | Standard | Average (pg/2C) | Sd | Mbp/2C | Sd |
---|---|---|---|---|---|
P3 | Phytophthora infestans (0.48 pg/2C) | 0.230 | 0.0085 | 225.113 | 8.318 |
P. cryptogea | 0.168 | 0.0082 | 164.593 | 8.026 | |
P3 | Brassica oleracea (0.598 pg/2C) | 0.344 | 0.020 | 336.148 | 19.290 |
P. cryptogea | 0.345 | 0.024 | 337.031 | 23.497 | |
P3 | Arabidopsis thaliana (0.32 pg/2C) | 0.214 | 0.011 | 123.514 | 10.993 |
P. cryptogea | 0.269 | 0.013 | 123.860 | 12.540 |
Mortality (%) | RootDS (0–4) | Foliar Symptoms (0–4) | Fresh Weight (g) | Dry Weight (g) | Height (mm) | |
---|---|---|---|---|---|---|
P. cryptogea N = 20 | 0 | 0.15 ± 0.37 | 0.15± 0.37 | 14.80 ± 4.87 | 5.35 ± 0.95 | 343.09 ± 61.98 |
20 | 2.55 ± 1.15 | 2.60 ± 1.05 | 6.10 ± 2.54 | 3.69 ± 0.59 | 181.09 ± 74.21 | |
p = 0.03501 | p = 7.87 × 10−8 | p = 1.991 × 10−8 | p = 9.924 × 10−9 | p = 1.374 × 10−6 | p = 3.495 × 10−9 | |
(*) | (****) | (****) | (****) | (****) | (****) | |
P3 P. x cryptogea-related hybrid N = 20 | 0 | 0.15 ± 0.37 | 0.15± 0.37 | 14.80 ± 4.87 | 5.35 ± 0.95 | 343.09 ± 61.98 |
15 | 2.15 ± 1.18 | 2.20 ± 1.11 | 5.95 ± 1.93 | 3.82 ± 0.43 | 194.36 ± 92.16 | |
p = 0.07172 | p = 1.513 × 10−7 | p = 3.776 × 10−8 | p = 1.016 × 10−10 | p = 6.008 × 10−7 | p = 5.833 × 10−5 | |
(NS) | (****) | (****) | (****) | (****) | (****) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavent-Celma, C.; McLaggan, D.; van West, P.; Woodward, S. Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock. J. Fungi 2023, 9, 627. https://doi.org/10.3390/jof9060627
Benavent-Celma C, McLaggan D, van West P, Woodward S. Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock. Journal of Fungi. 2023; 9(6):627. https://doi.org/10.3390/jof9060627
Chicago/Turabian StyleBenavent-Celma, Clara, Debbie McLaggan, Pieter van West, and Steve Woodward. 2023. "Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock" Journal of Fungi 9, no. 6: 627. https://doi.org/10.3390/jof9060627
APA StyleBenavent-Celma, C., McLaggan, D., van West, P., & Woodward, S. (2023). Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock. Journal of Fungi, 9(6), 627. https://doi.org/10.3390/jof9060627