Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies
Abstract
:1. Introduction
2. Biocontrol of Botryosphaeria Dieback
2.1. Biological Control of Neofusicoccum parvum
2.1.1. Biocontrol Using Trichoderma
Trichoderma spp.—N. parvum Interactions In Vitro
Trichoderma spp.—N. parvum Interactions In Planta
2.1.2. Biocontrol Using Other Fungal Genera
2.1.3. Biocontrol Using Oomycetes
2.1.4. Biocontrol Using Bacteria
2.1.5. Biocontrol Using Actinobacteria
2.2. Biological Control of Diplodia seriata
2.2.1. Biocontrol Using Trichoderma
2.2.2. Biocontrol Using Other Fungal Genera
2.2.3. Biocontrol Using Bacteria
2.3. Biological Control of Lasiodiplodia theobromae
2.3.1. Biocontrol Using Fungi
2.3.2. Biocontrol Using Bacteria
2.4. Biocontrol of Neofusicoccum australe and Other Botryosphaeria Dieback-Associated Fungi
3. Biocontrol of Esca
3.1. Biological Control of Phaeomoniella chlamydospora
3.1.1. Biocontrol Using Trichoderma
3.1.2. Biocontrol Using Other Fungal Genera
3.1.3. Biocontrol Using Oomycetes
3.1.4. Biocontrol Using Bacteria
3.1.5. Biocontrol Using Actinobacteria
3.2. Biological Control of Phaeoacremonium minimum
3.2.1. Biocontrol Using Fungi
3.2.2. Biocontrol Using Oomycetes
3.2.3. Biocontrol Using Bacteria and Actinobacteria
3.3. Biological Control of Fomitiporia mediterranea
3.3.1. Biocontrol Using Fungi
3.3.2. Biocontrol Using Bacteria
4. Biocontrol of Eutypa Dieback
4.1. Biological Control of Eutypa lata
4.1.1. Biocontrol Using Trichoderma
4.1.2. Biocontrol Using Other Fungi
4.1.3. Biocontrol Using Bacteria and Actinobacteria
5. Biological Control with Currently Commercialized Products
6. Mechanisms of Action of MBCAs against GTDs
7. Factors Influencing Control Efficiency of the MBCAs
8. General Discussion: Challenges and Prospects
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine Trunk Diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar] [CrossRef]
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine Trunk Diseases: Complex and still poorly understood: Grapevine Trunk Diseases. Plant Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef]
- Perez-Gonzalez, G.; Sebestyen, D.; Petit, E.; Jellison, J.; Mugnai, L.; Lee, N.; Farine, S.; Bertsch, C.; Goodell, B. The role of low molecular weight fungal metabolites in grapevine trunk disease pathogenesis: Eutypa Dieback and Esca. bioRxiv 2021, 28. [Google Scholar]
- Ouadi, L.; Bruez, E.; Bastien, S.; Yacoub, A.; Coppin, C.; Guérin-Dubrana, L.; Fontaine, F.; Domec, J.-C.; Rey, P. Sap flow disruption in grapevine is the early signal predicting the structural, functional, and genetic responses to Esca disease. Front. Plant Sci. 2021, 12, 695846. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Pivovaroff, A.L.; Santiago, L.S.; Rolshausen, P.E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? lessons from dutch elm disease and Esca disease in grapevine. Front. Plant Sci. 2014, 5, 253. [Google Scholar] [CrossRef]
- Fontaine, F.; Gramaje, D.; Armengol, J.; Smart, R.; Nagy, Z.A.; Borgo, M.; Rego, C.; Corio-Costet, M.-F. Grapevine Trunk Diseases. A Review. OIV Publ. 2016, 26. [Google Scholar]
- Guerin-Dubrana, L.; Fontaine, F.; Mugnai, L. Grapevine Trunk disease in European and Mediterranean vineyards: Occurrence, distribution and associated disease-affecting cultural factors. Phytopathol. Mediterr. 2019, 58, 49–71. [Google Scholar] [CrossRef]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef]
- Andolfi, A.; Mugnai, L.; Luque, J.; Surico, G.; Cimmino, A.; Evidente, A. Phytotoxins produced by fungi associated with Grapevine Trunk Diseases. Toxins 2011, 3, 1569–1605. [Google Scholar] [CrossRef]
- Bruno, G.; Ippolito, M.; Bragazzi, L.; Tommasi, F. Physiological response of ‘Italia’ grapevine to some “Esca Complex”-associated fungi. Authorea Prepr. 2020. [Google Scholar]
- Chacón-Vozmediano, J.L.; Gramaje, D.; León, M.; Armengol, J.; Moral, J.; Izquierdo-Cañas, P.M.; Martínez-Gascueña, J. Cultivar susceptibility to natural infections caused by fungal grapevine trunk pathogens in La Mancha designation of origin (Spain). Plants 2021, 10, 1171. [Google Scholar] [CrossRef]
- Lambert, C.; Khiook, I.L.K.; Lucas, S.; Télef-Micouleau, N.; Mérillon, J.-M.; Cluzet, S. A faster and a stronger defense response: One of the key elements in grapevine explaining its lower level of susceptibility to Esca? Phytopathology 2013, 103, 1028–1034. [Google Scholar] [CrossRef]
- Mondello, V.; Larignon, P.; Armengol, J.; Kortekamp, A.; Vaczy, K.; Prezman, F.; Serrano, E.; Rego, C.; Mugnai, L.; Fontaine, F. Management of Grapevine Trunk Diseases: Knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathol. Mediterr. 2018, 57, 369–383. [Google Scholar] [CrossRef]
- Lecomte, P.; Darrieutort, G.; Laveau, C.; Blancard, D.; Louvet, G.; Rey, P.; Guérin-Dubrana, L. Impact of biotic and abiotic factors on the development of Esca decline disease. IOBC/WPRS Bull. 2011, 67, 171–180. [Google Scholar]
- Weber, E.A.; Trouillas, F.P.; Gubler, W.D. Double Pruning of grapevines: A Cultural Practice to reduce infections by Eutypa lata. Am. J. Enol. Vitic. 2007, 58, 61–66. [Google Scholar] [CrossRef]
- Rolshausen, P.E.; Úrbez-Torres, J.R.; Rooney-Latham, S.; Eskalen, A.; Smith, R.J.; Gubler, W.D. Evaluation of pruning wound susceptibility and protection against fungi associated with grapevine trunk diseases. Am. J. Enol. Vitic. 2010, 61, 113–119. [Google Scholar] [CrossRef]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in Biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Labois, C.; Stempien, E.; Schneider, J.; Schaeffer-Reiss, C.; Bertsch, C.; Goddard, M.-L.; Chong, J. Comparative study of secreted proteins, enzymatic activities of wood degradation and stilbene metabolization in grapevine botryosphaeria dieback fungi. J. Fungi 2021, 7, 568. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Adams, P.; Kamas, J.; Gubler, W.D. Identification, incidence, and pathogenicity of fungal species associated with grapevine dieback in Texas. Am. J. Enol. Vitic. 2009, 60, 497–507. [Google Scholar] [CrossRef]
- Bahmani, Z.; Abdollahzadeh, J.; Amini, J.; Evidente, A. Biscogniauxia rosacearum the charcoal canker agent as a pathogen associated with grapevine trunk diseases in Zagros region of Iran. Sci. Rep. 2021, 11, 14098. [Google Scholar] [CrossRef] [PubMed]
- Haidar, R.; Yacoub, A.; Roudet, J.; Marc, F.; Patrice, R. Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp. to control the grapevine trunk disease-pathogen, Neofusicoccum parvum. OENO One 2021, 55, 1–16. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Leavitt, G.M.; Guerrero, J.C.; Guevara, J.; Gubler, W.D. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the Causal agents of bot canker disease of grapevines in Mexico. Plant Dis. 2008, 92, 519–529. [Google Scholar] [CrossRef]
- Pitt, W.M.; Huang, R.; Steel, C.C.; Savocchia, S. Pathogenicity and epidemiology of botryosphaeriaceae species isolated from grapevines in Australia. Australas. Plant Pathol. 2013, 42, 573–582. [Google Scholar] [CrossRef]
- Martos, S.; Andolfi, A.; Luque, J.; Mugnai, L.; Surico, G.; Evidente, A. Production of phytotoxic metabolites by five species of botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. parvum. Eur. J. Plant Pathol. 2008, 121, 451–461. [Google Scholar] [CrossRef]
- Evidente, A.; Punzo, B.; Andolfi, A.; Cimmino, A.; Melck, D.; Luque, J. Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol. Mediterr. 2010, 49, 6. [Google Scholar]
- Salvatore, M.M.; Alves, A.; Andolfi, A. Secondary metabolites produced by Neofusicoccum species associated with plants: A Review. Agriculture 2021, 11, 149. [Google Scholar] [CrossRef]
- Trotel-Aziz, P.; Abou-Mansour, E.; Courteaux, B.; Rabenoelina, F.; Clément, C.; Fontaine, F.; Aziz, A. Bacillus subtilis PTA-271 counteracts botryosphaeria dieback in grapevine, triggering immune responses and detoxification of fungal phytotoxins. Front. Plant Sci. 2019, 10, 25. [Google Scholar] [CrossRef]
- Masi, M.; Cimmino, A.; Reveglia, P.; Mugnai, L.; Surico, G.; Evidente, A. Advances on Fungal phytotoxins and their role in grapevine trunk diseases. J. Agric. Food Chem. 2018, 66, 5948–5958. [Google Scholar] [CrossRef]
- Silva-Valderrama, I.; Toapanta, D.; Miccono, M.d.l.A.; Lolas, M.; Díaz, G.A.; Cantu, D.; Castro, A. Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Front. Microbiol. 2021, 11, 614620. [Google Scholar] [CrossRef]
- Kovács, C.; Csótó, A.; Pál, K.; Nagy, A.; Fekete, E.; Karaffa, L.; Kubicek, C.P.; Sándor, E. The Biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines. Part I. isolation, identification and in Vitro studies. Pathogens 2021, 10, 1612. [Google Scholar] [CrossRef] [PubMed]
- Mondello, V.; Spagnolo, A.; Larignon, P.; Clément, C.; Fontaine, F. Phytoprotection potential of Fusarium proliferatum for control of botryosphaeria dieback pathogens in grapevine. Phytopathol. Mediterr. 2019, 58, 295–308. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Tomaselli, E.; Pollard, J.; Boulé, J.; Gerin, D.; Pollastro, S. Characterization of Trichoderma isolates from southern Italy, and their potential biocontrol activity against grapevine trunk disease fungi. Phytopathol. Mediterr. 2020, 59, 425–439. [Google Scholar]
- Kotze, V. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol. Mediterr. 2011, 50, S247–S263. [Google Scholar]
- Wallis, C.M. Nutritional Niche Overlap Analysis as a method to identify potential biocontrol fungi against trunk pathogens. BioControl 2021, 66, 559–571. [Google Scholar] [CrossRef]
- Almeida, F.B.d.R.; Cerqueira, F.M.; Silva, R.d.N.; Ulhoa, C.J.; Lima, A.L. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: Evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 2007, 29, 1189–1193. [Google Scholar] [CrossRef]
- Pollard-Flamand, J.; Boulé, J.; Hart, M.; Úrbez-Torres, J.R. Biocontrol Activity of Trichoderma species isolated from grapevines in British Columbia against botryosphaeria dieback fungal pathogens. J. Fungi 2022, 8, 409. [Google Scholar] [CrossRef]
- Del Frari, G.; Cabral, A.; Nascimento, T.; Boavida Ferreira, R.; Oliveira, H. Epicoccum layuense a potential biological control agent of Esca-associated fungi in grapevine. PLoS ONE 2019, 14, e0213273. [Google Scholar] [CrossRef]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic Pseudomonas against grapevine trunk diseases. Front. Microbiol. 2020, 11, 477. [Google Scholar] [CrossRef]
- Geiger, A.; Karácsony, Z.; Geml, J.; Váczy, K.Z. Mycoparasitism capability and growth inhibition activity of Clonostachys rosea isolates against fungal pathogens of grapevine trunk diseases suggest potential for biocontrol. PLoS ONE 2022, 17, e0273985. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Lin, R.; Li, E.; Mao, Z.; Ling, J.; Yang, Y.; Yin, W.-B.; Xie, B. Biosynthesis of Antibiotic leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on Phytophthora revealed by genome mining. PLoS Pathog. 2016, 12, e1005685. [Google Scholar] [CrossRef] [PubMed]
- Blundell, R.; Arreguin, M.; Eskalen, A. In vitro Evaluation of grapevine endophytes, epiphytes and sap micro-organisms for potential use to control grapevine trunk disease pathogens. Phytopathol. Mediterr. 2021, 60, 535–548. [Google Scholar] [CrossRef]
- Yacoub, A.; Haidar, R.; Gerbore, J.; Masson, C.; Dufour, M.-C.; Guyoneaud, R.; Rey, P. Pythium oligandrum Induces grapevine defence mechanisms against the trunk pathogen Neofusicoccum parvum. Phytopathol. Mediterr. 2020, 59, 565–580. [Google Scholar] [CrossRef]
- Benhamou, N.; Le Floch, G.; Vallance, J.; Gerbore, J.; Grizard, D.; Rey, P. Pythium oligandrum: An example of opportunistic success. Microbiology 2012, 158, 2679–2694. [Google Scholar] [CrossRef]
- Gerbore, J.; Benhamou, N.; Vallance, J.; Le Floch, G.; Grizard, D.; Regnault-Roger, C.; Rey, P. Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res. 2014, 21, 4847–4860. [Google Scholar] [CrossRef]
- Magnin-Robert, M.; Trotel-Aziz, P.; Quantinet, D.; Biagianti, S.; Aziz, A. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. Eur. J. Plant Pathol. 2007, 118, 43–57. [Google Scholar] [CrossRef]
- Huang, C.; Wang, L.; Xu, G.; Zhao, P.; Wang, C. Evaluation of the antagonistic effect and influencing factors of Bacillus subtilis against wood stain fungi: A systematic literature review and meta-analysis approach. BioRes 2021, 16, 2789–2803. [Google Scholar] [CrossRef]
- Leal, C.; Fontaine, F.; Aziz, A.; Egas, C.; Clément, C.; Trotel-Aziz, P. Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 Isolated from a Vitis vinifera (Cv. Chardonnay) rhizospheric soil: Assets for sustainable biocontrol. Environ. Microbiome 2021, 16, 3. [Google Scholar] [CrossRef]
- Andreolli, M. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera Cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol. Res. 2016, 183, 42–52. [Google Scholar] [CrossRef]
- Andreolli, M.; Zapparoli, G.; Angelini, E.; Lucchetta, G.; Lampis, S.; Vallini, G. Pseudomonas protegens MP12: A Plant Growth-Promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol. Res. 2018, 219, 123–131. [Google Scholar] [CrossRef]
- Bustamante, M.I.; Elfar, K.; Eskalen, A. Evaluation of the Antifungal Activity of Endophytic and Rhizospheric Bacteria against Grapevine Trunk Pathogens. Microorganisms 2022, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Haidar, R.; Deschamps, A.; Roudet, J.; Calvo-Garrido, C.; Bruez, E.; Rey, P.; Fermaud, M. Multi-organ screening of efficient bacterial control agents against two major pathogens of grapevine. Biol. Control 2016, 92, 55–65. [Google Scholar] [CrossRef]
- Daraignes, L.; Gerbore, J.; Yacoub, A.; Dubois, L.; Romand, C.; Zekri, O.; Roudet, J.; Chambon, P.; Fermaud, M. Efficacy of P. oligandrum affected by its association with bacterial BCAs and rootstock effect in controlling grapevine trunk diseases. Biol. Control 2018, 119, 59–67. [Google Scholar] [CrossRef]
- Kanjanamaneesathian, P.; Shah, A.; Ridgway, H.; Jones, E.E. Diversity and bioactivity of endophytic actinobacteria associated with grapevines. Curr. Microbiol. 2022, 79, 390. [Google Scholar] [CrossRef]
- Martínez-Diz, M.d.P.; Díaz-Losada, E.; Díaz-Fernández, Á.; Bouzas-Cid, Y.; Gramaje, D. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Prot. 2021, 143, 105465. [Google Scholar] [CrossRef]
- Kovács, C.; Sándor, E.; Peles, F. Analysis of mycelial growth rate and mycoparasitic ability of different Trichoderma isolates from grapevine trunks. An. Univ. Oradea Fasc. Protecţia Mediu. 2014, XXII, 13–20. [Google Scholar]
- Pinto, C.; Custódio, V.; Nunes, M.; Songy, A.; Rabenoelina, F.; Courteaux, B.; Clément, C.; Gomes, A.C.; Fontaine, F. Understand the Potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Front. Microbiol. 2018, 9, 3047. [Google Scholar] [CrossRef]
- Falk, S.P.; Pearson, R.C.; Gadoury, D.; Seem, R.C.; Sztejnberg, A. Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology 1996, 86, 1010–1017. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Alves, A.; Andolfi, A. Secondary metabolites of Lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins 2020, 12, 457. [Google Scholar] [CrossRef]
- Félix, C.; Salvatore, M.M.; DellaGreca, M.; Ferreira, V.; Duarte, A.S.; Salvatore, F.; Naviglio, D.; Gallo, M.; Alves, A.; Esteves, A.C.; et al. Secondary metabolites produced by grapevine strains of Lasiodiplodia theobromae Grown at Two Different Temperatures. Mycologia 2019, 111, 466–476. [Google Scholar] [CrossRef]
- Zhang, W.; Groenewald, J.Z.; Lombard, L.; Schumacher, R.K.; Phillips, A.J.L.; Crous, P.W. Evaluating Species in Botryosphaeriales. Persoonia 2021, 46, 63–115. [Google Scholar] [CrossRef] [PubMed]
- Marraschi, R.; Ferreira, A.B.M.; Da Silva Bueno, R.N.; Leite, J.A.B.P.; Lucon, C.M.M.; Harakava, R.; Leite, L.G.; Padovani, C.R.; Bueno, C.J. A Protocol for selection of Trichoderma spp. to protect grapevine pruning wounds against Lasiodiplodia theobromae. Braz. J. Microbiol. 2019, 50, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Bulgari, D.; Casati, P.; Quaglino, F.; Bianco, P.A.; Iriti, M.; Faoro, F. Localization of Pantoea agglomerans in grapevine tissues by fluorescence in situ hybridization (FISH). J. Plant Pathol. 2009, 91, 51. [Google Scholar]
- Alfonzo, A.; Conigliaro, G.; Torta, L.; Burruano, S.; Moschetti, G. Antagonism of Bacillus subtilis Strain AG1 against Vine Wood Fungal Pathogens. Phytopathol. Mediterr. 2009, 48, 155–158. [Google Scholar]
- Alfonzo, A.; Lo Piccolo, S.; Conigliaro, G.; Ventorino, V.; Burruano, S.; Moschetti, G. Antifungal Peptides Produced by Bacillus amyloliquefaciens AG1 Active against Grapevine Fungal Pathogens. Ann. Microbiol. 2012, 62, 1593–1599. [Google Scholar] [CrossRef]
- Mojeremane, K.; Lebenya, P.; Du Plessis, I.L.; Van Der Rijst, M.; Mostert, L.; Armengol, J.; Halleen, F. Cross Pathogenicity of Neofusicoccum australe and Neofusicoccum stellenboschiana on Grapevine and Selected Fruit and Ornamental Trees. Phytopathol. Mediterr. 2020, 59, 581–593. [Google Scholar] [CrossRef]
- Surico, G.; Mugnai, L.; Marchi, G. Older and more recent observations on Esca: A Critical Overview. Phytopathol. Mediterr. 2006, 45, 19. [Google Scholar]
- Valtaud, C.; Larignon, P.; Roblin, G.; Fleurat-Lessard, P. Developmental and ultrastructural features of Phaeomoniella chlamydospora and Phaeoacremonium aleophilum in relation to xylem degradation in esca disease of the grapevine. J. Plant Pathol. 2009, 91, 37–51. [Google Scholar]
- Bruez, E.; Vallance, J.; Gerbore, J.; Lecomte, P.; Da Costa, J.-P.; Guerin-Dubrana, L.; Rey, P. Analyses of the temporal dynamics of fungal communities colonizing the healthy wood tissues of Esca leaf-symptomatic and asymptomatic vines. PLoS ONE 2014, 9, e95928. [Google Scholar] [CrossRef]
- Bortolami, G.; Gambetta, G.A.; Delzon, S.; Lamarque, L.J.; Pouzoulet, J.; Badel, E.; Burlett, R.; Charrier, G.; Cochard, H.; Dayer, S.; et al. Exploring the hydraulic failure hypothesis of Esca leaf symptom formation. Plant Physiol. 2019, 181, 1163–1174. [Google Scholar] [CrossRef]
- Haidar, R.; Yacoub, A.; Vallance, J.; Compant, S.; Antonielli, L.; Saad, A.; Habenstein, B.; Kauffmann, B.; Grélard, A.; Loquet, A.; et al. Bacteria associated with wood tissues of esca-diseased grapevines: Functional diversity and synergy with Fomitiporia mediterranea to degrade wood components. Environ. Microbiol. 2021, 23, 6104–6121. [Google Scholar] [CrossRef] [PubMed]
- Spasova, M.; Manolova, N.; Rashkov, I.; Naydenov, M. Eco-friendly hybrid PLLA/Chitosan/Trichoderma asperellum nanomaterials as biocontrol dressings against Esca disease in grapevines. Polymers 2022, 14, 2356. [Google Scholar] [CrossRef] [PubMed]
- Marco, S.D.; Osti, F. Applications of Trichoderma to prevent Phaeomoniella chlamydospora infections in organic nurseries. Phytopathol. Mediterr. 2007, 46, 11. [Google Scholar]
- Marco, S.D.; Osti, F.; Cesari, A. Experiments on the control of Esca by Trichoderma. Phytopathol. Mediterr. 2004, 43, 8. [Google Scholar]
- Fourie, P.H.; Halleen, F. Proactive Control of petri disease of grapevine through treatment of propagation material. Plant Dis. 2004, 88, 1241–1245. [Google Scholar] [CrossRef]
- Del Frari, G.; Oliveira, H.; Boavida Ferreira, R. White Rot Fungi (Hymenochaetales) and Esca of grapevine: Insights from recent microbiome studies. J. Fungi 2021, 7, 770. [Google Scholar] [CrossRef]
- Malandraki, I.; Tjamos, S.E.; Pantelides, I.S.; Paplomatas, E.J. Thermal Inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol. Control 2008, 44, 180–187. [Google Scholar] [CrossRef]
- Gkikas, F.-I.; Tako, A.; Gkizi, D.; Lagogianni, C.; Markakis, E.A.; Tjamos, S.E. Paenibacillus alvei K165 and Fusarium oxysporum F2: Potential Biocontrol Agents against Phaeomoniella chlamydospora in Grapevines. Plants 2021, 10, 207. [Google Scholar] [CrossRef]
- Yacoub, A.; Magnin, N.; Gerbore, J.; Haidar, R.; Bruez, E.; Compant, S.; Guyoneaud, R.; Rey, P. The biocontrol root-oomycete, Pythium oligandrum, triggers grapevine resistance and shifts in the transcriptome of the trunk pathogenic fungus, Phaeomoniella chlamydospora. Int. J. Mol. Sci. 2020, 21, 6876. [Google Scholar] [CrossRef]
- Yacoub, A.; Gerbore, J.; Magnin, N.; Chambon, P.; Dufour, M.-C.; Corio-Costet, M.-F.; Guyoneaud, R.; Rey, P. Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in esca, a grapevine trunk disease. Biol. Control 2016, 92, 7–16. [Google Scholar] [CrossRef]
- Pilar Martínez-Diz, M.; Díaz-Losada, E.; Andrés-Sodupe, M.; Bujanda, R.; Maldonado-González, M.M.; Ojeda, S.; Yacoub, A.; Rey, P.; Gramaje, D. Field evaluation of biocontrol agents against black-foot and petri diseases of grapevine. Pest Manag. Sci. 2021, 77, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Haidar, R.; Roudet, J.; Bonnard, O.; Dufour, M.C.; Corio-Costet, M.F.; Fert, M.; Gautier, T.; Deschamps, A.; Fermaud, M. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol. Res. 2016, 192, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M. Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet. Biol. 2003, 38, 54–62. [Google Scholar] [CrossRef]
- Álvarez-Pérez, J.M.; González-García, S.; Cobos, R.; Olego, M.Á.; Ibañez, A.; Díez-Galán, A.; Garzón-Jimeno, E.; Coque, J.J.R. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl. Environ. Microbiol. 2017, 83, e01564-17. [Google Scholar] [CrossRef] [PubMed]
- Taguiam, J.D.; Evallo, E.; Balendres, M.A. Epicoccum species: Ubiquitous plant pathogens and effective biological control agents. Eur. J. Plant Pathol. 2021, 159, 713–725. [Google Scholar] [CrossRef]
- Carro-Huerga, G.; Compant, S.; Gorfer, M.; Cardoza, R.E.; Schmoll, M.; Gutiérrez, S.; Casquero, P.A. Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. Strain T154: Biocontrol activity against Phaeoacremonium minimum. Front. Plant Sci. 2020, 11, 1170. [Google Scholar] [CrossRef]
- Nigris, S.; Baldan, E.; Tondello, A.; Zanella, F.; Vitulo, N.; Favaro, G.; Guidolin, V.; Bordin, N.; Telatin, A.; Barizza, E.; et al. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinifera Cv. Glera. BMC Microbiol. 2018, 18, 133. [Google Scholar] [CrossRef]
- Nerva, L.; Garcia, J.F.; Favaretto, F.; Giudice, G.; Moffa, L.; Sandrini, M.; Zanzotto, A.; Gardiman, M.; Velasco, R.; Gambino, G.; et al. The hidden world within plants: Metatranscriptomics unveils the complexity of wood microbiomes. J. Exp. Bot. 2022, 73, 2682–2697. [Google Scholar] [CrossRef]
- Bruez, E.; Larignon, P.; Bertsch, C.; Robert-Siegwald, G.; Lebrun, M.-H.; Rey, P.; Fontaine, F. Impacts of sodium arsenite on wood microbiota of Esca-diseased grapevines. J. Fungi 2021, 7, 498. [Google Scholar] [CrossRef]
- Reis, P.; Pierron, R.; Larignon, P.; Lecomte, P.; Abou-Mansour, E.; Farine, S.; Bertsch, C.; Jacques, A.; Trotel-Aziz, P.; Rego, C.; et al. Vitis Methods to understand and develop strategies for diagnosis and sustainable control of grapevine trunk diseases. Phytopathology 2019, 109, 916–931. [Google Scholar] [CrossRef]
- Ilyukhin, E. First record of Eutypella vitis causing branch dieback on new host trees in Canada. SIF 2021, 6, 71–77. [Google Scholar] [CrossRef]
- Sosnowski, M.R.; Shtienberg, D.; Creaser, M.L.; Wicks, T.J.; Lardner, R.; Scott, E.S. The influence of climate on foliar symptoms of Eutypa dieback in grapevines. Phytopathology 2007, 97, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, M.R.; Creaser, M.L.; Wicks, T.J.; Lardner, R.; Scott, E.S. Protection of grapevine pruning wounds from infection by Eutypa lata. Aust. J. Grape Wine Res. 2008, 14, 134–142. [Google Scholar] [CrossRef]
- Renaud, J.-M.; Tsoupras, G.; Tabacchi, R. Biologically active natural acetylenic compounds from Eutypa lata (Pers: F.) TUL. Helv. Chim. Acta 1989, 72, 929–932. [Google Scholar] [CrossRef]
- Mahoney, N.; Lardner, R.; Molyneux, R.J.; Scott, E.S.; Smith, L.R.; Schoch, T.K. Phenolic and heterocyclic metabolite profiles of the grapevine pathogen Eutypa lata. Phytochemistry 2003, 64, 475–484. [Google Scholar] [CrossRef]
- Amborabé, B.-E.; Fleurat-Lessard, P.; Bonmort, J.; Roustan, J.-P.; Roblin, G. Effects of eutypine, a toxin from Eutypa lata, on plant cell plasma membrane: Possible subsequent implication in disease development. Plant Physiol. Biochem. 2001, 39, 51–58. [Google Scholar] [CrossRef]
- Tey-Rulh, P.; Philippe, I.; Renaud, J.-M.; Tsoupras, G.; De Angelis, P.; Fallot, J.; Tabacchi, R. Eutypine, a phytotoxin produced by Eutypa lata the causal agent of dying-arm disease of grapevine. Phytochemistry 1991, 30, 471–473. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Mahoney, N.; Bayman, P.; Wong, R.Y.; Meyer, K.; Irelan, N. Eutypa dieback in grapevines: Differential production of acetylenic phenol metabolites by strains of Eutypa lata. J. Agric. Food Chem. 2002, 50, 1393–1399. [Google Scholar] [CrossRef]
- John, S.; Scott, E.S.; Wicks, T.J.; Hunt, J.S. Interactions between Eutypa lata and Trichoderma harzianum. Phytopathol. Mediterr. 2004, 43, 10. [Google Scholar]
- John, S.; Wicks, T.J.; Hunt, J.S.; Lorimer, M.F.; Oakey, H.; Scott, E.S. Protection of grapevine pruning wounds from infection by Eutypa Lata using Trichoderma harzianum and Fusarium lateritium. Austral. Plant Pathol. 2005, 34, 569. [Google Scholar] [CrossRef]
- Halleen, F.; Fourie, P.H.; Lombard, P.J. Protection of grapevine pruning wounds against Eutypa lata by biological and chemical methods. SAJEV 2010, 31, 125–132. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Marois, J.J. Efficacy of natural epiphytes and colonizers of grapevine pruning wounds for biological control of Eutypa dieback. Phytopathology 1993, 83, 624–629. [Google Scholar] [CrossRef]
- Schmidt, C.S.; Lorenz, D.; Wolf, G.A. Biological control of the grapevine dieback fungus Eutypa lata I: Screening of bacterial antagonists. J. Phytopathol. 2008, 149, 427–435. [Google Scholar] [CrossRef]
- Ferreira, J.H.S.; Matthee, F.N.; Thomas, A.C. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 1991, 81, 283–287. [Google Scholar] [CrossRef]
- Kempf, H.-J.; Wolf, G.A. Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita F. sp. triticii on wheat. Phytopathology 1989, 79, 990–994. [Google Scholar] [CrossRef]
- Spagnolo, A.; Mondello, V.; Larignon, P.; Villaume, S.; Rabenoelina, F.; Clément, C.; Fontaine, F. Defense responses in grapevine (Cv. Mourvèdre) after inoculation with the botryosphaeria dieback pathogens Neofusicoccum parvum and Diplodia seriata and their relationship with flowering. Int. J. Mol. Sci. 2017, 18, 393. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S. Further evidence that calcium, magnesium and seaweed mixtures reduce grapevine leaf stripe symptoms and increase grape yields. Phytopathol. Mediterr. 2018, 57, 459–471. [Google Scholar] [CrossRef]
- Chammem, H.; Nesler, A.; Pertot, I. Wood pellets as carriers of conidia of Trichoderma atroviride SC1 for soil application. Fungal Biol. 2021, 125, 989–998. [Google Scholar] [CrossRef]
- Longa, C.M.O.; Pertot, I.; Tosi, S. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential. J. Basic Microbiol. 2008, 48, 269–277. [Google Scholar] [CrossRef]
- Pellegrini, A.; Prodorutti, D.; Pertot, I. Use of bark mulch pre-inoculated with Trichoderma atroviride to control Armillaria root rot. Crop Prot. 2014, 64, 104–109. [Google Scholar] [CrossRef]
- Pertot, I.; Prodorutti, D.; Colombini, A.; Pasini, L. Trichoderma atroviride SC1 Prevents Phaeomoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. BioControl 2016, 61, 257–267. [Google Scholar] [CrossRef]
- Berbegal, M.; Ramón-Albalat, A.; León, M.; Armengol, J. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest. Manag. Sci. 2019, 76, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Chervin, J.; Romeo-Oliván, A.; Fournier, S.; Puech-Pages, V.; Dumas, B.; Jacques, A.; Marti, G. Modification of early response of Vitis vinifera to pathogens relating to Esca disease and biocontrol agent Vintec® revealed by untargeted metabolomics on woody tissues. Front. Microbiol. 2022, 13, 835463. [Google Scholar] [CrossRef] [PubMed]
- Romeo-Oliván, A.; Chervin, J.; Breton, C.; Lagravère, T.; Daydé, J.; Dumas, B.; Jacques, A. Comparative transcriptomics suggests early modifications by Vintec® in grapevine trunk of hormonal signaling and secondary metabolism biosynthesis in response to Phaeomoniella chlamydospora and Phaeoacremonium minimum. Front. Microbiol. 2022, 13, 898356. [Google Scholar] [CrossRef]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-based products and their widespread use in agriculture. TOMYCJ 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Mounier, E.; Boulisset, F.; Elbaz, N.; Dubournet, P.; Pajot, E. Productive potential of land. In Proceedings of the 5th Conférence Internationale, Lille, France, 11–13 May 2015. [Google Scholar]
- Schnabel, G.; Rollins, A.P.; Henderson, G.W. Field evaluation of Trichoderma Spp. for control of Armillaria root rot of peach. Plant Health Prog. 2011, 12, 3. [Google Scholar] [CrossRef]
- Bigot, G.; Sivilotti, P.; Stecchina, M.; Lujan, C.; Freccero, A.; Mosetti, D. Long-term effects of Trichoderma asperellum and Trichoderma gamsii on the prevention of Esca in different vineyards of northeastern Italy. Crop Prot. 2020, 137, 105264. [Google Scholar] [CrossRef]
- Di Marco, S.; Metruccio, E.G.; Moretti, S.; Nocentini, M.; Carella, G.; Pacetti, A.; Battiston, E.; Osti, F.; Mugnai, L. Activity of Trichoderma asperellum Strain ICC 012 and Trichoderma gamsii Strain ICC 080 toward diseases of Esca complex and associated pathogens. Front. Microbiol. 2022, 12, 813410. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Li, N.; Islam, M.T.; Kang, S. Secreted metabolite-mediated interactions between rhizosphere bacteria and Trichoderma biocontrol agents. PLoS ONE 2019, 14, e0227228. [Google Scholar] [CrossRef]
- Kilani-Feki, O.; Ben Khedher, S.; Dammak, M.; Kamoun, A.; Jabnoun-Khiareddine, H.; Daami-Remadi, M.; Tounsi, S. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol. Control 2016, 95, 73–82. [Google Scholar] [CrossRef]
- Bardin, M.; Ajouz, S.; Comby, M.; Lopez-Ferber, M.; Graillot, B.; Siegwart, M.; Nicot, P.C. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 2015, 6, 566. [Google Scholar] [CrossRef]
- Yan, J.-Y.; Xie, Y.; Zhang, W.; Wang, Y.; Liu, J.-K.; Hyde, K.D.; Seem, R.C.; Zhang, G.-Z.; Wang, Z.-Y.; Yao, S.-W.; et al. Species of botryosphaeriaceae involved in grapevine dieback in China. Fungal Divers. 2013, 61, 221–236. [Google Scholar] [CrossRef]
- Mutawila, C.; Fourie, P.H.; Halleen, F.; Mostert, L. Grapevine cultivar variation to pruning wound protection by Trichoderma species against trunk pathogens. Phytopathol. Mediterr. 2011, 50, S264–S276. [Google Scholar]
- French, E.; Kaplan, I.; Iyer-Pascuzzi, A.; Nakatsu, C.H.; Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 2021, 7, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Halleen, F.; Fourie, P.H. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. SAJEV 2016, 37, 104–114. [Google Scholar] [CrossRef]
Trade Name | MBCAs | Mode of Action | Target Pathogen(s)/Disease | Country | References | |
---|---|---|---|---|---|---|
Fungus | Vintec®/Treadani1 | T. atroviride SC1 | Antibiosis; nutrient and space competition; stimulation of plant defenses | P. chlamydospora, P. minimum, D. seriata, E. lata, E. armenicae, B. ribis, and grey mold | BE, CY, CZ, DE, EL, ES, FR, HR, HU, IT, LU, NL, PL, PT, RO, SI, UK, NZ, USA | BPDB [113,114] |
Esquive®/Tri-Wall | T. atroviride I-1237 | Competition for space and nutriments; mycoparasitism | Esca (Phaeomoniella, Phaeoacremonium) and botryosphaeria dieback, E. lata and also used for the control of root diseases and damping-off | CY, ES, FR, IT, PT, AU, NZ, SA, VT | BPDB [115] | |
Eco 77 | T. harzianum strain B77 | Competition for space and nutrients | Eutypa and botrytis | SA; KE, ZM | BPDB [115] | |
Mix | Blindar/Cassat WP/Remedier®/Escalator Bioten WP | T. asperellum ICC012 & T. gamsii ICC080 | Antibiosis; mycoparasitism; colonization of pruning wounds; nutrient and space competition | Fungus involved in Esca, Botryosphaeria, and Eutypa dieback Grapevine trunk disease; soil-borne pathogens | USA, CA, EU Members ES, FR, IT, SI), MA, SI, TR | BPDB [115] |
Vinevax Bio-dowel | 5 strains of T. atroviride | Stimulation of the systemic protective response | Eutypa dieback (E. lata) and botryosphaeria dieback (Botryosphaeria stevensii) | NZ, AU | [115] | |
Vinevax™ | 5 strains of T. atroviride | Competition for space and nutrients | Eutypa dieback (E. lata) black dead arm (Botryosphaeria spp.) and Petri disease (P. chlamydospora). | NZ, AU | [115] |
MBCAs | Strains | Mechanisms of Action | Targeted Pathogens | References |
---|---|---|---|---|
Fungi | ||||
Trichoderma | T. afroharzianum | Mycoparasitism | N. parvum, D. seriata, and E. lata | [31] |
T. asperelloides | Competition for space | L. theobromae, N. parvum, and D. seriata, | [37,40,62] | |
T. asperellum | Competition for nutrients and/or space | P. chlamydospora, P. minimum, L. theobromae, and E. lata | BPDB, [42,62,72] | |
T. atroviride | Competition for space and nutrients, production of lytic enzymes, antibiosis, mycoparasitism, and stimulation of plant defense mechanisms | P. chlamydospora, P. minimum, D. seriata, Botryosphaeria ribis E. lata, N. parvum, N. australe, E. armenicae, P. viticola, and N. mediterraneaum | BPDB, [1,33,34,35,37,62,108,113,115] | |
T. canadense | NA | N. parvum and D. seriata | [37] | |
T. gamsii | Antibiosis and mycoparasitism | P. chlamydospora and B. stevenssi | BPDB, [1] | |
T. guizhouense | Competition for nutrients and space | N. parvum, D. seriata, and E. lata | [33] | |
T. hamatum | Competition for space and nutrients | N. parvum, P. chlamydospora, and E. lata. | [42] | |
T. harzianum | Competition for space and nutrients, mycoparasitism antibiosis, and enhancement of the grapevine defense response | P. chlamydospora, N. parvum, D. seriata, E. lata, P. viticola, P. minimum, N. australe, and L. theobromae | [1,33,34,35,37,56,62,73] | |
T. koningii | NA | P. chlamydospora, P. mínimum, N. parvum, and D. seriata | [37,81] | |
T. koningiopsis | Competition for nutrients and space | N. parvum, D. seriata, E. lata, and L. theobromae | [33,62] | |
T. longibrachiatum | Competition for nutrients and space, and enhancement of grapevine defense response | D. seriata, N. parvum, E. lata, and P. chlamydospora | [33,56,73] | |
T. paratroviride | Competition for nutrients and space | N. parvum, D. seriata, and E. lata | [33] | |
T. paraviridescens | Competition for nutrients and space | N. parvum, D. seriata, and E. lata | [33] | |
T. simmonsii | Mycoparasitism | N. parvum, D. seriata, and E. lata | [31] | |
T. spirale | Competition for nutrients and space | N. parvum, D. seriata, and E. lata | [33] | |
T. tomentosum | NA | N. parvum and D. seriata | [37] | |
T. viticola | NA | N. parvum and D. seriata | [37] | |
Trichoderma sp. | Competition for nutrients and space, and mycoparasitism | D. seriata, P. chlamydospora, P. minimum, and E. lata | [30,33,56,86] | |
Epicoccum | E. layuense | Production of diffusible metabolites in vitro and competition for space and nutrients | P. chlamydospora, P. minimum, and F. mediterranea | [38] |
E. mezzettii | Production of diffusible metabolites in vitro and competition for space and nutrients | P. chlamydospora, P. minimum, and F. mediterranea | [38] | |
E. purpurascens | NA | L. theobromae | [63] | |
Fusarium | F. lateritium | Antibiosis | E. lata | [100,102] |
F. oxysporum | Colonization of xylem tissue (competition) | P. chlamydospora | [78] | |
F. proliferatum | Direct antagonism (antibiosis) and priming plant defense response | N. parvum and D. seriata | [32] | |
Cladosporium | C. herbarum | The colonization of pruning wounds by its hydrophobic conidia (completion) | E. lata, | [102] |
Cladosporium sp. | Antibiosis and high rate of sporulation (competition) | N. parvum, D. seriata, and P. chlamydospora | [30] | |
Aureobasidium | A. pullulans | Direct antagonism (stopped growth) | N. parvum, D. seriata, and E. lata | [42,102] |
Candida | C. famata | NA | E. lata | [102] |
Chaetomium | Chaetomium sp. | Mycoparasitism | N. parvum, D. seriata, and P. chlamydospora | [30] |
Clonostachys | C. rosea | Antibiosis and mycoparasitism | D. seriata, N. parvum, P. chlamydospora, P. mínimum, and E. lata | [30,40] |
Lecanicillium | L. lecanii | Competition for space and nutrients | N. parvum, D. seriata, P. chlamydospora, P. minimum, and E. lata | [35] |
Penicillium | Penicillium sp. | NA | E. lata | [102] |
Purpureocillium | P. lilacinum | Direct antagonism (secreted secondary metabolites) | N. parvum, D. seriata, and P. chlamydospora | [30] |
Rhodotorula | R. rubra | NA | E. lata | [102] |
Bacteria | ||||
Achromobacter | Achromobacter sp. | NA | F. mediterranea | [71] |
Bacillus | B. amyloliquefaciens | Antibiosis | L. theobromae, P. chlamydospora, and P. minimum | [65] |
B. cereus | Direct antagonism | E. lata | [103] | |
B. firmus | NA | N. parvum and P. chlamydospora | [81] | |
B. licheniformis | Direct antagonism | P. minimum | [89] | |
B. methylotrophicus | Direct antagonism | N. parvum, P. chlamydospora, and P. minimum | [49] | |
B. pumilus | Induction of the expression of defense-related genes | N. parvum and P. chlamydospora | [52,53,82] | |
B. subtilis | Antibiosis and induction of the expression of defense-related genes | N. parvum, D. seriata, L. theobromae, N. australe, P. chlamydospora, P. minimum, and E. lata | [28,52,82,101,103,104] | |
B. thuringiensis | Antibiosis and competition for nutrient | E. lata | [103] | |
B. velezensis | NA | N. parvum, D. seriata, L. theobromae, P. minimum, and E. lata | [42,51] | |
Bacillus sp. | NA | P. chlamydospora and F. mediterranea | [52,71] | |
Brevibacillus | B. reuszeri | NA | P. chlamydospora | [82] |
Brevibacillus sp. | NA | N. parvum | [49] | |
Brevundimonas sp. | Brevundimonas sp. | NA | F. mediterranea | [71] |
Burkholderia | Burkholderia sp. | NA | F. mediterranea | [71] |
Cedecea sp. | Cedecea sp. | NA | F. mediterranea | [71] |
Chryseobacterium | Chryseobacterium sp. | NA | F. mediterranea | [71] |
Curtobacterium | Curtobacterium sp. | NA | F. mediterranea | [71] |
Enterobacter | Enterobacter sp. | NA | N. parvum, P. chlamydospora, and F. mediterranea | [71,82] |
Frigoribacterium | Frigoribacterium sp. | NA | F. mediterranea | [71] |
Erwinia | Erwinia sp. | NA | F. mediterranea | [71] |
Herbiconiux | Herbiconiux sp. | NA | F. mediterranea | [71] |
Kocuria | Kocuria sp. | NA | F. mediterranea | [71] |
Luteimonas | Luteimonas sp. | NA | F. mediterranea | [71] |
Lysinibacillus | Lysinibacillus sp. | NA | F. mediterranea | [71] |
Microbacterium | Microbacterium sp. | NA | F. mediterranea | [71] |
Novosphingobium | Novosphingobium sp. | NA | F. mediterranea | [71] |
Olivibacter | Olivibacter sp. | NA | F. mediterranea | [71] |
Paenibacillus | P. alvei | NA | P. chlamydospora | [78] |
P. illinoisensis | NA | P. chlamydospora | [82] | |
Paenibacillus sp. | Induction of the expression of defense-related genes and antibiosis | N. parvum and P. chlamydospora | [22,52,82] | |
Pseudomonas | P. protegens | NA | N. parvum, P. minimum, and P. chlamydospora | [50] |
P. fluorescens | NA | E. lata | [102,103] | |
P. chlororaphis | NA | N. parvum, L. theobromae, P. minimum, and E. lata | [51] | |
P. aeruginosa | NA | E. lata | [103] | |
Pseudomonas sp. | NA | F. mediterranea, N. parvum, and D. seriata | [51,71] | |
Pantoea | P. agglomerans | Induction of the expression of defense-related genes, antibiosis, and production of siderophores | N. parvum, P. chlamydospora, E. lata, and F. mediterranea | [52,53,71,82,103] |
Pedobacter | Pedobacter sp. | NA | F. mediterranea | [71] |
Pigmentifaga | Pigmentifaga sp. | NA | F. mediterranea | [71] |
Pseudoxanthomonas | Pseudoxanthomonas sp. | NA | F. mediterranea | [71] |
Rahnella | Rahnella sp. | NA | F. mediterranea | [71] |
Rhizobiaceae | / | NA | F. mediterranea | [71] |
Serratia | S. plymuthica | NA | E. lata, N. parvum, D. seriata, L. theobromae, and P. mínimum | [51,103] |
Sphingomonas | Sphingomonas sp. | NA | F. mediterranea | [71] |
Stenotrophomonas | S. maltophilia | NA | E. lata | [103] |
Stenotrophomonas sp. | NA | F. mediterranea | [71] | |
Variovorax sp. | Variovorax sp. | NA | F. mediterranea | [71] |
Xanthomonaceae | / | NA | F. mediterranea | [71] |
Actinobacteria | ||||
Streptomyces | Streptomyces sp. | NA | P. chlamydospora, P. minimum, N. parvum, and E. lata | [54,81,103] |
Oomycete | ||||
Pythium | P. oligandrum | Induction of systemic resistance | N. parvum and P. chlamydospora, | [43,53,55,79,80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesguida, O.; Haidar, R.; Yacoub, A.; Dreux-Zigha, A.; Berthon, J.-Y.; Guyoneaud, R.; Attard, E.; Rey, P. Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. J. Fungi 2023, 9, 638. https://doi.org/10.3390/jof9060638
Mesguida O, Haidar R, Yacoub A, Dreux-Zigha A, Berthon J-Y, Guyoneaud R, Attard E, Rey P. Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. Journal of Fungi. 2023; 9(6):638. https://doi.org/10.3390/jof9060638
Chicago/Turabian StyleMesguida, Ouiza, Rana Haidar, Amira Yacoub, Assia Dreux-Zigha, Jean-Yves Berthon, Rémy Guyoneaud, Eléonore Attard, and Patrice Rey. 2023. "Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies" Journal of Fungi 9, no. 6: 638. https://doi.org/10.3390/jof9060638
APA StyleMesguida, O., Haidar, R., Yacoub, A., Dreux-Zigha, A., Berthon, J. -Y., Guyoneaud, R., Attard, E., & Rey, P. (2023). Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. Journal of Fungi, 9(6), 638. https://doi.org/10.3390/jof9060638