The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species
Abstract
:1. Introduction
1.1. Sporotrichosis
1.2. Proteomics
1.3. Transcriptomics
2. Methodology
3. Results
3.1. Proteomics Involving Sporothrix spp.
3.2. Transcriptomics Involving Sporothrix spp.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orofino-Costa, R.; de Macedo, P.M.; Rodrigues, A.M.; Bernardes-Engemann, A.R. Sporotrichosis: An update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef] [Green Version]
- Rabello, V.B.S.; Almeida, M.A.; Bernardes-Engemann, A.R.; Almeida-Paes, R.; de Macedo, P.M.; Zancopé-Oliveira, R.M. The Historical Burden of Sporotrichosis in Brazil: A Systematic Review of Cases Reported from 1907 to 2020. Braz. J. Microbiol. 2021, 53, 231–244. [Google Scholar] [CrossRef]
- Bento, A.d.O.; Costa, A.S.d.S.; Lima, S.L.; Alves, M.D.M.; Melo, A.S.d.A.; Rodrigues, A.M.; da Silva-Rocha, W.P.; Milan, E.P.; Chaves, G.M. The spread of cat-transmitted sporotrichosis due to Sporothrix brasiliensis in Brazil towards the Northeast region. PLoS Negl. Trop. Dis. 2021, 15, e0009693. [Google Scholar] [CrossRef]
- Gremião, I.D.F.; Miranda, L.H.M.; Reis, E.G.; Rodrigues, A.M.; Pereira, S.A. Zoonotic Epidemic of Sporotrichosis: Cat to Human Transmission. PLoS Pathog. 2017, 13, e1006077. [Google Scholar] [CrossRef] [Green Version]
- Marimon, R.; Cano, J.; Gené, J.; Sutton, D.A.; Kawasaki, M.; Guarro, J. Sporothrix brasiliensis, S. globosa, and S. mexicana, Three New Sporothrix Species of Clinical Interest. J. Clin. Microbiol. 2007, 45, 3198–3206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.M.; de Hoog, S.; de Camargo, Z.P. Emergence of pathogenicity in the Sporothrix schenckii complex. Med. Mycol. 2013, 51, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.M.; Della Terra, P.P.; Gremião, I.D.; Pereira, S.A.; Orofino-Costa, R.; de Camargo, Z.P. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020, 185, 813–842. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global epidemiology of sporotrichosis. Med. Mycol. 2015, 53, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.; Vieille, P.; Oschilewski, D. Aislamiento ambiental de Sporothrix globosa en relación a un caso de esporotricosis linfocutánea. Rev. Chil. Infectol. 2012, 29, 401–405. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, S.L.; Boyd, R.; Kidd, S.; McLeod, C.; Krause, V.L.; Ralph, A.P. Epidemiological investigation of an outbreak of cutaneous sporotrichosis, Northern Territory, Australia. BMC Infect. Dis. 2015, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Zancopé-Oliveira, R.M.; de Almeida-Paes, R.; de Oliveira, M.M.E.; Freitas, D.F.S.; Galhardo, M.C.G. New Diagnostic Applications in Sporotrichosis; In Tech: Rijeka, Italy, 2011. [Google Scholar] [CrossRef] [Green Version]
- Singhai, M.; Rawat, V.; Verma, P.; Jha, P.K.; Shree, D.; Goyal, R. Umesh Primary Pulmonary Sporotrichosis in a Sub-Himalayan Patient. J. Lab. Physicians 2012, 4, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Gremião, I.D.; Menezes, R.C.; Schubach, T.M.; Figueiredo, A.B.; Cavalcanti, M.C.; Pereira, S.A. Feline sporotrichosis: Epidemiological and clinical aspects. Med. Mycol. 2015, 53, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Barnacle, J.R.; Chow, Y.J.; Borman, A.M.; Wyllie, S.; Dominguez, V.; Russell, K.; Roberts, H.; Armstrong-James, D.; Whittington, A.M. The first three reported cases of Sporothrix brasiliensis cat-transmitted sporotrichosis outside South America. Med. Mycol. Case Rep. 2023, 39, 14–17. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; de Oliveira, M.M.; Freitas, D.F.S.; do Valle, A.C.F.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C. Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix brasiliensis Is Associated with Atypical Clinical Presentations. PLoS Negl. Trop. Dis. 2014, 8, e3094. [Google Scholar] [CrossRef] [Green Version]
- De Lima Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.A.; Franco, S.R.; de Camargo, R.M.P.; Dias, L.D.F.; Júnior, V.H.; Fabris, V.E. Esporotricose do gato doméstico (Felis catus): Transmissão humana. Rev. Inst. Med. Trop. Sao Paulo 1993, 35, 327–330. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Xu, X.-G.; Zhang, M.; Jiang, P.; Zhou, X.-Y.; Li, Z.-Z.; Zhang, M.-F. Sporotrichosis: Clinical and Histopathological Manifestations. Am. J. Dermatopathol. 2011, 33, 296–302. [Google Scholar] [CrossRef]
- Orofino-Costa, R.; Freitas, D.F.S.; Bernardes-Engemann, A.R.; Rodrigues, A.M.; Talhari, C.; Ferraz, C.E.; Veasey, J.V.; Quintella, L.; de Sousa, M.S.L.A.; Vettorato, R.; et al. Human sporotrichosis: Recommendations from the Brazilian Society of Dermatology for the clinical, diagnostic and therapeutic management. An. Bras. Dermatol. 2022, 97, 757–777. [Google Scholar] [CrossRef] [PubMed]
- Procópio-Azevedo, A.; Rabello, V.; Muniz, M.; Figueiredo-Carvalho, M.; Almeida-Paes, R.; Zancopé-Oliveira, R.; Silva, J.; de Macedo, P.; Valle, A.; Gutierrez-Galhardo, M.; et al. Hypersensitivity reactions in sporotrichosis: A retrospective cohort of 325 patients from a reference hospital in Rio de Janeiro, Brazil (2005–2018). Br. J. Dermatol. 2021, 185, 1272–1274. [Google Scholar] [CrossRef]
- Alvarez, C.M.; Oliveira, M.M.E.; Pires, R.H. Sporotrichosis: A Review of a Neglected Disease in the Last 50 Years in Brazil. Microorganisms 2022, 10, 2152. [Google Scholar] [CrossRef]
- Jessica, N.; Sonia, R.L.; Rodrigo, C.; Isabella, D.F.; Tânia, M.; Jeferson, C.; Anna, B.F.; Sandro, A. Diagnostic accuracy assessment of cytopathological examination of feline sporotrichosis. Med. Mycol. 2015, 53, 880–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardes-Engemann, A.R.; Costa, R.C.O.; Miguens, B.P.; Penha, C.V.L.; Neves, E.; Pereira, B.A.S.; Dias, C.M.P.; Mattos, M.; Gutierrez, M.C.; Schubach, A.; et al. Development of an enzyme-linked immunosorbent assay for the serodiagnosis of several clinical forms of sporotrichosis. Med. Mycol. 2005, 43, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Bernardes-Engemann, A.R.; de Lima Barros, M.; Zeitune, T.; Russi, D.C.; Orofino-Costa, R.; Lopes-Bezerra, L.M. Validation of a serodiagnostic test for sporotrichosis: A follow-up study of patients related to the Rio de Janeiro zoonotic outbreak. Med. Mycol. 2015, 53, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Paes, R.; Bernardes-Engemann, A.R.; Motta, B.d.S.; Pizzini, C.V.; Almeida, M.d.A.; Muniz, M.d.M.; Dias, R.A.B.; Zancopé-Oliveira, R.M. Immunologic Diagnosis of Endemic Mycoses. J. Fungi 2022, 8, 993. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.M.E.; Sampaio, P.; Almeida-Paes, R.; Pais, C.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Rapid Identification of Sporothrix Species by T3B Fingerprinting. J. Clin. Microbiol. 2012, 50, 2159–2162. [Google Scholar] [CrossRef] [Green Version]
- Francesconi, G.; Valle, A.; Passos, S.; Reis, R.; Galhardo, M. Terbinafine (250 mg/day): An effective and safe treatment of cutaneous sporotrichosis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, C.A.; Bustamante, B.; Chapman, S.W.; Pappas, P.G. Clinical Practice Guidelines for the Management of Sporotrichosis: 2007 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2007, 45, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Nobre, M.d.O.; Nascente, P.d.S.; Meireles, M.C.; Ferreiro, L. Drogas antifúngicas para pequenos e grandes animais. Cienc. Rural 2002, 32, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Sharma, A.K.; Sharma, U. Sporotrichosis: A Comprehensive Review on Recent Drug-Based Therapeutics and Management. Curr. Dermatol. Rep. 2022, 11, 110–119. [Google Scholar] [CrossRef]
- Mahajan, V.K. Sporotrichosis: An Overview and Therapeutic Options. Dermatol. Res. Pract. 2014, 2014, 272376. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.P.; do Valle, A.C.; Freitas, D.F.; Reis, R.; Galhardo, M.C. Pregnancy during a sporotrichosis epidemic in Rio de Janeiro, Brazil. Int. J. Gynecol. Obstet. 2012, 117, 294–295. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.P.; Galhardo, M.C.G.; Valle, A.C.F.D. Cryosurgery as adjuvant therapy in cutaneous sporotrichosis. Braz. J. Infect. Dis. 2011, 15, 181–183. [Google Scholar] [CrossRef] [Green Version]
- Fichman, V.; Valle, A.C.F.D.; de Macedo, P.M.; Freitas, D.F.S.; De Oliveira, M.M.E.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C. Cryosurgery for the treatment of cutaneous sporotrichosis in four pregnant women. PLoS Negl. Trop. Dis. 2018, 12, e0006434. [Google Scholar] [CrossRef] [Green Version]
- Kasuya, A.; Ohta, I.; Tokura, Y. Structural and Immunological Effects of Skin Cryoablation in a Mouse Model. PLoS ONE 2015, 10, e0123906. [Google Scholar] [CrossRef]
- Sampaio, F.M.S.; de Oliveira, D.S.; Freitas, D.F.S.; Valle, A.C.F.D. Electrosurgery as Adjuvant Therapy for Cutaneous Sporotrichosis. Dermatol. Surg. 2020, 46, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Emidio, N.B.; Carpanez, A.G.; Quellis, L.R.; Farani, P.S.; Vasconcelos, E.G.; Faria-Pinto, P. Proteômica: Uma introdução aos métodos e aplicações. HU Rev. 2015, 41, 101–111. [Google Scholar]
- Ball, B.; Bermas, A.; Carruthers-Lay, D.; Geddes-McAlister, J. Mass Spectrometry-Based Proteomics of Fungal Pathogenesis, Host–Fungal Interactions, and Antifungal Development. J. Fungi 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Cash, P. Proteomics: The protein revolution. Biologist 2002, 49, 58–62. [Google Scholar]
- Barbosa, E.B.; Vidotto, A.; Polachini, G.M.; Henrique, T.; de Marqui, A.B.T.; Tajara, E.H. Proteômica: Metodologias e aplicações no estudo de doenças humanas. Rev. Assoc. Med. Bras. 2012, 58, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chait, B.T. Mass Spectrometry: Bottom-Up or Top-Down? Science 2006, 314, 65–66. [Google Scholar] [CrossRef]
- de Souza, N. Induced pluripotency in human cells. Nat. Methods 2008, 5, 24. [Google Scholar] [CrossRef]
- Catherman, A.D.; Skinner, O.S.; Kelleher, N.L. Top Down proteomics: Facts and perspectives. Biochem. Biophys. Res. Commun. 2014, 445, 683–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armirotti, A.; Damonte, G. Achievements and perspectives of top-down proteomics. Proteomics 2010, 10, 3566–3576. [Google Scholar] [CrossRef] [PubMed]
- Costa-Silva, J.; Domingues, D.; Martins Lopes, F. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE 2017, 12, e0190152. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Pigosso, L.L.; Baeza, L.C.; Tomazett, M.V.; Faleiro, M.B.R.; de Moura, V.M.B.D.; Bailão, A.M.; Borges, C.L.; Rocha, J.A.P.; Fernandes, G.R.; Gauthier, G.M.; et al. Paracoccidioides brasiliensis presents metabolic reprogramming and secretes a serine proteinase during murine infection. Virulence 2017, 8, 1417–1434. [Google Scholar] [CrossRef] [Green Version]
- Zumaquero, A.; Kanematsu, S.; Nakayashiki, H.; Matas, A.; Martínez-Ferri, E.; Barceló-Muñóz, A.; Pliego-Alfaro, F.; López-Herrera, C.; Cazorla, F.M.; Pliego, C. Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. BMC Genom. 2019, 20, 1016. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Yin, Z.; Song, N.; Dai, Q.; Voegele, R.T.; Liu, Y.; Wang, H.; Gao, X.; Kang, Z.; Huang, L. Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree. Fungal Genet. Biol. 2014, 68, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. The review of transcriptome sequencing: Principles, history and advances. IOP Conf. Ser. Earth Environ. Sci. 2019, 332, 042003. [Google Scholar] [CrossRef]
- Raghavan, V.; Kraft, L.; Mesny, F.; Rigerte, L. A simple guide to de novo transcriptome assembly and annotation. Brief. Bioinform. 2022, 23, bbab563. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. RNA -Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 2016, 8, e1364. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, R.C.; Espíndola, N.M.; Castro, R.A.; Teixeira, P.A.C.; Penha, C.V.L.Y.; Lopes-Bezerra, L.M.; Almeida, S.R. Passive immunization with monoclonal antibody against a 70-kDa putative adhesin of Sporothrix schenckii induces protection in murine sporotrichosis. Eur. J. Immunol. 2008, 38, 3080–3089. [Google Scholar] [CrossRef]
- Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Costa, R.O.; de Carmargo, Z.P.; Felipe, M.S.; et al. Differences in Cell Morphometry, Cell Wall Topography and Gp70 Expression Correlate with the Virulence of Sporothrix brasiliensis Clinical Isolates. PLoS ONE 2013, 8, e75656. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. J. Proteom. 2015, 115, 8–22. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Two-dimensional gel electrophoresis data for proteomic profiling of Sporothrix yeast cells. Data Brief 2014, 2, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, G.F.; dos Santos, P.O.; Rodrigues, A.M.; Sasaki, A.A.; Burger, E.; de Camargo, Z.P. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. Globosa and S. brasiliensis species. Virulence 2013, 4, 241–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.M.; Fernandes, G.F.; Araujo, L.M.; Della Terra, P.P.; dos Santos, P.O.; Pereira, S.A.; Schubach, T.M.P.; Burger, E.; Lopes-Bezerra, L.M.; De Camargo, Z.P. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens. PLoS Negl. Trop. Dis. 2015, 9, e0004016. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.M.E.; Santos, C.; Sampaio, P.; Romeo, O.; Almeida-Paes, R.; Pais, C.; Lima, N.; Zancopé-Oliveira, R.M. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Res. Microbiol. 2015, 166, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Matos, A.M.F.; Moreira, L.M.; Barczewski, B.F.; De Matos, L.X.; De Oliveira, J.B.V.; Pimentel, M.I.F.; Almeida-Paes, R.; Oliveira, M.G.; Pinto, T.C.A.; Lima, N.; et al. Identification by MALDI-TOF MS of Sporothrix brasiliensis Isolated from a Subconjunctival Infiltrative Lesion in an Immunocompetent Patient. Microorganisms 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Hou, B.; Xin, Y.; Liu, X. Protein Profiling of the Dimorphic Pathogenic Fungus, Sporothrix schenckii. Mycopathologia 2011, 173, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rossato, L.; Moreno, L.F.; Jamalian, A.; Stielow, B.; de Almeida, S.R.; de Hoog, S.; Freeke, J. Proteins Potentially Involved in Immune Evasion Strategies in Sporothrix brasiliensis Elucidated by Ultra-High-Resolution Mass Spectrometry. Msphere 2018, 3, e00514-17. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, J.R.F.; Jannuzzi, G.P.; Kaihami, G.H.; Breda, L.C.D.; Ferreira, K.S.; De Almeida, S.R. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Sci. Rep. 2018, 8, 4192. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.A.K.; De Almeida, J.R.F.; Jannuzzi, G.P.; Cronemberger-Andrade, A.; Torrecilhas, A.C.T.; Moretti, N.S.; da Cunha, J.P.C.; De Almeida, S.R.; Ferreira, K.S. Extracellular Vesicles from Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Front. Microbiol. 2018, 9, 2286. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Baca, E.; Leyva-Sánchez, H.; Calderón-Barraza, B.; Esquivel-Naranjo, U.; López-Romero, E.; López-Rodríguez, A.; Cuéllar-Cruz, M. Identification of proteins in Sporothrix schenckii sensu stricto in response to oxidative stress induced by hydrogen peroxide. Rev. Iberoam. Micol. 2019, 36, 17–23. [Google Scholar] [CrossRef]
- Félix-Contreras, C.; Alba-Fierro, C.A.; Ríos-Castro, E.; Luna-Martínez, F.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Proteomic analysis of Sporothrix schenckii cell wall reveals proteins involved in oxidative stress response induced by menadione. Microb. Pathog. 2020, 141, 103987. [Google Scholar] [CrossRef]
- Saucedo-Campa, D.O.; Martínez-Rocha, A.L.; Ríos-Castro, E.; Alba-Fierro, C.A.; Escobedo-Bretado, M.A.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Proteomic Analysis of Sporothrix schenckii Exposed to Oxidative Stress Induced by Hydrogen Peroxide. Pathogens 2022, 11, 230. [Google Scholar] [CrossRef]
- Silva-Bailão, M.G.; Lima, P.d.S.; Oliveira, M.M.E.; Oliveira, L.C.; Almeida-Paes, R.; Borges, C.L.; Bailão, A.M.; Coelho, A.S.G.; Soares, C.M.d.A.; Zancopé-Oliveira, R.M. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect. 2020, 23, 104762. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, S.G.; Morales, J.S.; Canto, A.G.; Montaño, A.E.; Guerrero, H.T. Human serum proteins bind to Sporothrix schenckii conidia with differential effects on phagocytosis. Braz. J. Microbiol. 2020, 52, 33–39. [Google Scholar] [CrossRef] [PubMed]
- García-Carnero, L.C.; Salinas-Marín, R.; Lozoya-Pérez, N.E.; Wrobel, K.; Wrobel, K.; Martínez-Duncker, I.; Niño-Vega, G.A.; Mora-Montes, H.M. The Heat Shock Protein 60 and Pap1 Participate in the Sporothrix schenckii-Host Interaction. J. Fungi 2021, 7, 960. [Google Scholar] [CrossRef] [PubMed]
- Giosa, D.; Felice, M.R.; Giuffrè, L.; Cigliano, R.A.; Paytuví-Gallart, A.; Passo, C.L.; Barresi, C.; D’Alessandro, E.; Huang, H.; Criseo, G.; et al. Transcriptome-wide expression profiling of Sporothrix schenckii yeast and mycelial forms and the establishment of the Sporothrix Genome DataBase. Microb. Genom. 2020, 6, e000445. [Google Scholar] [CrossRef]
- Teixeira, M.M.; De Almeida, L.G.; Kubitschek-Barreira, P.; Alves, F.L.; Kioshima, É.S.; Abadio, A.K.; Fernandes, L.; Derengowski, L.S.; Ferreira, K.S.; Souza, R.C.; et al. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genom. 2014, 15, 943. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, X.; Gao, S.; You, H.; Zhao, Y.; Wang, L. Transcriptome Analysis of Dimorphic Fungus Sporothrix schenckii Exposed to Temperature Stress. Int. Microbiol. 2020, 24, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hou, B.; Wu, Y.Z.; Wang, Y.; Liu, X.; Han, S. Two-component histidine kinase DRK1 is required for pathogenesis in Sporothrix schenckii. Mol. Med. Rep. 2017, 17, 721–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.; Zhang, Z.; Zhou, J.; Zheng, F.; Li, M. Ste20 is crucial for dimorphic switching of Sporothrix schenckii and affects its global transcriptome. Int. J. Clin. Exp. Pathol. 2020, 13, 411–424. [Google Scholar]
- Zheng, F.; Gao, W.; Wang, Y.; Chen, Q.; Zhang, Q.; Jiang, X.; Hou, B.; Zhang, Z. Map of dimorphic switching-related signaling pathways in Sporothrix schenckii based on its transcriptome. Mol. Med. Rep. 2021, 24, 646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procópio-Azevedo, A.C.; de Abreu Almeida, M.; Almeida-Paes, R.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C.; de Macedo, P.M.; Novaes, E.; Bailão, A.M.; de Almeida Soares, C.M.; Freitas, D.F.S. The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species. J. Fungi 2023, 9, 790. https://doi.org/10.3390/jof9080790
Procópio-Azevedo AC, de Abreu Almeida M, Almeida-Paes R, Zancopé-Oliveira RM, Gutierrez-Galhardo MC, de Macedo PM, Novaes E, Bailão AM, de Almeida Soares CM, Freitas DFS. The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species. Journal of Fungi. 2023; 9(8):790. https://doi.org/10.3390/jof9080790
Chicago/Turabian StyleProcópio-Azevedo, Anna Carolina, Marcos de Abreu Almeida, Rodrigo Almeida-Paes, Rosely Maria Zancopé-Oliveira, Maria Clara Gutierrez-Galhardo, Priscila Marques de Macedo, Evandro Novaes, Alexandre Melo Bailão, Célia Maria de Almeida Soares, and Dayvison Francis Saraiva Freitas. 2023. "The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species" Journal of Fungi 9, no. 8: 790. https://doi.org/10.3390/jof9080790
APA StyleProcópio-Azevedo, A. C., de Abreu Almeida, M., Almeida-Paes, R., Zancopé-Oliveira, R. M., Gutierrez-Galhardo, M. C., de Macedo, P. M., Novaes, E., Bailão, A. M., de Almeida Soares, C. M., & Freitas, D. F. S. (2023). The State of the Art in Transcriptomics and Proteomics of Clinically Relevant Sporothrix Species. Journal of Fungi, 9(8), 790. https://doi.org/10.3390/jof9080790