Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of UCNPs
2.2. Biocompatibility and Hemocompatibility Evaluation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of UCNPs by Co-Precipitation and Sol-Gel Methods
4.3. Physicochemical Evaluation of UCNPs
4.4. Viability of Mouse Embryo Fibroblasts
4.5. Hemolytic Activity of Human Red Blood Cells
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lahoti, H.S.; Jogdand, S.D. Bioimaging: Evolution, Significance, and Deficit. Cureus 2022, 14, e28923. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Zhang, F. Bioapplications and Biotechnologies of Upconversion Nanoparticle-Based Nanosensors. Analyst 2016, 141, 3601–3620. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, B.; Jin, Q.; Wang, X.; Li, Y.; Sun, Y.; Huo, J.; Zhao, X. Facile Synthesis of 5 Nm NaYF4:Yb/Er Nanoparticles for Targeted Upconversion Imaging of Cancer Cells. Talanta 2016, 152, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Gerelkhuu, Z.; Lee, Y.-I.; Yoon, T.H. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. Nanomaterials 2022, 12, 3470. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Hrovat, D.; Kumar, B.; Qu, G.; Houten, J.V.; Ahmed, R.; Piunno, P.A.E.; Gunning, P.T.; Krull, U.J. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS Appl. Mater. Interfaces 2023, 15, 2499–2528. [Google Scholar] [CrossRef] [PubMed]
- Mahata, M.K.; De, R.; Lee, K.T. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Vorotnikov, Y.A.; Vorotnikova, N.A.; Shestopalov, M.A. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. Materials 2023, 16, 5869. [Google Scholar] [CrossRef]
- Le, X.T.; Youn, Y.S. Emerging NIR Light-Responsive Delivery Systems Based on Lanthanide-Doped Upconverting Nanoparticles. Arch. Pharm. Res. 2020, 43, 134–152. [Google Scholar] [CrossRef]
- Tsai, S.-R.; Hamblin, M.R. Biological Effects and Medical Applications of Infrared Radiation. J. Photochem. Photobiol. B Biol. 2017, 170, 197–207. [Google Scholar] [CrossRef]
- Gnach, A.; Lipinski, T.; Bednarkiewicz, A.; Rybka, J.; Capobianco, J.A. Upconverting Nanoparticles: Assessing the Toxicity. Chem. Soc. Rev. 2015, 44, 1561–1584. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tsunemi, Y.; Kawashima, M.; Nishida, H. The Impact of Near-Infrared in Plastic Surgery. Plast. Surg. Int. J. 2013, 2013, 973073. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, J.; Liu, J.; Zhang, Y. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Adv. Sci. 2019, 6, 1901358. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Luo, Z.; Qin, X.; Chen, Q.; Liu, X. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, M.; Sun, Y.; Chen, G.; Yang, T.; Gao, Y.; Zhang, X.; Li, F. Multifunctional Rare-Earth Self-Assembled Nanosystem for Tri-Modal Upconversion Luminescence /Fluorescence /Positron Emission Tomography Imaging. Biomaterials 2011, 32, 8243–8253. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yang, K.; Shao, M.; Lu, X.; Liu, Z. In Vivo Pharmacokinetics, Long-Term Biodistribution and Toxicology Study of Functionalized Upconversion Nanoparticles in Mice. Nanomedicine 2011, 6, 1327–1340. [Google Scholar] [CrossRef]
- Generalova, A.N.; Chichkov, B.N.; Khaydukov, E.V. Multicomponent Nanocrystals with Anti-Stokes Luminescence as Contrast Agents for Modern Imaging Techniques. Adv. Colloid Interface Sci. 2017, 245, 1–19. [Google Scholar] [CrossRef]
- Min, Y.; Li, J.; Liu, F.; Padmanabhan, P.; Yeow, E.; Xing, B. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials. Nanomaterials 2014, 4, 129–154. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; Yin, Y.; McRae, C.; Piper, J.A.; Dawes, J.M.; Jin, D.; Goldys, E.M. Upconversion Luminescence with Tunable Lifetime in NaYF4: Yb,Er Nanocrystals: Role of Nanocrystal Size. Nanoscale 2013, 5, 944–952. [Google Scholar] [CrossRef]
- Lingeshwar Reddy, K.; Balaji, R.; Kumar, A.; Krishnan, V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small 2018, 14, 1801304. [Google Scholar] [CrossRef]
- Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Haase, M. NaYF4: Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2018, 57, 8765–8769. [Google Scholar] [CrossRef]
- Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S. Upconversion Nanoparticles: Synthesis, Surface Modification and Biological Applications. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 710–729. [Google Scholar] [CrossRef]
- Yang, L.; Shao, B.; Zhang, X.; Cheng, Q.; Lin, T.; Liu, E. Multifunctional Upconversion Nanoparticles for Targeted Dual-Modal Imaging in Rat Glioma Xenograft. J. Biomater. Appl. 2016, 31, 400–410. [Google Scholar] [CrossRef]
- Alkahtani, M.; Alsofyani, N.; Alfahd, A.; Almuqhim, A.A.; Almughem, F.A.; Alshehri, A.A.; Qasem, H.; Hemmer, P.R. Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles. Nanomaterials 2021, 11, 284. [Google Scholar] [CrossRef]
- Rafique, R.; Baek, S.H.; Park, C.Y.; Chang, S.-J.; Gul, A.R.; Ha, S.; Nguyen, T.P.; Oh, H.; Ham, S.; Arshad, M.; et al. Morphological Evolution of Upconversion Nanoparticles and Their Biomedical Signal Generation. Sci. Rep. 2018, 8, 17101. [Google Scholar] [CrossRef]
- Zhou, R.; Ma, T.; Qiu, B.; Li, X. Controlled Synthesis of β-NaYF 4:Yb, Er Microphosphors and Upconversion Luminescence Property. Mater. Chem. Phys. 2017, 194, 23–28. [Google Scholar] [CrossRef]
- Xu, D.; Li, C.; Li, W.; Lin, B.; Lv, R. Recent Advances in Lanthanide-Doped up-Conversion Probes for Theranostics. Front. Chem. 2023, 11, 1036715. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, H.; Perepichka, D.F.; Rosei, F. Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small 2016, 12, 3888–3907. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, J.; Feng, W.; Li, F. Upconversion Nanophosphors Nalu4: Yb,Tm for Lymphatic Imaging In Vivo by Real-Time Upconversion Luminescence Imaging under Ambient Light and High-Resolution X-Ray CT. Theranostics 2013, 3, 346–353. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Gonçalves, M.C. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018, 23, 2021. [Google Scholar] [CrossRef]
- Muhr, V.; Wilhelm, S.; Hirsch, T.; Wolfbeis, O.S. Upconversion Nanoparticles: From Hydrophobic to Hydrophilic Surfaces. Acc. Chem. Res. 2014, 47, 3481–3493. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Q.; You, H.; Wang, Z. Synthesis of Stable Carboxy-Terminated NaYF4: Yb3+, Er3+@SiO2 Nanoparticles with Ultrathin Shell for Biolabeling Applications. Nanoscale 2013, 5, 1047–1053. [Google Scholar] [CrossRef]
- Guryev, E.L.; Smyshlyaeva, A.S.; Shilyagina, N.Y.; Sokolova, E.A.; Shanwar, S.; Kostyuk, A.B.; Lyubeshkin, A.V.; Schulga, A.A.; Konovalova, E.V.; Lin, Q.; et al. UCNP-Based Photoluminescent Nanomedicines for Targeted Imaging and Theranostics of Cancer. Molecules 2020, 25, 4302. [Google Scholar] [CrossRef]
- Jin, J.; Gu, Y.-J.; Man, C.W.-Y.; Cheng, J.; Xu, Z.; Zhang, Y.; Wang, H.; Lee, V.H.-Y.; Cheng, S.H.; Wong, W.-T. Polymer-Coated NaYF4: Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging. ACS Nano 2011, 5, 7838–7847. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Zou, Y.; Wang, Z.; Hao, M.; Zheng, M.; Xue, X.; Pan, X.; Lu, Y.; Wang, J.; et al. Developing a pH-Sensitive Al(OH)3 Layer-Mediated UCNP@Al(OH)3/Au Nanohybrid for Photothermal Therapy and Fluorescence Imaging in vivo. J. Mater. Chem. B 2018, 6, 7862–7870. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of Surface Properties on Nanoparticle—Cell Interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Li, D.; Shao, Q.; Dong, Y.; Jiang, J. Phase-, Shape- and Size-Controlled Synthesis of NaYF4:Yb3+, Er3+ Nanoparticles Using Rare-Earth Acetate Precursors. J. Rare Earths 2014, 32, 1032–1036. [Google Scholar] [CrossRef]
- Nahorniak, M.; Patsula, V.; Mareková, D.; Matouš, P.; Shapoval, O.; Oleksa, V.; Vosmanská, M.; Machová Urdzíková, L.; Jendelová, P.; Herynek, V.; et al. Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb, Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating. Int. J. Mol. Sci. 2023, 24, 2724. [Google Scholar] [CrossRef]
- Patsula, V.; Mareková, D.; Jendelová, P.; Nahorniak, M.; Shapoval, O.; Matouš, P.; Oleksa, V.; Konefał, R.; Vosmanská, M.; Machová-Urdziková, L.; et al. Polymer-Coated Hexagonal Upconverting Nanoparticles: Chemical Stability and Cytotoxicity. Front. Chem. 2023, 11, 1207984. [Google Scholar] [CrossRef]
- He, S.; Xia, H.; Zhang, J.; Zhu, Y.; Chen, B. Highly Efficient Up-Conversion Luminescence in Er3+/Yb3+ Co-Doped Na5Lu9F32 Single Crystals by Vertical Bridgman Method. Sci. Rep. 2017, 7, 8751. [Google Scholar] [CrossRef]
- Lashkovskaya, E.I.; Gaponenko, N.V.; Stepikhova, M.V.; Yablonskiy, A.N.; Andreev, B.A.; Zhivulko, V.D.; Mudryi, A.V.; Martynov, I.L.; Chistyakov, A.A.; Kargin, N.I.; et al. Optical Properties and Upconversion Luminescence of BaTiO3 Xerogel Structures Doped with Erbium and Ytterbium. Gels 2022, 8, 347. [Google Scholar] [CrossRef]
- Avram, D.; Colbea, C.; Patrascu, A.A.; Istrate, M.C.; Teodorescu, V.; Tiseanu, C. Up-Conversion Emission in Transition Metal and Lanthanide Co-Doped Systems: Dimer Sensitization Revisited. Sci. Rep. 2023, 13, 2165. [Google Scholar] [CrossRef]
- Rafique, R.; Baek, S.H.; Phan, L.M.T.; Chang, S.-J.; Gul, A.R.; Park, T.J. A Facile Hydrothermal Synthesis of Highly Luminescent NaYF4:Yb3+/Er3+ Upconversion Nanoparticles and Their Biomonitoring Capability. Mater. Sci. Eng. C 2019, 99, 1067–1074. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Sudnik, L.V.; Vityaz, P.A.; Luchаnok, A.R.; Stepikhova, M.V.; Yablonskiy, A.N.; Lashkovskaya, E.I.; Shustsikava, K.V.; Radyush, Y.V.; Zhivulko, V.D.; et al. Upconversion Luminescence of Er3+ Ions from Barium Titanate Xerogel Powder and Target Fabricated by Explosive Compaction Method. J. Appl. Spectrosc. 2022, 89, 238–243. [Google Scholar] [CrossRef]
- Liu, F.; He, X.; Lei, Z.; Liu, L.; Zhang, J.; You, H.; Zhang, H.; Wang, Z. Facile Preparation of Doxorubicin-Loaded Upconversion@Polydopamine Nanoplatforms for Simultaneous In Vivo Multimodality Imaging and Chemophotothermal Synergistic Therapy. Adv. Healthc. Mater. 2015, 4, 559–568. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling Upconversion Nanocrystals for Emerging Applications. Nat. Nanotech 2015, 10, 924–936. [Google Scholar] [CrossRef]
- Campos-Gonçalves, I.; Costa, B.F.O.; Santos, R.F.; Durães, L. Superparamagnetic Core-Shell Nanocomplexes Doped with Yb3+: Er3+/Ho3+ Rare-Earths for Upconversion Fluorescence. Mater. Des. 2017, 130, 263–274. [Google Scholar] [CrossRef]
- Vaz-Ramos, J.; Cordeiro, R.; Castro, M.M.C.A.; Geraldes, C.F.G.C.; Costa, B.F.O.; Faneca, H.; Durães, L. Supercritically Dried Superparamagnetic Mesoporous Silica Nanoparticles for Cancer Theranostics. Mater. Sci. Eng. C 2020, 115, 111124. [Google Scholar] [CrossRef]
- Abdul Jalil, R.; Zhang, Y. Biocompatibility of Silica Coated NaYF4 Upconversion Fluorescent Nanocrystals. Biomaterials 2008, 29, 4122–4128. [Google Scholar] [CrossRef]
- Wong, H.-T.; Tsang, M.-K.; Chan, C.-F.; Wong, K.-L.; Fei, B.; Hao, J. In Vitro Cell Imaging Using Multifunctional Small Sized KGdF4: Yb3+, Er3+ Upconverting Nanoparticles Synthesized by a One-Pot Solvothermal Process. Nanoscale 2013, 5, 3465. [Google Scholar] [CrossRef]
- Rostami, I. Empowering the Emission of Upconversion Nanoparticles for Precise Subcellular Imaging. Nanomaterials 2021, 11, 1541. [Google Scholar] [CrossRef]
- Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L.-H. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4: Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett. 2004, 4, 2191–2196. [Google Scholar] [CrossRef]
- Milićević, B.; Periša, J.; Ristić, Z.; Milenković, K.; Antić, Ž.; Smits, K.; Kemere, M.; Vitols, K.; Sarakovskis, A.; Dramićanin, M. Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles. Nanomaterials 2022, 13, 30. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Li, S.; Shan, S.; Wang, X. Formation and Luminescence of Sodium Rare Earth Fluoride Nanocrystals in the Presence of Chelators. J. Nanosci. Nanotechnol. 2010, 10, 2193–2202. [Google Scholar] [CrossRef]
- Grzyb, T.; Przybylska, D. Formation Mechanism, Structural, and Upconversion Properties of Alkaline Rare-Earth Fluoride Nanocrystals Doped with Yb3+/Er3+ Ions. Inorg. Chem. 2018, 57, 6410–6420. [Google Scholar] [CrossRef]
Formulation | Lanthanide Precursors | Drying Method | Drying Moment |
---|---|---|---|
O, OD-AC | Lanthanide oxides | Oven drying | After silica coating |
O, OD-BC | Lanthanide oxides | Oven drying | Before silica coating |
O, OD | Lanthanide oxides | Oven drying | - |
N, OD-AC | Lanthanide nitrates | Oven drying | After silica coating |
N, OD-BC | Lanthanide nitrates | Oven drying | Before silica coating |
N, SCD-AC | Lanthanide nitrates | SCD | After silica coating |
N, SCD-BC | Lanthanide nitrates | SCD | Before silica coating |
UCNPs Formulation | ζ-Potential (mV) |
---|---|
O, OD-AC | −7.28 ± 1.99 |
O, OD-BC | −17.72 ± 0.12 |
O, OD | −6.39 ± 2.03 |
N, OD-AC | −9.64 ± 1.03 |
N, OD-BC | −7.07 ± 1.32 |
N, SCD-AC | −9.04 ± 1.09 |
N, SCD-BC | −8.78 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Mejuto, A.; Lamy-Mendes, A.; Pina, J.; Costa, B.F.O.; García-González, C.A.; Durães, L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods. Gels 2024, 10, 13. https://doi.org/10.3390/gels10010013
Iglesias-Mejuto A, Lamy-Mendes A, Pina J, Costa BFO, García-González CA, Durães L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods. Gels. 2024; 10(1):13. https://doi.org/10.3390/gels10010013
Chicago/Turabian StyleIglesias-Mejuto, Ana, Alyne Lamy-Mendes, João Pina, Benilde F. O. Costa, Carlos A. García-González, and Luisa Durães. 2024. "Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods" Gels 10, no. 1: 13. https://doi.org/10.3390/gels10010013
APA StyleIglesias-Mejuto, A., Lamy-Mendes, A., Pina, J., Costa, B. F. O., García-González, C. A., & Durães, L. (2024). Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol–Gel Methods. Gels, 10(1), 13. https://doi.org/10.3390/gels10010013