Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na2/3Fe1−yMnyO2 Cathode Material Synthesized by a Sol–Gel Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Electrochemical Performance
2.3. Charge Compensation and Crystal Structure Evolution
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, A.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Tarascon, J.M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [Google Scholar] [CrossRef]
- Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 15, 1703137. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Routes to High Energy Cathodes of Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1501727. [Google Scholar] [CrossRef]
- Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Physica 1980, 99, 81–85. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, L.; Dimov, N.; Okada, S.; Nishida, T. Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries. J. Electrochem. Soc. 2013, 160, A3077. [Google Scholar] [CrossRef]
- Jung, E.; Park, Y.; Park, K.; Kwon, M.S.; Park, M.; Sinha, A.K.; Lee, B.H.; Kim, J.; Lee, H.S.; Chae, S.I.; et al. Synthesis of nanostructured P2-Na2/3MnO2 for high performance sodium-ion batteries. Chem. Commun. 2019, 55, 4757–4760. [Google Scholar] [CrossRef]
- Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. P’2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property. Chem. Mater. 2017, 29, 8958–8962. [Google Scholar] [CrossRef]
- Grépin, E.; Moiseev, I.; Abakumov, A.; Tarascon, J.M.; Mariyappan, S. Rational selection of sodium layered oxides for high performance Na-ion batteries: P2 vs O3 vs P2-O3 intergrowths. J. Electrochem. Soc. 2023, 170, 080510. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517. [Google Scholar] [CrossRef]
- Gonzalo, E.; Han, M.H.; L’opez del Amo, J.M.; Acebedo, B.; Casas-Cabanas, M.; Rojo, T. Synthesis and characterization of pure P2- and O3-Na2/3Fe2/3Mn1/3O2 as cathode materials for Na ion batteries. J. Mater. Chem. A 2014, 2, 18523–18530. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Lee, D.H.; Dimov, N.; Meng, Y.S.; Okada, S. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries. J. Power Sources 2014, 264, 235–239. [Google Scholar] [CrossRef]
- Mortemard de Boisse, B.; Carlier, D.; Guignard, M.; Guerin, E.; Duttine, M.; Wattiaux, A.; Delmas, C. Influence of the Mn/Fe ratio on the electrochemical and structural properties of P2-NaxMn1-yFeyO2 phases as positive electrode material for Na-ion batteries. Chem. Mater. 2018, 30, 7672–7681. [Google Scholar] [CrossRef]
- Somerville, J.W.; Sobkowiak, A.; Tapia-Ruiz, N.; Billaud, J.; Lozano, J.G.; House, R.A.; Gallington, L.C.; Ericsson, T.; Häggström, L.; Roberts, M.R.; et al. Nature of the “Z”-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 2019, 12, 2223–2232. [Google Scholar]
- Song, T.; Kendrick, E. Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. J. Phys. Mater. 2021, 4, 032004. [Google Scholar] [CrossRef]
- Peng, B.; Wan, G.; Ahmad, N.; Yu, L.; Ma, X.; Zhang, G. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries. Adv. Energy Mater. 2023, 13, 2300334. [Google Scholar] [CrossRef]
- Hirsh, H.; Olguin, M.; Chung, H.; Li, Y.; Bai, S.; Feng, D.; Wang, D.; Zhang, M.; Meng, Y.S. Meso-structure controlled synthesis of sodium iron-manganese oxides cathode for low-cost Na-ion batteries. J. Electrochem. Soc. 2019, 166, A2528–A2535. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Wang, M.; Chen, K.; Liu, J.; He, Q.; Li, G.; Li, F. Efficiently enhancing electrocatalytic activity of α-MnO2 nanorods/N-doped ketjenblack carbon for oxygen reduction reaction and oxygen evolution reaction using facile regulated hydrothermal treatment. Catalysts 2018, 8, 138. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, W.; Liu, G.; Hu, J.; Zhang, X.; Han, N.; Wang, Z.; Luo, J.; Fransaer, J.; Lu, Z. Realizing high-performance cathodes with cationic and anionic redox reactions in high-sodium-content P2-type oxides for sodium-ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 9324–9330. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Qin, M.; Yin, C.; Xu, W.; Liu, Y.; Wen, J.; Shen, B.; Wang, W.; Liu, W. Facile synthesis of high capacity P2-type Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries. Trans. Nonferrous Met. Soc. China 2021, 31, 2074–2080. [Google Scholar] [CrossRef]
- Viswanatha, R.; Kishore, B.; Bharath, U.; Munichandraiah, N. Communication—Electrochemical investigation of plate-like Na2/3Fe1/2Mn1/2O2 for sodium ion cathode. J. Electrochem. Soc. 2018, 165, A263–A265. [Google Scholar] [CrossRef]
- Maitra, U.; House, R.A.; Somerville, J.W.; Tapia-Ruiz, N.; Lozano, J.G.; Guerrini, N.; Hao, R.; Luo, K.; Jin, L.; Pérez-Osorio, M.A.; et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 2018, 10, 288–295. [Google Scholar] [CrossRef]
- Islam, M.; Akbar, M.; Han, D.; Ali, B.; Choi, Y.J.; Lee, J.; Choi, G.; Park, J.H.; Kim, J.Y.; Jung, H.G.; et al. Unraveling vacancy-induced oxygen redox reaction and structural stability in Na-based layered oxides. J. Chem. Eng. 2022, 431, 133962. [Google Scholar] [CrossRef]
- Cheng, C.; Ding, M.; Yan, T.; Dai, K.; Mao, J.; Zhang, N.; Zhang, L.; Guo, J. Exploring the charge compensation mechanism of P2-Type Na0.6Mg0.3Mn0.7O2 cathode materials for advanced sodium-ion batteries. Energies 2020, 13, 5729. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Zheng, X.; Guo, H.; Li, X.; Jing, Q.; Yang, Z. Structural and electrochemical properties of Mg-doped nickel-based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium-ion batteries. RSC Adv. 2015, 5, 88773–88779. [Google Scholar] [CrossRef]
- Baker, M.L.; Mara, M.W.; Yan, J.J.; Hodgson, K.O.; Hedman, B.; Solomon, E.I. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 2017, 345, 182–208. [Google Scholar] [CrossRef]
- Cheng, S.L.; Du, C.H.; Chuang, T.H.; Lin, J.G. Atomic replacement effects on the band structure of doped perovskite thin films. Sci. Rep. 2019, 9, 7828. [Google Scholar] [CrossRef]
- Yang, W.; Devereaux, T.P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197. [Google Scholar] [CrossRef]
- Duda, L.-C.; Edström, K. Oxygen redox reactions in Li ion battery electrodes studied by resonant inelastic X-ray scattering. J. Electron Spectrosc. Relat. Phenom. 2017, 221, 79–87. [Google Scholar] [CrossRef]
- Dai, K.; Jinpeng, W.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W.E.; et al. High reversibility of lattice oxygen redox in Na-ion and Li-ion batteries quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 2019, 3, 518–541. [Google Scholar] [CrossRef]
- Mortemard de Boisse, B.; Carlier, D.; Guignard, M.; Bourgeois, L.; Delmas, C. P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation. Inorg. Chem. 2014, 53, 11197–11205. [Google Scholar] [CrossRef] [PubMed]
- Zarrabeitia, M.; Nobili, F.; Lakuntza, O.; Carrasco, J.; Rojo, T.; Casas-Cabanas, M.; Muñoz-Márquez, M.Á. Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Commun. Chem. 2022, 5, 11. [Google Scholar] [CrossRef]
- Kulka, A.; Marino, C.; Walczak, K.; Borca, C.; Bolli, C.; Novak, P.; Villevieille, C. Influence of Na/Mn arrangements and P2/P2′ phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 6022–6033. [Google Scholar] [CrossRef]
Crystal System | Hexagonal | ||||
---|---|---|---|---|---|
Space Group | P63/mmc | ||||
Lattice Parameter | a = b = 2.91062 Å, c = 11.19962 Å α = 90°, β = 90°, γ = 120° | ||||
Atom | x | y | z | Occupancy | Biso (Å3 × 102) |
Na1 | 0.00000 | 0.00000 | 0.25000 | 0.119 | 6.380 |
Na2 | 0.33333 | 0.66667 | 0.75000 | 0.216 | 6.380 |
Fe | 0.00000 | 0.00000 | 0.00000 | 0.110 | 1.215 |
Mn | 0.00000 | 0.00000 | 0.00000 | 0.280 | 1.215 |
Mg | 0.00000 | 0.00000 | 0.00000 | 0.110 | 1.215 |
O | 0.33333 | 0.66667 | 0.08443 | 1.000 | 2.582 |
Rp: 11.0, Rwp: 15.4, Rexp: 7.62, χ2 = 4.10 |
Theoretical Chemical Formula | Measured Atomic Ratio | |||
---|---|---|---|---|
Na | Mg | Fe | Mn | |
Na0.67Mg0.22Fe0.22Mn0.56O2 | 0.684 | 0.228 | 0.220 | 0.570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.; Ahmed, M.S.; Han, D.; Bari, G.A.K.M.R.; Nam, K.-W. Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na2/3Fe1−yMnyO2 Cathode Material Synthesized by a Sol–Gel Method. Gels 2024, 10, 24. https://doi.org/10.3390/gels10010024
Islam M, Ahmed MS, Han D, Bari GAKMR, Nam K-W. Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na2/3Fe1−yMnyO2 Cathode Material Synthesized by a Sol–Gel Method. Gels. 2024; 10(1):24. https://doi.org/10.3390/gels10010024
Chicago/Turabian StyleIslam, Mobinul, Md. Shahriar Ahmed, Daseul Han, Gazi A. K. M. Rafiqul Bari, and Kyung-Wan Nam. 2024. "Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na2/3Fe1−yMnyO2 Cathode Material Synthesized by a Sol–Gel Method" Gels 10, no. 1: 24. https://doi.org/10.3390/gels10010024
APA StyleIslam, M., Ahmed, M. S., Han, D., Bari, G. A. K. M. R., & Nam, K. -W. (2024). Electrochemical Storage Behavior of a High-Capacity Mg-Doped P2-Type Na2/3Fe1−yMnyO2 Cathode Material Synthesized by a Sol–Gel Method. Gels, 10(1), 24. https://doi.org/10.3390/gels10010024