Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste
Abstract
:1. Introduction
2. Results and Discussion
2.1. Film-Forming Solution Rheology
2.2. Rheology of Samples from Potato Waste
2.3. Film Results
2.4. Polyphenol Extraction and FT-IR Analysis
2.5. SEM Images
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Starch Extraction
4.3. Film-Forming Solution and Film Preparation
4.4. Extraction and Characterization of Polyphenols
4.5. Film Characterization
4.6. Soluble Matter Determination
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varghese, S.A.; Pulikkalparambil, H.; Promhuad, K.; Srisa, A.; Laorenza, Y.; Jarupan, L.; Nampitch, T.; Chonhenchob, V.; Harnkarnsujarit, N. Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers 2023, 15, 648. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wang, X.; Su, M.; Zou, X.; Duan, L.; Zhang, H. Characteristics of Plastic Pollution in the Environment: A Review. Bull. Environ. Contam. Toxicol. 2021, 107, 577–584. [Google Scholar] [CrossRef]
- Roy, S.; Malik, B.; Chawla, R.; Bora, S.; Ghosh, T.; Santhosh, R.; Thakur, R.; Sarkar, P. Biocompatible Film Based on Protein/Polysaccharides Combination for Food Packaging Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 278, 134658. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, E.C.; Colletti, A.; Grillo, G.; Tabasso, S.; Cravotto, G. Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef]
- Wu, D. Recycle Technology for Potato Peel Waste Processing: A Review. Procedia Environ. Sci. 2016, 31, 103–107. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Potato Peels as Sources of Functional Compounds for the Food Industry: A Review. Trends Food Sci. Technol. 2020, 103, 118–129. [Google Scholar] [CrossRef]
- Lima, M.d.A.; Andreou, R.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum Tuberosum) Peels. Appl. Sci. 2021, 11, 3410. [Google Scholar] [CrossRef]
- Jimenez-Champi, D.; Romero-Orejon, F.L.; Moran-Reyes, A.; Muñoz, A.M.; Ramos-Escudero, F. Bioactive Compounds in Potato Peels, Extraction Methods, and Their Applications in the Food Industry: A Review. CyTA J. Food 2023, 21, 418–432. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Compounds in Potato (Solanum tuberosum L.) Peel and Their Health-Promoting Activities. Int. J. Food Sci. Technol. 2020, 55, 2273–2281. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato Peel Waste-Its Nutraceutical, Industrial and Biotechnological Applacations. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Camire, M.E.; Zhao, J.; Violette, D.A. In Vitro Binding of Bile Acids by Extruded Potato Peels. J. Agric. Food Chem. 1993, 41, 2391–2394. [Google Scholar] [CrossRef]
- Singh, N.; Kamath, V.; Rajini, P.S. Attenuation of Hyperglycemia and Associated Biochemical Parameters in STZ-Induced Diabetic Rats by Dietary Supplementation of Potato Peel Powder. Clin. Chim. Acta 2005, 353, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Michael, M. Rajput Physico-Chemical Characteristics of Dietary Fibre from Potato Peel and Its Effect on Organoleptic Characteristics of Biscuits. J. Agric. Eng. 2012, 49, 25–32. [Google Scholar]
- Choi, I.; Shin, D.; Lyu, J.S.; Lee, J.-S.; Song, H.; Chung, M.-N.; Han, J. Physicochemical Properties and Solubility of Sweet Potato Starch-Based Edible Films. Food Packag. Shelf Life 2022, 33, 100867. [Google Scholar] [CrossRef]
- Mileti, O.; Mammolenti, D.; Baldino, N.; Lupi, F.R.; Gabriele, D. Starch Films Loaded with Tannin: The Study of Rheological and Physical Properties. Int. J. Biol. Macromol. 2024, 254, 127973. [Google Scholar] [CrossRef]
- De Paola, M.G.; Mammolenti, D.; Lupi, F.R.; De Santo, M.P.; Gabriele, D.; Calabrò, V. Formulation and Process Investigation of Glycerol/Starch Suspensions for Edible Films Production by Tape Casting. Chem. Pap. 2021, 76, 1525–1538. [Google Scholar] [CrossRef]
- Mileti, O.; Baldino, N.; Filice, F.; Lupi, F.R.; Sinicropi, M.S.; Gabriele, D. Formulation Study on Edible Film from Waste Grape and Red Cabbage. Foods 2023, 12, 2804. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Q.; Li, S.; Wang, W.; Ma, Y.; Zhao, H.; Sun, J.; Wang, J. Preparation and Characterization of Biodegradable Composited Films Based on Potato Starch/Glycerol/Gelatin. J. Food Qual. 2021, 2021, 6633711. [Google Scholar] [CrossRef]
- Borah, P.P.; Das, P.; Badwaik, L.S. Ultrasound Treated Potato Peel and Sweet Lime Pomace Based Biopolymer Film Development. Ultrason. Sonochemistry 2017, 36, 11–19. [Google Scholar] [CrossRef]
- Ebrahimian, F.; Denayer, J.F.M.; Karimi, K. Potato Peel Waste Biorefinery for the Sustainable Production of Biofuels, Bioplastics, and Biosorbents. Bioresour. Technol. 2022, 360, 127609. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, L.; Liu, W.; Liu, Q.; Wang, F.; Zhang, H.; Hu, H.; Blecker, C. Physicochemical and Structural Characterization of Potato Starch with Different Degrees of Gelatinization. Foods 2021, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-Based Films: Major Factors Affecting Their Properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Merino, D.; Paul, U.C.; Athanassiou, A. Bio-Based Plastic Films Prepared from Potato Peels Using Mild Acid Hydrolysis Followed by Plasticization with a Polyglycerol. Food Packag. Shelf Life 2021, 29, 100707. [Google Scholar] [CrossRef]
- Hafeez, M.A.; Maan, A.A.; Butt, M.S.; Zia, M.A. Development and Characterization of Biodegradable Food Packaging Films from Food Industrial Wastes. Pak. J. Agric. Sci. 2021, 58, 609–619. [Google Scholar]
- Castañón Vilca, J.A.; Ortiz-Quispe, B.S.; Apaza-Cusiatau, C.R.; Medrano de Jara, E.; Quequezana-Bedregal, M.J.; Gutierrez-Oppe, E.E.; Pessôa Filho, P.D.A. Evaluation of the Barrier and Antimicrobial Properties of Biodegradable Films Based on Potato Waste Starch Containing Natural Additives. SN Appl. Sci. 2023, 5, 370. [Google Scholar] [CrossRef]
- Coimbra, P.; Marona, B.; Henriques, M.H.F.; Campos, L.; Gomes, D.M.G.S.; Vitorino, C.; Sousa, J.J.S.; Braga, M.E.M.; Gaspar, M.C. Edible Films Based on Potato and Quince Peels with Potential for the Preservation of Cured Cheese. Food Packag. Shelf Life 2023, 40, 101176. [Google Scholar] [CrossRef]
- Sagnelli, D.; Cavanagh, R.; Xu, J.; Swainson, S.M.E.; Blennow, A.; Duncan, J.; Taresco, V.; Howdle, S. Starch/Poly (Glycerol-Adipate) Nanocomposite Film as Novel Biocompatible Materials. Coatings 2019, 9, 482. [Google Scholar] [CrossRef]
- De Sotillo, D.R.; Hadley, M.; Holm, E.T. Phenolics in Aqueous Potato Peel Extract: Extraction, Identification and Degradation. J. Food Sci. 1994, 59, 649–651. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, S.; Milliron, H.; Han, Q. The Efficacy of Phenolic Compound Extraction from Potato Peel Waste. Processes 2022, 10, 2326. [Google Scholar] [CrossRef]
- Feng, M.; Yu, L.; Zhu, P.; Zhou, X.; Liu, H.; Yang, Y.; Zhou, J.; Gao, C.; Bao, X.; Chen, P. Development and Preparation of Active Starch Films Carrying Tea Polyphenol. Carbohydr. Polym. 2018, 196, 162–167. [Google Scholar] [CrossRef]
- Wu, H.; Lei, Y.; Zhu, R.; Zhao, M.; Lu, J.; Xiao, D.; Jiao, C.; Zhang, Z.; Shen, G.; Li, S. Preparation and Characterization of Bioactive Edible Packaging Films Based on Pomelo Peel Flours Incorporating Tea Polyphenol. Food Hydrocoll. 2019, 90, 41–49. [Google Scholar] [CrossRef]
- Choumane, F.Z.; Zaoui, F.; Kandouci, F.; Maachou, B.; Benguella, B. Valorization of Potato Peel Residues to Produce a Bioflocculant to Be Used in the Treatment of Liquid Effluents. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1204, 012002. [Google Scholar] [CrossRef]
- Rehman, R.; Mahmud, T.; Irum, M. Comparative Sorption Studies for Amaranth Dye Removal from Water in Cost-Effective Way Using Guava Leaves and Potato Peels. Asian J. Chem. 2015, 27, 2008–2014. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman Fingerprints of Flavonoids—A Review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef] [PubMed]
- Muazu, J.; Musa, H.; Isah, A.; Bhatia, P.; Tom, G. Extraction and Characterization of Kaffir Potato Starch: A Potential Source of Pharmaceutical Raw Material. J. Nat. Prod. Plant Resour. 2011, 1, 41–49. [Google Scholar]
- Lopes, J.; Gonçalves, I.; Nunes, C.; Teixeira, B.; Mendes, R.; Ferreira, P.; Coimbra, M.A. Potato Peel Phenolics as Additives for Developing Active Starch-Based Films with Potential to Pack Smoked Fish Fillets. Food Packag. Shelf Life 2021, 28, 100644. [Google Scholar] [CrossRef]
ID Sample | T Gel, °C | Gelatinization RatePa·s /°C | Gel Viscosity (at 90 °C) Pa·s |
---|---|---|---|
P1 | 62.90 ± 0.50 | 0.515 ± 0.001 | 2.2 ± 0.5 |
P2 | 61.98 ± 0.09 | 2.3 ± 0.2 | 6.1 ± 0.9 |
P3 | 60.68 ± 0.40 | 5.3 ± 0.5 | 16.2 ± 1.5 |
P4 | 60.68 ± 0.65 | 16.2 ± 0.8 | 62.5 ± 2.0 |
P5 | 60.65 ± 0.58 | 22.8 ± 2.0 | 115.8 ± 7.2 |
P6 | 60.04 ± 0.40 | 32.4 ± 2.2 | 140.1 ± 5.2 |
Sample ID | L* − | a* − | b* − | Thickness mm | EAB% − | E MPa |
---|---|---|---|---|---|---|
P5 | 89.7 ± 0.1 | 1.7 ± 0.1 | -2.5 ± 0.1 | 0.13 ± 0.02 | 37 ± 2 | 5 ± 1 |
W | 55.8 ± 0.4 | 6.4 ± 0.3 | 28.6 ± 1.0 | 0.15 ± 0.02 | 7 ± 1 | 44 ± 1 |
DW | 48.4 ± 0.4 | 5.1 ± 0.1 | 25.2 ± 1.0 | 0.17 ± 0.03 | 8 ± 1 | 53 ± 4 |
W_P | 52.1 ± 0.4 | 5.3 ± 0.1 | 25.0 ± 0.1 | 0.24 ± 0.01 | Not detectable | Too high |
DW_P | 50.8 ± 0.5 | 5.7 ± 0.4 | 28.6 ± 0.4 | 0.30 ± 0.03 | 17 ± 1 | 36 ± 1 |
Sample ID | Contact Angle on Casting Surface, ° | Contact Angle on Evaporation Surface, ° |
---|---|---|
P5 | 17.0 ± 0.4 | 19.1 ± 0.5 |
W | 44.5 ± 0.5 | 47 ± 3 |
DW | 44 ± 1 | 61 ± 4 |
W_P | 48 ± 4 | 54 ± 2 |
DW_P | 50 ± 4 | 75 ± 2 |
ID | Extract % w/w | Starch % w/w | Glycerol % w/w | Water % w/w | Waste Water % w/w | Starch Added g/gsospension |
---|---|---|---|---|---|---|
P1 | - | 1 | 0.5 | 98.5 | 0 | - |
P2 | - | 2 | 1 | 97 | 0 | - |
P3 | - | 3 | 1.5 | 95.5 | 0 | - |
P4 | - | 4 | 2 | 94 | 0 | - |
P5 | - | 5 | 2.5 | 92.5 | 0 | - |
P6 | - | 6 | 3 | 91 | 0 | - |
W | 4.8 | - | 2.4 | 0 | 94.8 | - |
DW | 5 | - | 2.5 | 92.5 | 0 | - |
W_P | 4.8 | - | 2.4 | 0 | 94.8 | 1.1/158 |
DW_P | 4.8 | - | 2.4 | 92.5 | 0 | 2.2/98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileti, O.; Baldino, N.; Marchio, V.; Lupi, F.R.; Gabriele, D. Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste. Gels 2024, 10, 681. https://doi.org/10.3390/gels10110681
Mileti O, Baldino N, Marchio V, Lupi FR, Gabriele D. Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste. Gels. 2024; 10(11):681. https://doi.org/10.3390/gels10110681
Chicago/Turabian StyleMileti, Olga, Noemi Baldino, Vittoria Marchio, Francesca R. Lupi, and Domenico Gabriele. 2024. "Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste" Gels 10, no. 11: 681. https://doi.org/10.3390/gels10110681
APA StyleMileti, O., Baldino, N., Marchio, V., Lupi, F. R., & Gabriele, D. (2024). Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste. Gels, 10(11), 681. https://doi.org/10.3390/gels10110681