Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopy Analysis
2.2. Swelling Ratio Test
2.3. Water Retention Rate Test
2.4. Contact Angle Results
2.5. Mechanical Test
2.6. SEM Results
2.7. Antibacterial Activity Test
2.8. Self-Healing Properties
2.9. Drug-Release Profiles
2.10. FESEM and EDS Analysis
2.11. Cell Viability Test
3. Conclusions
4. Materials and Methods
4.1. Polymers and Additive Materials
4.2. Devices and Equipment
4.3. Preparation of Hydrogel
4.4. Preparation of PBS
4.5. Preparation of SBF
4.6. FTIR Analysis
4.7. Swelling Test
4.8. Water Retention Test
4.9. Contact Angle Measurements
4.10. Tensile Test
4.11. SEM Analysis
4.12. Antibacterial Test
4.13. Self-Healing Test
4.14. In Vitro Drug-Release Studies
4.15. FESEM-EDS Analysis
4.16. WST-1 Test
4.17. Statistical Evaluation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demeter, M.; Scărișoreanu, A.; Călina, I. State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation. Gels 2023, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, Y.; Ding, M.; Fan, X.; Hu, J.; Chen, Y.; Li, J.; Li, Z.; Liu, W. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr. Polym. 2022, 277, 118871. [Google Scholar] [CrossRef] [PubMed]
- Panpinit, S.; Pongsomboon, S.-A.; Keawin, T.; Saengsuwan, S. Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties. React. Funct. Polym. 2020, 156, 104739. [Google Scholar] [CrossRef]
- Pellá, M.C.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym. 2018, 196, 233–245. [Google Scholar] [CrossRef]
- Zeng, D.; Shen, S.; Fan, D. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chin. J. Chem. Eng. 2021, 30, 308–320. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, L.; Zhu, J.; Sun, W.; Wang, Y.; Li, W.; Liu, Y.; Yu, X.; Qin, J. Antimicrobial poly(aspartic acid) based self-healing hydrogel with enhance cell migration rate for burn wound treatment. J. Drug Deliv. Sci. Technol. 2023, 89, 105062. [Google Scholar] [CrossRef]
- Gill, S.Z.; Niazi, M.B.K.; Malik, U.S.; Jahan, Z.; Andleep, S.; Ahmed, T. Development and characterization of SA/PEG hydrogel membranes with Ag/ZnO nanoparticles for enhanced wound dressing. Mater. Chem. Phys. 2024, 317, 129170. [Google Scholar] [CrossRef]
- Kumar, M.; Mahmood, S.; Chopra, S.; Bhatia, A. Biopolymer based nanoparticles and their therapeutic potential in wound healing—A review. Int. J. Biol. Macromol. 2024, 267, 131335. [Google Scholar] [CrossRef]
- Zaidi, A.; Green, L. Physiology of haemostasis. Anaesth. Intensive Care Med. 2019, 20, 152–158. [Google Scholar] [CrossRef]
- Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015, 29, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Cioce, A.; Cavani, A.; Cattani, C.; Scopelliti, F. Role of the Skin Immune System in Wound Healing. Cells 2024, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Sankar, S.; Muthukaliannan, G.K. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J. Biol. Sci. 2024, 31, 103963. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef]
- Shaw, T.J.; Martin, P. Wound repair: A showcase for cell plasticity and migration. Curr. Opin. Cell Biol. 2016, 42, 29–37. [Google Scholar] [CrossRef]
- Wang, K.; Dong, R.; Tang, J.; Li, H.; Dang, J.; Zhang, Z.; Yu, Z.; Guo, B.; Yi, C. Exosomes laden self-healing injectable hydrogel enhances diabetic wound healing via regulating macrophage polarization to accelerate angiogenesis. Chem. Eng. J. 2022, 430, 132664. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, D.; Mahmood, S.; Singh, V.; Chopra, S.; Hilles, A.R.; Bhatia, A. Nanotechnology-driven wound healing potential of asiaticoside: A comprehensive review. RSC Pharm. 2024, 1, 9–36. [Google Scholar] [CrossRef]
- Laumonier, T.; Menetrey, J. Muscle injuries and strategies for improving their repair. J. Exp. Orthop. 2016, 3, 15. [Google Scholar] [CrossRef]
- Kasowanjete, P.; Kumar, S.S.D.; Houreld, N.N. A review of photobiomodulation on PI3K/AKT/mTOR in wound healing. J. Photochem. Photobiol. 2024, 19, 100215. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Tao, S.; Wang, Q.; Ma, P.-Q.; Li, Z.-B.; Wu, Y.-L.; Li, D.-W. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil. Med. Res. 2023, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Phonrachom, O.; Charoensuk, P.; Kiti, K.; Saichana, N.; Kakumyan, P.; Suwantong, O. Potential use of propolis-loaded quaternized chitosan/pectin hydrogel films as wound dressings: Preparation, characterization, antibacterial evaluation, and in vitro healing assay. Int. J. Biol. Macromol. 2023, 241, 124633. [Google Scholar] [CrossRef]
- Muppalaneni, S. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J. Dev. Drugs 2013, 2. [Google Scholar] [CrossRef]
- Couți, N.; Porfire, A.; Iovanov, R.; Crișan, A.G.; Iurian, S.; Casian, T.; Tomuță, I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers 2024, 16, 517. [Google Scholar] [CrossRef]
- Fattahi, N.; Gorgannezhad, L.; Masoule, S.F.; Babanejad, N.; Ramazani, A.; Raoufi, M.; Sharifikolouei, E.; Foroumadi, A.; Khoobi, M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv. Colloid Interface Sci. 2024, 325, 103119. [Google Scholar] [CrossRef]
- Pereira, K.A.B.; Aguiar, K.L.N.P.; Oliveira, P.F.; Vicente, B.M.; Pedroni, L.G.; Mansur, C.R.E. Synthesis of Hydrogel Nanocomposites Based on Partially Hydrolyzed Polyacrylamide, Polyethyleneimine, and Modified Clay. ACS Omega 2020, 5, 4759–4769. [Google Scholar] [CrossRef]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef]
- Kim, M.-S.; Oh, G.-W.; Jang, Y.-M.; Ko, S.-C.; Park, W.-S.; Choi, I.-W.; Kim, Y.-M.; Jung, W.-K. Antimicrobial hydrogels based on PVA and diphlorethohydroxycarmalol (DPHC) derived from brown alga Ishige okamurae: An in vitro and in vivo study for wound dressing application. Mater. Sci. Eng. C 2020, 107, 110352–110364. [Google Scholar] [CrossRef]
- Kazeminava, F.; Javanbakht, S.; Nouri, M.; Adibkia, K.; Ganbarov, K.; Yousefi, M.; Ahmadi, M.; Gholizadeh, P.; Kafil, H.S. Electrospun nanofibers based on carboxymethyl cellulose/polyvinyl alcohol as a potential antimicrobial wound dressing. Int. J. Biol. Macromol. 2022, 214, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; An, X.; Fan, Z. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing. J. Mech. Behav. Biomed. Mater. 2021, 118, 104452. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Zafar, H.; Mahmood, A.; Niazi, M.B.K.; Aslam, M.W. Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers 2020, 12, 2112. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, F.; Balegh, H.; Sarmadi fard, P.; Kazeminava, F.; Moradi, S.; Eskandari, M.; Ahmadian, Z. Silver/tannic acid nanoparticles/ poly-L-lysine decorated polyvinyl alcohol-hydrogel as a hybrid wound dressing. Heliyon 2024, 10, e35264. [Google Scholar] [CrossRef]
- Hakimi, F.; Sharifyrad, M.; Safari, H.; Khanmohammadi, A.; Gohari, S.; Ramazani, A. Amygdalin/chitosan-polyvinyl alcohol/cerium-tannic acid hydrogel as biodegradable long-time implant for cancer recurrence care applications: An in vitro study. Heliyon 2023, 9, e21835. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Özacar, M.; Şengil, I.A.; Türkmenler, H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem. Eng. J. 2008, 143, 32–42. [Google Scholar] [CrossRef]
- Özacar, M.; Soykan, C.; Şengil, I.A. Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins. J. Appl. Polym. Sci. 2006, 102, 786–797. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Jiao, C.; Zhao, Y.; Zhang, J.; Wang, H. Self-Assembled Polyvinyl Alcohol–Tannic Acid Hydrogels with Diverse Microstructures and Good Mechanical Properties. ACS Omega 2018, 3, 11788–11795. [Google Scholar] [CrossRef]
- Liu, D.; Qiu, J.; Xu, R.; Liu, J.; Feng, J.; Ouyang, L.; Qian, S.; Qiao, Y.; Liu, X. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Compos. Part B Eng. 2022, 238, 109921. [Google Scholar] [CrossRef]
- Godiya, C.B.; Liang, M.; Sayed, S.M.; Li, D.; Lu, X. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J. Environ. Manag. 2019, 232, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Tonda-Turo, C.; Ruini, F.; Ramella, M.; Boccafoschi, F.; Gentile, P.; Gioffredi, E.; Labate, G.F.D.; Ciardelli, G. Non-covalently crosslinked chitosan nanofibrous mats prepared by electrospinning as substrates for soft tissue regeneration. Carbohydr. Polym. 2017, 162, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, M.; Wen, Z.; Li, Z.; Yang, L.; Jiang, C. Recyclable functionalized polymer films for the efficient removal of hexavalent chromium from aqueous solutions. RSC Adv. 2019, 9, 36751–36757. [Google Scholar] [CrossRef] [PubMed]
- Tut, T.A.; Cesur, S.; Ilhan, E.; Sahin, A.; Yildirim, O.S.; Gunduz, O. Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds with drug delivery capability for bone tissue engineering applications. Eur. Polym. J. 2022, 179, 111580. [Google Scholar] [CrossRef]
- Ren, Q.; Xia, H.; Lv, J.; Wang, Y.; Yin, C.; Liu, Y.; Chen, Z.; Li, Y.; Wang, Y. Facile synthesis of robust polyethyleneimine incorporated chitosan composite hydrogel for efficient enrichment of uranium(VI) in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2023, 683, 133111. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Bućko, M.; Stodolak-Zych, E.; Mikołajczyk, M.; Dudek, P.; Trybus, M. Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater. Sci. Eng. C 2017, 70, 471–478. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Iqbal, I.; Ansari, M.N.M.; Razak, S.I.A.; Raza, M.A.; Sajjad, A.; Jabeen, F.; Riduan Mohamad, M.; Jusoh, N. Development of antibacterial, degradable and pH-responsive chitosan/guar gum/polyvinyl alcohol blended hydrogels for wound dressing. Molecules 2021, 26, 5937. [Google Scholar] [CrossRef]
- Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J. 2019, 112, 678–687. [Google Scholar] [CrossRef]
- Hameed, M.M.A.; Al-Aizari, F.A.; Thamer, B.M. Synthesis of a novel clay/polyacrylic acid-tannic acid hydrogel composite for efficient removal of crystal violet dye with low swelling and high adsorption performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133130. [Google Scholar] [CrossRef]
- Dong, L.; Jia, R.; Liu, Z.; Aiyiti, W.; Shuai, C.; Li, Z.; Fu, Q.; Li, X. Tannic acid based multifunctional hydrogels with mechanical stability for wound healing. Colloids Surf.B Biointerfaces 2024, 243, 114127. [Google Scholar] [CrossRef]
- Gupta, P.; Purwar, R. Influence of cross-linkers on the properties of cotton grafted poly (acrylamide-co-acrylic acid) hydrogel composite: Swelling and drug release kinetics. Iran. Polym. J. 2021, 30, 381–391. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Shrivastava, M. Swelling kinetics of a hydrogel of poly(ethylene glycol) and poly(acrylamide-co-styrene). J. App. Polym. Sci. 2002, 85, 1419–1428. [Google Scholar] [CrossRef]
- Malana, M.A.; Aftab, F.; Batool, S.R. Synthesis and characterization of stimuli-responsive hydrogel based on starch and methyl-3-aminocrotonate: Swelling and degradation kinetics. Polym. Bull. 2019, 76, 3073–3092. [Google Scholar] [CrossRef]
- Trivedi, J.; Chourasia, A. Sodium Salt of Partially Carboxymethylated Sodium Alginate-Graft-Poly(Acrylonitrile): II Superabsorbency, Salt Sensitivity and Swelling Kinetics of Hydrogel, H-Na-PCMSA-g-PAN. Gels 2023, 9, 407. [Google Scholar] [CrossRef]
- Kipcak, A.S.; Ismail, O.; Doymaz, I.; Piskin, S. Modeling and Investigation of the Swelling Kinetics of Acrylamide-Sodium Acrylate Hydrogel. J. Chem. 2014, 2014, 281063. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Tian, J.; Peng, J.; Hu, C.; Lei, S.; Wu, D. A general strategy for prepared multifunction double-ions agarose hydrogel dressing promotes wound healing. Mater. Des. 2024, 240, 112854. [Google Scholar] [CrossRef]
- Ahmad, S.; Manzoor, K.; Purwar, R.; Ikram, S. Morphological and Swelling Potential Evaluation of Moringa oleifera Gum/Poly(vinyl alcohol) Hydrogels as a Superabsorbent. ACS Omega 2020, 5, 17955–17961. [Google Scholar] [CrossRef]
- Zhang, W.; Mu, H.; Zhang, A.; Cui, G.; Chen, H.; Duan, J.; Wang, S. A decrease in moisture absorption–retention capacity of N-deacetylation of hyaluronic acid. Glycoconj. J. 2013, 30, 577–583. [Google Scholar] [CrossRef]
- Srivastava, N.; Richa; Choudhury, A.R. Recent advances in composite hydrogels prepared solely from polysaccharides. Colloids Surf. B Biointerfaces 2021, 205, 111891. [Google Scholar] [CrossRef]
- Fang, S.; Wang, G.; Li, P.; Xing, R.; Liu, S.; Qin, Y.; Yu, H.; Chen, X.; Li, K. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 2018, 115, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Choudhury, A.R. Thermo-reversible self-assembled novel gellan gum hydrogels containing amino acid biogelators with antibacterial activity. Carbohydr. Polym. 2024, 324, 121462. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Jiang, L. Contact angle measurement of natural materials. Colloids Surf. B Biointerfaces 2018, 161, 324–330. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhuo, F.; Chen, H.; Cao, H.; Fu, Y.Q.; Xie, J.; Duan, H. Superior compressive and tensile bi-directional strain sensing capabilities achieved using liquid metal Hybrid-Hydrogels empowered by Machine learning algorithms. Chem. Eng. J. 2024, 479, 147790. [Google Scholar] [CrossRef]
- Naeimi, M.; Tajedin, R.; Farahmandfar, F.; Naeimi, M.; Monajjemi, M. Preparation and characterization of vancomycin-loaded chitosan/PVA/PEG hydrogels for wound dressing. Mater. Res. Express 2020, 7, 095401. [Google Scholar] [CrossRef]
- Amirian, J.; Zeng, Y.; Shekh, M.I.; Sharma, G.; Stadler, F.J.; Song, J.; Du, B.; Zhu, Y. In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing. Carbohydr. Polym. 2021, 251, 117005. [Google Scholar] [CrossRef]
- Muchová, M.; Münster, L.; Capáková, Z.; Mikulcová, V.; Kuřitka, I.; Vícha, J. Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings. Mater. Sci. Eng. C 2020, 116, 111242. [Google Scholar] [CrossRef]
- Godiya, C.B.; Xiao, Y.; Lu, X. Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. Int. J. Biol. Macromol. 2020, 144, 671–681. [Google Scholar] [CrossRef]
- Ding, X.; Tang, Q.; Xu, Z.; Xu, Y.; Zhang, H.; Zheng, D.; Wang, S.; Tan, Q.; Maitz, J.; Maitz, P.K.; et al. Challenges and innovations in treating chronic and acute wound infections: From basic science to clinical practice. Burn. Trauma 2022, 10, tkac014. [Google Scholar] [CrossRef]
- Hina, M.; Bashir, S.; Kamran, K.; Almomani, F.; Ahmad, J.; Kamarulazam, F.; Ramesh, S.; Ramesh, K.; Mujtaba, M. Energy storage devices based on flexible and self-healable hydrogel electrolytes: Recent advances and future prospects. J. Energy Storage 2024, 85, 110961. [Google Scholar] [CrossRef]
- Utatsu, K.; Motoyama, K.; Nakamura, T.; Onodera, R.; Higashi, T. Tannic acid-based sustained-release system for protein drugs. Int. J. Pharm. 2023, 643, 123229. [Google Scholar] [CrossRef] [PubMed]
- Al-jabbar, S.A.; Atiroğlu, V.; Hameed, R.M.; Eskiler, G.G.; Atiroğlu, A.; Ozkan, A.D.; Özacar, M. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: A biocompatible pH-responsive nanocarrier for gemcitabine release on MCF-7 human breast cancer cells. Bioorg. Chem. 2022, 118, 105467. [Google Scholar] [CrossRef] [PubMed]
- Resen, A.K.; Atiroğlu, A.; Atiroğlu, V.; Eskiler, G.G.; Aziz, I.H.; Kaleli, S.; Özacar, M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron-based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int. J. Biol. Macromol. 2022, 198, 175–186. [Google Scholar] [CrossRef]
- Kumari, A.; Singh, B. Functionalization of sterculia gum for making platform hydrogels via network formation for use in drug delivery. Int. J. Biol. Macromol. 2024, 264, 130814. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Chen, R.; Wei, J. A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors. Chin. J. Chem. Eng. 2023, 53, 73–82. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, H.; Lyu, Q.; Dai, J.; Ji, C.; Tian, Y. Anti-freeze hydrogel-based sensors for intelligent wearable human-machine interaction. Chem. Eng. J. 2024, 481, 148526. [Google Scholar] [CrossRef]
- Feng, X.; Hou, X.; Cui, C.; Sun, S.; Sadik, S.; Wu, S.; Zhou, F. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng. Regen. 2021, 2, 57–62. [Google Scholar] [CrossRef]
- Wang, M.; Xu, L.; Hu, H.; Zhai, M.; Peng, J.; Nho, Y.; Li, J.; Wei, G. Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam. Interact. Mater. Atoms 2007, 265, 385–389. [Google Scholar] [CrossRef]
- Ijaz, I.; Bukhari, A.; Gilani, E.; Nazir, A.; Zain, D.H.; Shaheen, A.; Assal, M.E. Preparation of iota-carrageenan@bentonite@4-phenyl-3-thiosemicarbazide ternary hydrogel for adsorption of Losartan potassium and sulfamethoxazole. Int. J. Biol. Macromol. 2024, 272, 132690. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S.; Dhiman, A. Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int. J. Pharm. 2013, 457, 82–91. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Woo, M.W.; Li, Y.; Han, W.; Dang, X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr. Polym. 2021, 256, 117590. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Li, L.; Fei, X.; Xu, L.; Wang, Y.; Tian, J.; Li, Y. A novel hydrogel with self-healing property and bactericidal activity. J. Colloid Interface Sci. 2021, 584, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Balcı, S.; Camcı, Y.; Türk, S.; Altınsoy, İ.; Çelebi Efe, G.; Ipek, M.; Özacar, M.; Bindal, C. Ultrasound sensitive smart polyvinyl alcohol/melamine/tannic acid hydrogel. Arab. J. Sci. Eng. 2024, 49, 9221–9233. [Google Scholar] [CrossRef]
- Türk, S.; Altınsoy, İ.; Çelebi Efe, G.; Ipek, M.; Özacar, M.; Bindal, C. A novel multifunctional NCQDs-based injectable self-crosslinking and in situ forming hydrogel as an innovative stimuli responsive smart drug delivery system for cancer therapy. Mater. Sci. Eng. C 2021, 121, 111829. [Google Scholar] [CrossRef]
- Koymen, S.S.; Donmez, N.; Yenigun, V.B.; Bahadori, F.; Kocyigit, A. Investigating the Cytotoxicity of Dual-Cure Bulk-Fill Resin Materials on L929 Cells. Prosthesis 2022, 4, 447–457. [Google Scholar] [CrossRef]
Sample | Peppas Model | Peleg Model | Pseudo-First Order | Pseudo-Second Order | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | kP | r2 | k1 | k2 | r2 | k1 | r2 | k2 | r2 | |
PVA/PEI/GEN/TA0 | 0.1013 | 1.495 | 0.9841 | 0.1881 | 0.0495 | 0.9985 | 0.0650 | 0.8575 | 7.652 | 0.9994 |
PVA/PEI/GEN/TA1 | 0.1054 | 1.515 | 0.9761 | 0.0617 | 0.0249 | 0.9985 | 0.0616 | 0.8328 | 4.569 | 0.9994 |
PVA/PEI/GEN/TA2 | 0.0837 | 1.403 | 0.9869 | 0.0611 | 0.0293 | 0.9982 | 0.0566 | 0.7759 | 6.188 | 0.9994 |
PVA/PEI/GEN/TA3 | 0.0861 | 1.412 | 0.9798 | 0.1538 | 0.0495 | 0.9980 | 0.0612 | 0.8081 | 8.147 | 0.9995 |
PVA/PEI/GEN/TA4 | 0.0782 | 1.380 | 0.9936 | 0.0763 | 0.0342 | 0.9977 | 0.0569 | 0.7868 | 6.942 | 0.9993 |
Samples | MPa | Samples | MPa |
---|---|---|---|
PVA/PEI/TA0 | 0.125 | PVA/PEI/GEN/TA0 | 0.71 |
PVA/PEI/TA1 | 0.730 | PVA/PEI/GEN/TA1 | 0.764 |
PVA/PEI/TA2 | 0.046 | PVA/PEI/GEN/TA2 | 0.076 |
PVA/PEI/TA3 | 0.0373 | PVA/PEI/GEN/TA3 | - |
PVA/PEI/TA4 | - | PVA/PEI/GEN/TA4 | - |
Samples | Zero Order | First Order | Higuchi | Korsmeyer–Peppas | Hixson–Crowell | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k0 | r2 | k1 | r2 | kH | r2 | kKP | n | r2 | kHC | r2 | |
PVA/PEI/GEN/TA0 | 0.2975 | 0.6412 | 0.0013 | 0.7108 | 2.610 | 0.8349 | 0.2366 | 0.4551 | 0.8979 | 0.0769 | 0.4740 |
PVA/PEI/GEN/TA1 | 0.7834 | 0.9742 | 0.0010 | 0.5347 | 2.214 | 0.8610 | 0.2436 | 0.4357 | 0.8595 | 0.0782 | 0.6033 |
PVA/PEI/GEN/TA2 | 0.2128 | 0.5206 | 0.0013 | 0.7233 | 1.932 | 0.7261 | 0.2541 | 0.4562 | 0.8270 | 0.0736 | 0.5272 |
PVA/PEI/GEN/TA3 | 0.8104 | 0.9914 | 0.0012 | 0.7337 | 2.393 | 0.8813 | 0.1850 | 0.5256 | 0.8943 | 0.0839 | 0.6206 |
PVA/PEI/GEN/TA4 | 1.7272 | 0.9947 | 0.0012 | 07337 | 2.195 | 0.8914 | 0.2079 | 0.4805 | 0.9196 | 0.0855 | 0.7311 |
Hydrogel | Element | Weight % | Atamic % | Net Int. |
---|---|---|---|---|
PVA/PEI/GEN/TA0 | C | 57.29 | 65.51 | 66.94 |
O | 37.66 | 32.33 | 41.48 | |
S | 5.05 | 2.16 | 20.07 | |
PVA/PEI/GEN/TA1 | C | 53.26 | 61.72 | 102.2 |
O | 41.56 | 36.16 | 70.43 | |
P | 1.29 | 0.58 | 7.60 | |
S | 2.19 | 0.95 | 12.79 | |
Ca | 1.70 | 0.59 | 5.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakuş, N.R.; Türk, S.; Guney Eskiler, G.; Syzdykbayev, M.; Appazov, N.O.; Özacar, M. Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties. Gels 2024, 10, 682. https://doi.org/10.3390/gels10110682
Karakuş NR, Türk S, Guney Eskiler G, Syzdykbayev M, Appazov NO, Özacar M. Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties. Gels. 2024; 10(11):682. https://doi.org/10.3390/gels10110682
Chicago/Turabian StyleKarakuş, Nimet Rumeysa, Serbülent Türk, Gamze Guney Eskiler, Marat Syzdykbayev, Nurbol O. Appazov, and Mahmut Özacar. 2024. "Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties" Gels 10, no. 11: 682. https://doi.org/10.3390/gels10110682
APA StyleKarakuş, N. R., Türk, S., Guney Eskiler, G., Syzdykbayev, M., Appazov, N. O., & Özacar, M. (2024). Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties. Gels, 10(11), 682. https://doi.org/10.3390/gels10110682