Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Content Measurement Results
2.2. Oxygen Permeability Measurement Results
2.3. Contact Angle Measurement Results
2.4. Visible Light Transmittance and Transparency Measurment Results
2.5. Refractive Index Measurement Results
2.6. Tensile Test Measurement Results
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Hydrogel Lenses
4.3. Characterization Methods
4.3.1. Water Content
4.3.2. Oxygen Permeability
4.3.3. Contact Angle
4.3.4. Refractive Index
4.3.5. Transmittance
4.3.6. Tensile Test
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolson, P.C.; Vogt, J. Soft Contact Lens Polymers: An Evolution. Biomaterials 2001, 22, 3273–3283. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.B.; Efron, N. Global Contact Lens Prescribing 2000–2020. Clin. Exp. Optom. 2022, 105, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Moreddu, R.; Vigolo, D.; Yetisen, A.K. Contact Lens Technology: From Fundamentals to Applications. Adv. Heal. Mater. 2019, 8, e1900368. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Fisher, D. Contact Lenses 2022. Contact Lens Spectr. 2023, 38, 20–26. [Google Scholar]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef]
- Kerr, C.; McParland, M. The ACLM Contact Lens Year Book 2015; Association of Contact Lens Manufacturers (ACLM): Wiltshire UK, 2015. [Google Scholar]
- Papas, E.B. The Role of Hypoxia in the Limbal Vascular Response to Soft Contact Lens Wear. Eye Contact Lens 2003, 29, S72–S74. [Google Scholar] [CrossRef]
- Bonanno, J.A.; Polse, K.A. Corneal Acidosis during Contact Lens Wear: Effects of Hypoxia and CO2. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1514–1520. [Google Scholar]
- Lin, M.C.; Polse, K.A. Hypoxia, Overnight Wear, and Tear Stagnation Effects on the Corneal Epithelium: Data and Proposed Model. Eye Contact Lens 2007, 33, 378–381. [Google Scholar] [CrossRef]
- Dillehay, S.M. Does the Level of Available Oxygen Impact Comfort in Contact Lens Wear?: A Review of the Literature. Eye Contact Lens 2007, 33, 148–155. [Google Scholar] [CrossRef]
- Efron, N.; Brennan, N.A.; Chalmers, R.L.; Jones, L.; Lau, C.; Morgan, P.B.; Nichols, J.J.; Szczotka-Flynn, L.B.; Willcox, M.D. Thirty Years of ‘Quiet Eye’ with Etafilcon A Contact Lenses. Contact Lens Anterior Eye 2020, 43, 285–297. [Google Scholar] [CrossRef]
- Holden, B.A.; Mertz, G.W. Critical Oxygen Levels to Avoid Corneal Edema for Daily and Extended Wear Contact Lenses. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1161–1167. [Google Scholar] [CrossRef]
- Craig, J.P.; Barsam, A.; Chen, C.; Chukwuemeka, O.; Ghorbani-Mojarrad, N.; Kretz, F.; Michaud, L.; Moore, J.; Pelosini, L.; Turnbull, A.M.J.; et al. BCLA CLEAR Presbyopia: Management with Corneal Techniques. Contact Lens Anterior Eye 2024, 47, 102190. [Google Scholar] [CrossRef] [PubMed]
- Alvord, L.; Court, J.; Davis, T.; Morgan, C.F.; Schindhelm, K.; Vogt, J.; Winterton, L. Oxygen Permeability of a New Type of High Dk Soft Contact Lens Material. Optom. Vision. Sci. 1998, 75, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Cho, P.; Chan, B.; Choy, C.; Ng, V. A Comparative Study of Biweekly Disposable Contact Lenses: Silicone Hydrogel versus Hydrogel. Clin. Exp. Optom. 2007, 90, 124–131. [Google Scholar] [CrossRef]
- Jones, L.; Brennan, N.A.; González-Méijome, J.; Lally, J.; Maldonado-Codina, C.; Schmidt, T.A.; Subbaraman, L.; Young, G.; Nichols, J.J. The TFOS International Workshop on Contact Lens Discomfort: Report of the Contact Lens Materials, Design, and Care Subcommittee. Investig. Ophthalmol. Vis. Sci. 2013, 54, TFOS37. [Google Scholar] [CrossRef] [PubMed]
- Dumbleton, K.; Woods, C.A.; Jones, L.W.; Fonn, D. The Impact of Contemporary Contact Lenses on Contact Lens Discontinuation. Eye Contact Lens 2013, 39, 93–99. [Google Scholar] [CrossRef]
- Szczotka-Flynn, L.; Chalmers, R. Incidence and Epidemiologic Associations of Corneal Infiltrates with Silicone Hydrogel Contact Lenses. Eye Contact Lens 2013, 39, 48–52. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, X.; Sun, Y.; Yang, H.; Lin, B. The Influence of Molecular Weight of Siloxane Macromere on Phase Separation Morphology, Oxygen Permeability, and Mechanical Properties in Multicomponent Silicone Hydrogels. Colloid. Polym. Sci. 2017, 295, 205–213. [Google Scholar] [CrossRef]
- Tran, N.P.D.; Ting, C.C.; Lin, C.H.; Yang, M.C. A Novel Approach to Increase the Oxygen Permeability of Soft Contact Lenses by Incorporating Silica Sol. Polymers 2020, 12, 2087. [Google Scholar] [CrossRef]
- Tran, N.P.D.; Yang, M.C. The Ophthalmic Performance of Hydrogel Contact Lenses Loaded with Silicone Nanoparticles. Polymers 2020, 12, 1128. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Tao, H.; Sun, Y.; Yang, H.; Lin, B. The Influences of Poly (Ethylene Glycol) Chain Length on Hydrophilicity, Oxygen Permeability, and Mechanical Properties of Multicomponent Silicone Hydrogels. Colloid. Polym. Sci. 2019, 297, 1233–1243. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, X.; Sun, Y.; Yang, H.; Lin, B.; Han, X.; Chen, P. Study on the Influence of Crosslinking Density and Free Polysiloxan Chain Length on Oxygen Permeability and Hydrophilicity of Multicomponent Silicone Hydrogels. Colloid. Polym. Sci. 2021, 299, 1327–1335. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Ahmad, M.B.; Ibrahim, N.A.; Zainuddin, N. Effect of Crosslinking Concentration on Properties of 3-(Trimethoxysilyl) Propyl Methacrylate/N-Vinyl Pyrrolidone Gels. Chem. Cent. J. 2018, 12, 15. [Google Scholar] [CrossRef]
- Morgan, P.B.; Efron, N. The Oxygen Performance of Contemporary Hydrogel Contact Lenses. Contact Lens Anterior Eye 1998, 21, 2–6. [Google Scholar] [CrossRef]
- Young, M.D.; Benjamin, W.J. Calibrated Oxygen Permeability of 35 Conventional Hydrogel Materials and Correlation with Water Content. Eye Contact Lens 2003, 29, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Bruce, A. Local Oxygen Transmissibility of Disposable Contact Lenses. Contact Lens Anterior Eye 2003, 26, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Soluri, A.; Hui, A.; Jones, L. Delivery of Ketotifen Fumarate by Commercial Contact Lens Materials. Optom. Vision Sci. 2012, 89, 1140–1149. [Google Scholar] [CrossRef]
- Ulu, A.; Noma, S.A.A.; Gurses, C.; Koytepe, S.; Ates, B. Chitosan/Polyvinylpyrrolidone/MCM-41 Composite Hydrogel Films: Structural, Thermal, Surface, and Antibacterial Properties. Starch-Staerke 2018, 70, 1700303. [Google Scholar] [CrossRef]
- Ulu, A.; Balcioglu, S.; Birhanli, E.; Sarimeseli, A.; Keskin, R.; Koytepe, S.; Ates, B. Poly(2-Hydroxyethyl Methacrylate)/Boric Acid Composite Hydrogel as Soft Contact Lens Material: Thermal, Optical, Rheological, and Enhanced Antibacterial Properties. J. Appl. Polym. Sci. 2018, 135, 46575. [Google Scholar] [CrossRef]
- Efron, N.; Morgan, P.B.; Nichols, J.J.; Walsh, K.; Willcox, M.D.; Wolffsohn, J.S.; Jones, L.W. All Soft Contact Lenses Are Not Created Equal. Contact Lens Anterior Eye 2022, 45, 101515. [Google Scholar] [CrossRef]
- Jones, L.; May, C.; Nazar, L.; Simpson, T. In Vitro Evaluation of the Dehydration Characteristics of Silicone Hydrogel and Conventional Hydrogel Contact Lens Materials. Contact Lens Anterior Eye 2002, 25, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Driest, P.J.; Allijn, I.E.; Dijkstra, D.J.; Stamatialis, D.; Grijpma, D.W. Poly(Ethylene Glycol)-Based Poly(Urethane Isocyanurate) Hydrogels for Contact Lens Applications. Polym. Int. 2020, 69, 131–139. [Google Scholar] [CrossRef]
- Efron, N. Contact Lens Practice; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780702066603. [Google Scholar]
- ISO 18369-4:2017; Ophthalmic Optics—Contact Lenses—Part 4: Physicochemical Properties of Contact Lens Materials. International Organization for Standardization: Geneva, Switzerland, 2017.
- Chirila, T.V. Oxygen Permeability of Silk Fibroin Hydrogels and Their Use as Materials for Contact Lenses: A Purposeful Analysis. Gels 2021, 7, 58. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V.K. Cross-Linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar] [CrossRef]
- ISO 18369-1:2017; Ophthalmic Optics—Contact Lenses—Part 1: Vocabulary, Classification System and Recommendations for Labelling Specifications. International Organization for Standardization: Geneva, Switzerland, 2017.
- Tranoudis, I.; Efron, N. Water Properties of Soft Contact Lens Materials. Contact Lens Anterior Eye 2004, 27, 193–208. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.; Zhang, S.; Guang, Y. Influence of Water States in Hydrogels on the Transmissibility and Permeability of Oxygen in Contact Lens Materials. Appl. Surf. Sci. 2008, 255, 604–606. [Google Scholar] [CrossRef]
- Tranoudis, I.; Efron, N. Tensile Properties of Soft Contact Lens Materials. Contact Lens Anterior Eye 2004, 27, 177–191. [Google Scholar] [CrossRef]
- Tran, N.P.D.; Yang, M.C. Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers 2019, 11, 944. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Valint, P.L. Control of Properties in Silicone Hydrogels by Using a Pair of Hydrophilic Monomers. J. Appl. Polym. Sci. 1996, 61, 2051–2058. [Google Scholar] [CrossRef]
- Morgan, P.B.; Brennan, N. The Decay of DK? Optician 2004, 227, 27–33. [Google Scholar]
- Brennan, N.A.; Efron, N.; Holden, B.A.; Fatt, I. A Review of the Theoretical Concepts, Measurement Systems and Application of Contact Lens Oxygen Permeability. Ophthalmic Physiol. Opt. 1987, 7, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo, J.; Compañ, V.; González-Méijome, J.M.; González, M.; Mollá, S. Oxygen and Ionic Transport in Hydrogel and Silicone-Hydrogel Contact Lens Materials: An Experimental and Theoretical Study. J. Memb. Sci. 2014, 452, 62–72. [Google Scholar] [CrossRef]
- Société Française des Ophtalmologistes Adaptateurs de Lentilles de Contact (SFOALC). Les. Avancées En. Contactologie: Rapport SFOALC 2019, Rapport Annuel 2019 Des. BSOF; Medline: Northfield, IL, USA, 2019. [Google Scholar]
- De Rosa, M.E.; Winter, H.H. The Effect of Entanglements on the Rheological Behavior of Polybutadiene Critical Gels. Rheol. Acta 1994, 33, 220–237. [Google Scholar] [CrossRef]
- Bae, S.; Galant, O.; Diesendruck, C.E.; Silberstein, M.N. The Effect of Intrachain Cross-Linking on the Thermomechanical Behavior of Bulk Polymers Assembled Solely from Single Chain Polymer Nanoparticles. Macromolecules 2018, 51, 7160–7168. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, Z.; Xu, J.; Liu, J.; Xiao, R.; Qu, S.; Yang, W. A Strategy for Tough and Fatigue-Resistant Hydrogels via Loose Cross-Linking and Dense Dehydration-Induced Entanglements. Nat. Commun. 2024, 15, 5896. [Google Scholar] [CrossRef]
- Galant, O.; Bae, S.; Wang, F.; Levy, A.; Silberstein, M.N.; Diesendruck, C.E. Mechanical and Thermomechanical Characterization of Glassy Thermoplastics with Intrachain Cross-Links. Macromolecules 2017, 50, 6415–6420. [Google Scholar] [CrossRef]
- Kuc, C.J.; Lebow, K.A. Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations between Solution Components, Keratitis, and Contact Lens Discomfort. Eye Contact Lens 2018, 44, 355–366. [Google Scholar] [CrossRef]
- Lin, M.C.; Svitova, T.F. Contact Lenses Wettability in Vitro: Effect of Surface-Active Ingredients. Optom. Vis. Sci. 2010, 87, 440–447. [Google Scholar] [CrossRef]
- Phan, C.M.; WY Chan, V.; Drolle, E.; Hui, A.; Ngo, W.; Bose, S.; Shows, A.; Liang, S.; Sharma, V.; Subbaraman, L.; et al. Evaluating the in Vitro Wettability and Coefficient of Friction of a Novel and Contemporary Reusable Silicone Hydrogel Contact Lens Materials Using an in Vitro Blink Model. Contact Lens Anterior Eye 2024, 47, 102129. [Google Scholar] [CrossRef]
- Maldonado-Codina, C.; Morgan, P.B. In Vitro Water Wettability of Silicone Hydrogel Contact Lenses Determined Using the Sessile Drop and Captive Bubble Techniques. J. Biomed. Mater. Res. A 2007, 83A, 1376–1387. [Google Scholar] [CrossRef]
- Hu, S.; Brittain, W.J. Surface Grafting on Polymer Surface Using Physisorbed Free Radical Initiators. Macromolecules 2005, 38, 6592–6597. [Google Scholar] [CrossRef]
- Fakes, D.W.; Newton, J.M.; Watts, J.F.; Edgell, M.J. Surface Modification of a Contact Lens Co-Polymer by Plasma-Discharge Treatments. Surf. Interface Anal. 1987, 10, 416–423. [Google Scholar] [CrossRef]
- Bengani, L.C.; Scheiffele, G.W.; Chauhan, A. Incorporation of Polymerizable Surfactants in Hydroxyethyl Methacrylate Lenses for Improving Wettability and Lubricity. J. Colloid. Interface Sci. 2015, 445, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Read, M.L.; Morgan, P.B.; Maldonado-Codina, C. Measurement Errors Related to Contact Angle Analysis of Hydrogel and Silicone Hydrogel Contact Lenses. Contact Lens Spectrum 2007, 91, 662–668. [Google Scholar] [CrossRef]
- Menzies, K.L.; Rogers, R.; Jones, L. In Vitro Contact Angle Analysis and Physical Properties of Blister Pack Solutions of Daily Disposable Contact Lenses. Eye Contact Lens 2010, 36, 10–18. [Google Scholar] [CrossRef]
- Seo, E.; Kumar, S.; Lee, J.; Jang, J.; Park, J.H.; Chang, M.C.; Kwon, I.; Lee, J.S.; Huh, Y. il Modified Hydrogels Based on Poly(2-Hydroxyethyl Methacrylate) (PHEMA) with Higher Surface Wettability and Mechanical Properties. Macromol. Res. 2017, 25, 704–711. [Google Scholar] [CrossRef]
- Ju, H.; McCloskey, B.D.; Sagle, A.C.; Kusuma, V.A.; Freeman, B.D. Preparation and Characterization of Crosslinked Poly(Ethylene Glycol) Diacrylate Hydrogels as Fouling-Resistant Membrane Coating Materials. J. Memb. Sci. 2009, 330, 180–188. [Google Scholar] [CrossRef]
- Askari, F.; Zandi, M.; Shokrolahi, P.; Tabatabaei, M.H.; Hajirasoliha, E. Reduction in Protein Absorption on Ophthalmic Lenses by PEGDA Bulk Modification of Silicone Acrylate-Based Formulation. Prog. Biomater. 2019, 8, 169–183. [Google Scholar] [CrossRef]
- Yusong, P.; Jie, D.; Yan, C.; Qianqian, S. Study on Mechanical and Optical Properties of Poly(Vinyl Alcohol) Hydrogel Used as Soft Contact Lens. Mater. Technol. 2016, 31, 266–273. [Google Scholar] [CrossRef]
- Pritchard, R. The Transparency of Crystalline Polymers The Empirical Approach toward Increasing Transparency of. Polym. Eng. Sci. 1964, 4, 66–71. [Google Scholar] [CrossRef]
- Efron, N.; Maldonado-Codina, C. 7.35 Development of Contact Lenses from a Biomaterial Point of View: Materials, Manufacture, and Clinical Application. In Comprehensive Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 686–714. [Google Scholar] [CrossRef]
- Lira, M.; Dos Santos Castanheira, E.M.; Santos, L.; Azeredo, J.; Yebra-Pimentel, E.; Real Oliveira, M.E.C.D. Changes in UV-Visible Transmittance of Silicone-Hydrogel Contact Lenses Induced by Wear. Optom. Vision Sci. 2009, 86, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.J.; Berntsen, D.A. The Assessment of Automated Measures of Hydrogel Contact Lens Refractive Index. Ophthalmic Physiol. Opt. 2003, 23, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Ehrmann, K. Refractive Index of Soft Contact Lens Materials Measured in Packaging Solution and Standard Phosphate Buffered Saline and the Effect on Back Vertex Power Calculation. Contact Lens Anterior Eye 2020, 43, 123–129. [Google Scholar] [CrossRef]
- Patel, S.; Tutchenko, L. The Refractive Index of the Human Cornea: A Review. Contact Lens Anterior Eye 2019, 42, 575–580. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, J.; Zhang, Y.; Zhu, W.; Cui, Y. Polymerizable-Group Capped ZnS Nanoparticle for High Refractive Index Inorganic-Organic Hydrogel Contact Lens. Mater. Sci. Eng. C 2018, 90, 485–493. [Google Scholar] [CrossRef]
- Stein, H.A.; Slatt, B.J.; Stein, R.M.; Freeman, M.I. Soft Lenses. In Fitting Guide for Rigid and Soft Contact Lenses; Mosby: Maryland Heights, MI, USA, 2002; p. 81. [Google Scholar]
- González-Méijome, J.M.; Lira, M.; López-Alemany, A.; Almeida, J.B.; Parafita, M.A.; Refojo, M.F. Refractive Index and Equilibrium Water Content of Conventional and Silicone Hydrogel Contact Lenses. Ophthalmic Physiol. Opt. 2006, 26, 57–64. [Google Scholar] [CrossRef]
- Lira, M.; Santos, L.; Azeredo, J.; Yebra-Pimentel, E.; Real Oliveira, M.E.C.D. The Effect of Lens Wear on Refractive Index of Conventional Hydrogel and Silicone-Hydrogel Contact Lenses: A Comparative Study. Contact Lens Anterior Eye 2008, 31, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Heath, D.E.; Sharif, A.R.M.; Rayatpisheh, S.; Oh, B.H.L.; Rong, X.; Beuerman, R.; Chan-Park, M.B. High Water Content Hydrogel with Super High Refractive Index. Macromol. Biosci. 2013, 13, 1485–1491. [Google Scholar] [CrossRef]
- Franklin, J.; Wang, Z.Y. Refractive Index Matching: A General Method for Enhancing the Optical Clarity of a Hydrogel Matrix. Chem. Mater. 2002, 14, 4487–4489. [Google Scholar] [CrossRef]
- Iqbal, A.; Thomas, R.; Mahadevan, R. Impact of Modulus of Elasticity of Silicone Hydrogel Contact Lenses on Meibomian Glands Morphology and Function. Clin. Exp. Optom. 2021, 104, 760–766. [Google Scholar] [CrossRef]
- Bhamra, T.S.; Tighe, B.J. Mechanical Properties of Contact Lenses: The Contribution of Measurement Techniques and Clinical Feedback to 50 Years of Materials Development. Contact Lens Anterior Eye 2017, 40, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Donshik, P.; Long, B.; Dillehay, S.M.; Bergenske, P.; Barr, J.T.; Secor, G.; Yoakum, J.; Chalmers, R.L. Inflammatory and Mechanical Complications Associated with 3 Years of up to 30 Nights of Continuous Wear of Lotrafilcon A Silicone Hydrogel Lenses. Eye Contact Lens 2007, 33, 191–195. [Google Scholar] [CrossRef]
- Holden, B.A.; Stephenson, A.; Stretton, S.; Sankaridurg, P.R.; O’Hare, N.; Jalbert, I.; Sweeney, D.F. Superior Epithelial Arcuate Lesions with Soft Contact Lens Wear. Optom. Vis. Sci. 2001, 78, 9–12. [Google Scholar] [CrossRef]
- Kim, E.; Saha, M.; Ehrmann, K. Mechanical Properties of Contact Lens Materials. Eye Contact Lens 2018, 44, S148–S156. [Google Scholar] [CrossRef] [PubMed]
- Lonnen, J.; Putt, K.S.; Kernick, E.R.; Lakkis, C.; May, L.; Pugh, R.B. The Efficacy of Acanthamoeba Cyst Kill and Effects upon Contact Lenses of a Novel Ultraviolet Lens Disinfection System. Am. J. Ophthalmol. 2014, 158, 460–468.e2. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.L.; Court, J.L.; Redman, R.P.; Wang, J.H.; Leppard, S.W.; O’Byrne, V.J.; Small, S.A.; Lewis, A.L.; Jones, S.A.; Stratford, P.W. A Novel Phosphorylcholine-Coated Contact Lens for Extended Wear Use. Biomaterials 2001, 22, 3261–3272. [Google Scholar] [CrossRef]
- Wong, R.S.H.; Ashton, M.; Dodou, K. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics 2015, 7, 305–319. [Google Scholar] [CrossRef]
- Zaragoza, J.; Chang, A.; Asuri, P. Effect of Crosslinker Length on the Elastic and Compression Modulus of Poly(Acrylamide) Nanocomposite Hydrogels. J. Phys. Conf. Ser. 2017, 790, 012037. [Google Scholar] [CrossRef]
- Mabilleau, G.; Stancu, I.C.; Honoré, T.; Legeay, G.; Cincu, C.; Baslé, M.F.; Chappard, D. Effects of the Length of Crosslink Chain on Poly(2-Hydroxyethyl Methacrylate) (PHEMA) Swelling and Biomechanical Properties. J. Biomed. Mater. Res. A 2006, 77, 35–42. [Google Scholar] [CrossRef]
- Xie, M.J.; Wang, C.C.; Zhang, R.; Cao, J.; Tang, M.Z.; Xu, Y.X. Length Effect of Crosslinkers on the Mechanical Properties and Dimensional Stability of Vitrimer Elastomers with Inhomogeneous Networks. Polymer 2024, 290, 126550. [Google Scholar] [CrossRef]
- Tronci, G.; Grant, C.A.; Thomson, N.H.; Russell, S.J.; Wood, D.J. Influence of 4-Vinylbenzylation on the Rheological and Swelling Properties of Photo-Activated Collagen Hydrogels. MRS Adv. 2016, 1, 533–538. [Google Scholar] [CrossRef]
- Kitayama, F.; Maizuru, N.; Hatano, K. Optical Resin Material and Optical Film. European Patent No 2982700A1, 10 February 2016. [Google Scholar]
- ISO 18369-3:2017; Ophthalmic Optics—Contact Lenses—Part 3: Measurement Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- Brazel, C.S. Fundamental Principles of Polymeric Materials, 3rd ed.; John Wiley & Sons: Nashville, TN, USA, 2012. [Google Scholar]
Samples | WC (%) | T (%) | n | CA (°) |
---|---|---|---|---|
Sample 1E | 76.44 ± 0.19 | 96.00 | - | 89.50 ± 5.50 |
Sample 3E-A | 80.60 ± 0.01 | 92.51 | 1.3630 ± 0.0006 | 92.00 ± 4.00 |
Sample 3E-B | 80.28 ± 0.18 | 91.35 | 1.3662 ± 0.0004 | 100.00 ± 5.00 |
Sample 3E-C | 78.06 ± 0.01 | 99.91 | 1.3691 ± 0.0005 | 86.00 ± 2.00 |
Sample 3E-D | 75.69 ± 0.28 | 85.91 | 1.3740 ± 0.0001 | 81.00 ± 1.00 |
Sample 9E | 79.15 ± 0.05 | 92.01 | 1.3691 ± 0.0000 | 98.50 ± 3.50 |
Sample 23E | 78.30 ± 0.00 | 91.36 | 1.3700 ± 0.0007 | 97.00 ± 7.00 |
Samples | Young’s Modulus (MPa) | Elongation at Break (%) |
---|---|---|
Sample 1E | 0.092 ± 0.005 | 356.05 ± 2.35 |
Sample 3E-A | 0.069 ± 0.008 | 313.45 ± 19.35 |
Sample 3E-B | 0.066 ± 0.002 | 315.65 ± 13.25 |
Sample 3E-C | 0.113 ± 0.012 | 178.95 ± 5.45 |
Sample 3E-D | 0.167 ± 0.004 | 185.50 ± 10.50 |
Sample 9E | 0.107 ± 0.008 | 243.65 ± 54.45 |
Sample 23E | 0.120 ± 0.003 | 298.50 ± 36.50 |
Samples | Crosslinkers (mol %; wt%) | DMAA (wt%) | CHMA (wt%) | V65 (wt%) |
---|---|---|---|---|
Sample 1E | 1-EGDMA (0.10; 0.18) | 79.71 | 20.05 | 0.05 |
Sample 3E-A | 3-EGDMA (0.06, 0.15) | 79.74 | 20.06 | 0.05 |
Sample 3E-B | 3-EGDMA (0.10, 0.27) | 79.64 | 20.04 | 0.05 |
Sample 3E-C | 3-EGDMA (0.19, 0.50) | 79.46 | 19.99 | 0.05 |
Sample 3E-D | 3-EGDMA (0.38, 0.99) | 79.07 | 19.89 | 0.05 |
Sample 9E | 9-EGDMA (0.10, 0.50) | 79.46 | 19.99 | 0.05 |
Sample 23E | 23-EGDMA (0.11, 1.09) | 78.99 | 19.87 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.; García-Montero, M.; Courtis, A.; Hainey, P.; Madrid-Costa, D.; Crooke, A. Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications. Gels 2024, 10, 726. https://doi.org/10.3390/gels10110726
Lim C, García-Montero M, Courtis A, Hainey P, Madrid-Costa D, Crooke A. Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications. Gels. 2024; 10(11):726. https://doi.org/10.3390/gels10110726
Chicago/Turabian StyleLim, Clara, María García-Montero, Andrew Courtis, Paul Hainey, David Madrid-Costa, and Almudena Crooke. 2024. "Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications" Gels 10, no. 11: 726. https://doi.org/10.3390/gels10110726
APA StyleLim, C., García-Montero, M., Courtis, A., Hainey, P., Madrid-Costa, D., & Crooke, A. (2024). Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications. Gels, 10(11), 726. https://doi.org/10.3390/gels10110726