Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-Ray Diffraction
2.2. Infrared Spectroscopy
2.3. Differential Scanning Calorimeter (DSC)
2.4. Optical and Confocal Laser Scanning Microscopy
2.5. Solvent Binding Capacity (SBC)
2.6. Texture Determination
2.7. Rheology
2.8. Oxidative Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Bigel Preparation
4.3. X-Ray Diffraction Analysis
4.4. Fourier Transform Infrared (FTIR) Spectroscopy
4.5. Optical and Confocal Laser Scanning Microscopy Analyses
4.6. Differential Scanning Calorimetry Analysis
4.7. Solvent Binding Capacity
4.8. Texture Analysis
4.9. Rheology Analysis
4.10. Oxidative Stability Analysis
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazir, A.; Maan, A.A.; Asghar, A. Food Gels: Gelling Process and New Applications; Advances in Food Rheology and Its Applications; Woodhead Publishing: Duxfor, UK, 2017; ISBN 978-0-08-100431-9. [Google Scholar]
- Banerjee, S.; Bhattacharya, S. Food Gels: Gelling Process and New Applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. [Google Scholar] [CrossRef]
- Martins, A.J.; Silva, P.; Maciel, F.; Pastrana, L.M.; Cunha, R.L.; Cerqueira, M.A.; Vicente, A.A. Hybrid Gels: Influence of Oleogel/Hydrogel Ratio on Rheological and Textural Properties. Food Res. Int. 2019, 116, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Samui, T.; Goldenisky, D.; Rosen-Kligvasser, J.; Davidovich-Pinhas, M. The Development and Characterization of Novel In-Situ Bigel Formulation. Food Hydrocoll. 2021, 113, 106416. [Google Scholar] [CrossRef]
- Pușcaș, A.; Mureșan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef]
- Zheng, H.; Mao, L.; Cui, M.; Liu, J.; Gao, Y. Development of Food-Grade Bigels Based on κ-Carrageenan Hydrogel and Monoglyceride Oleogels as Carriers for β-Carotene: Roles of Oleogel Fraction. Food Hydrocoll. 2020, 105, 105855. [Google Scholar] [CrossRef]
- Francavilla, A.; Corradini, M.G.; Joye, I.J. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023, 9, 648. [Google Scholar] [CrossRef]
- Aliasl Khiabani, A.; Tabibiazar, M.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Preparation and Characterization of Carnauba Wax/Adipic Acid Oleogel: A New Reinforced Oleogel for Application in Cake and Beef Burger. Food Chem. 2020, 333, 127446. [Google Scholar] [CrossRef]
- Roufegarinejad, L.; Dehghani, S.; Bakhshi, S.; Toker, O.S.; Pirouzian, H.R.; Khiabani, A.H. Oleogelation of Sunflower-Linseed Oils with Carnauba Wax as an Innovative Strategy for Shortening Substitution in Cakes. Food Chem. 2024, 437, 137745. [Google Scholar] [CrossRef]
- Ahmadian, S.; Kenari, R.E.; Amiri, Z.R.; Sohbatzadeh, F.; Khodaparast, M.H.H. Fabrication of Double Nano-Emulsions Loaded with Hyssop (Hyssopus officinalis L.) Extract Stabilized with Soy Protein Isolate Alone and Combined with Chia Seed Gum in Controlling the Oxidative Stability of Canola Oil. Food Chem. 2024, 430, 137093. [Google Scholar] [CrossRef]
- Al-Attar, A.M.; Abu Zeid, I.M.; Felemban, L.F.; Shaikh Omar, A.M.; Alkenani, N.A. Protective and Antioxidant Effects of Chia Oil and Canola Oil on Testicular Injury Induced by Lead in Rats. J. King Saud Univ.-Sci. 2023, 35, 102894. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Sessa, M.; Chouaibi, M.; Ferrari, G.; Donsì, F.; Hamdi, S. Assessment of Emulsifying Ability of Almond Gum in Comparison with Gum Arabic Using Response Surface Methodology. Food Hydrocoll. 2014, 37, 49–59. [Google Scholar] [CrossRef]
- Pakseresht, S.; Tehrani, M.M.; Farhoosh, R.; Koocheki, A. The Monoglyceride Oleogel Characteristics Modified by Carnauba Wax. LWT 2023, 185, 115156. [Google Scholar] [CrossRef]
- Oliveira, T.A.D.; Mota, I.D.O.; Carvalho, L.H.D.; Barbosa, R.; Alves, T.S. Influence of Carnauba Wax on Films of Poly (Butylene Adipate Co-Terephthalate) and Sugarcane Residue for Application in Soil Cover (Mulching). Mater. Res. 2019, 22, e20190040. [Google Scholar] [CrossRef]
- Mashodi, N.; Rahim, N.Y.; Muhammad, N.; Asman, S. Evaluation of extra virgin olive oil adulteration with edible oils using ATR-FTIR spectroscopy. Malays. J. Appl. Sci. 2020, 5, 35–44. [Google Scholar] [CrossRef]
- Naderi, B.; Keramat, J.; Nasirpour, A.; Aminifar, M. Complex Coacervation between Oak Protein Isolate and Gum Arabic: Optimization & Functional Characterization. Int. J. Food Prop. 2020, 23, 1854–1873. [Google Scholar] [CrossRef]
- Martins, A.J.; Guimarães, A.; Fuciños, P.; Sousa, P.; Venâncio, A.; Pastrana, L.M.; Cerqueira, M.A. Food-Grade Bigels: Evaluation of Hydrogel: Oleogel Ratio and Gelator Concentration on Their Physicochemical Properties. Food Hydrocoll. 2023, 143, 108893. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, E.; Reis, R.L. Therapeutic Deep Eutectic Solvents Assisted the Encapsulation of Curcumin in Alginate-Chitosan Hydrogel Beads. Sustain. Chem. Pharm. 2021, 24, 100553. [Google Scholar] [CrossRef]
- Blake, A.I.; Marangoni, A.G. The Effect of Shear on the Microstructure and Oil Binding Capacity of Wax Crystal Networks. Food Biophys. 2015, 10, 403–415. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of Thickening Agents on the Formation and Properties of Edible Oleogels Based on Hydroxypropyl Methyl Cellulose. Food Chem. 2018, 246, 137–149. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Iturra, N.; Contardo, I.; Millao, S.; Morales, E.; Rubilar, M. Food-Grade Bigels with Potential to Replace Saturated and Trans Fats in Cookies. Gels 2022, 8, 445. [Google Scholar] [CrossRef] [PubMed]
Samples | Heating | Cooling | |||
---|---|---|---|---|---|
Tpm 1 | Tpm 2 | Tpc 1 | Tpc 2 | Tpc 3 | |
Oleogel | 49.8 ± 1.1 ab | 77.4 ± 0.1 ab | 54.0 ± 0.5 a | 53.2 ± 0.8 b | 38.3 ± 0.6 a |
Bigel 30 °C | 49.1 ± 0.2 a | 76.7 ± 0.3 a | 54.6 ± 0.7 a | 50.9 ± 0.0 a | 39.8 ± 1.7 a |
Bigel 40 °C | 49.5 ± 0.5 ab | 78.4 ± 2.0 ab | 54.7 ± 0.3 a | 51.6 + 0.2 a | 39.1 ± 0.3 a |
Bigel 50 °C | 50.7 ± 0.5 b | 78.8 ± 1.3 ab | 54.4 ± 0.1 a | 51.1 + 0.3 a | 38.7 ± 0.2 a |
Bigel 60 °C | 50.5 ± 0.2 ab | 80.0 ± 0.1 b | 54.3 ± 0.1 a | 51.1 + 0.1 a | 38.7 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quilaqueo, M.; Millao, S.; Morales, E.; Rubilar, M.; Contardo, I. Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels. Gels 2024, 10, 725. https://doi.org/10.3390/gels10110725
Quilaqueo M, Millao S, Morales E, Rubilar M, Contardo I. Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels. Gels. 2024; 10(11):725. https://doi.org/10.3390/gels10110725
Chicago/Turabian StyleQuilaqueo, Marcela, Sonia Millao, Eduardo Morales, Mónica Rubilar, and Ingrid Contardo. 2024. "Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels" Gels 10, no. 11: 725. https://doi.org/10.3390/gels10110725
APA StyleQuilaqueo, M., Millao, S., Morales, E., Rubilar, M., & Contardo, I. (2024). Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels. Gels, 10(11), 725. https://doi.org/10.3390/gels10110725