Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Properties of PAN Solutions as a Function of Moisture Content
2.2. Effects of Moisture Content and Heat Treatment on Rheological Properties of PAN Solutions
2.3. Rheological Properties of the PAN/DMSO Solutions with Respect to Rotational Frequency
2.4. Dielectric Properties of the PAN Solutions
2.5. UV-Visible Spectroscopy Measurements of PAN Solutions
2.6. Effects of Residual Solvent on Gelation
2.7. Effects of Microparticle Structure on Gelation
2.8. Mass Analysis of PAN Polymer Gel
3. Conclusions
4. Materials and Methods
4.1. Preparation of PAN Solutions
4.2. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donnet, J.B.; Bansal, R.C. Carbon Fibers; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Park, S.J.; Seo, M.K.; Lee, J.R. Effect of oxidation inhibitor on the low energy tribological behavior of carbon–carbon composites. Carbon 2002, 40, 835–843. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, B.S.; Park, S.J.; Rhee, K.Y.; Seo, M.K. Preparation and characterization of mesophase formation of pyrolysis fuel oil-derived binder pitches for carbon composites. Compos. Part B 2019, 165, 467–472. [Google Scholar] [CrossRef]
- Ahn, H.C.; Yeo, S.Y.; Lee, B.S. Designing Materials and Processes for Strong Polyacrylonitrile Precursor Fibers. Polymers 2021, 13, 2863. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Thai, N.U.; Hong, S.C. Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials. Carbon 2014, 69, 571–581. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Chen, X.N.; Wan, L.S.; Xu, Z.K. Interactions between Polyacrylonitrile and Solvents: Density Functional Theory Study and Two-Dimensional Infrared Correlation Analysis. J. Phys. Chem. B 2012, 116, 8321–8330. [Google Scholar] [CrossRef]
- Nunna, S.; Blanchrad, P.; Buckmaster, D.; Davis, S.; Naebe, M. Development of a cost model for the production of carbon fibres. Heliyon 2019, 5, e02698. [Google Scholar] [CrossRef]
- Lyoo, W.S.; Son, S.O.; Kang, G.C.; Kim, J.H.; Yoon, W.S.; Ji, B.C. Preparation of Polyacrylonitrile Microfibers Using Gelation and Phase Separation During the Solution Polymerization of Acrylonitrile. Macromol. Rapid Commun. 2001, 22, 1172–1175. [Google Scholar] [CrossRef]
- Eom, Y.H.; Kim, B.C. Effects of chain conformation on the viscoelastic properties of polyacrylonitrile gels under large amplitude oscillatory shear. Eur. Polym. J. 2016, 85, 341–353. [Google Scholar] [CrossRef]
- Kaur, J.; Millington, K.; Smith, S. Producing high-quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. J. Appl. Polym. Sci. 2016, 133, 43963. [Google Scholar] [CrossRef]
- Eom, Y.H.; Park, Y.; Jung, Y.M.; Kim, B.C. Effects of conformational change of polyacrylonitrile on the aging behavior of the solutions in N,N-dimethyl formamide. Polymer 2017, 108, 193–205. [Google Scholar] [CrossRef]
- Kummerlöwe, G.; Behl, M.; Lendlein, A.; Luy, B. Artifact-free measurement of residual dipolar couplings in DMSO by the use of cross-linked perdeuterated poly(acrylonitrile) as alignment medium. Chem. Commun. 2010, 46, 8273–8275. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Hillbrick, L.; Abbott, A.; Lynch, P.; Santiago, P.M.; Pierlot, A.P. High molecular weight improves microstructure and mechanical properties of polyacrylonitrile based carbon fibre precursor. Polymer 2022, 247, 124753. [Google Scholar] [CrossRef]
- Devasia, R.; Nair, C.P.R.; Ninan, K.N. Effect of oxalic acid on the rheological properties of dope solution of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)]. Polym. Int. 2005, 54, 381–385. [Google Scholar] [CrossRef]
- Morris, E.A.; Weisenberger, M.C.; Abdallah, M.G.; Vautard, F.; Grappe, H.; Ozcan, S.; Paulauskas, F.L.; Eberle, C.; Jackson, D.; Mecham, S.J.; et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors. Carbon 2016, 101, 245–252. [Google Scholar] [CrossRef]
- Skvortsov, I.Y.; Kuzin, M.S.; Gerasimenko, P.S.; Kulichikhin, V.G.; Malkin, A.Y. Role of small amounts of water in the gelation of polyacrylonitrile solutions in dimethyl sulfoxide: Rheology, kinetics, and mechanism. Macromolecules 2024, 57, 3647–3663. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kuk, Y.S.; Seo, M.K.; Kim, B.S. Thermo-rheological behaviors of Phenolic Resins Blended with Petroleum-based Pitches for High Temperature Carbon Composites. Compos. Res. 2020, 33, 329–335. [Google Scholar]
- Park, S.H.; Song, I.K.; Kim, B.C. The rheological properties of poly (acrylonitrile)/cellulose acetate blend solutions in N, N-dimethyl formamide. Polymer 2009, 33, 384–388. [Google Scholar]
- Wang, Y.; Liu, W.; Mo, G.; Zhang, R. Rheological manifestation of the second self-similar structure in gelation process of PAN/DMSO/H2O system. Polymer 2015, 73, 149–155. [Google Scholar] [CrossRef]
- Mo, G.; Zhang, R.; Wang, Y.; Yan, Q. Rheological and optical investigation of the gelation with and without phase separation in PAN/DMSO/H2O ternary blends. Polymer 2016, 84, 243–253. [Google Scholar] [CrossRef]
- Tan, L.; Chen, H.; Pan, D.; Pan, N. Investigation into the gelation and crystallization of polyacrylonitrile. Eur. Polym. J. 2009, 45, 1617–1624. [Google Scholar] [CrossRef]
- Bashir, Z.; Packer, E.J.; Herbert, I.R.; Price, D.M. Base-induced gelation of polymethacrylonitrile. Polymer 1992, 33, 373–378. [Google Scholar] [CrossRef]
- Tung, C.M.; Dynes, P.J. Relationship between viscoelastic properties and gelation in thermosetting systems. J. Appl. Polym. Sci. 1982, 27, 569–574. [Google Scholar] [CrossRef]
- Eom, Y.H.; Kim, B.C. The effect of dimethylsulfoxide on the dissociation process of physical complexes of polyacrylonitrile in N,N-dimethylformamide. Polym. Int. 2017, 66, 1099–1106. [Google Scholar] [CrossRef]
- Devasia, R.D.; Nair, C.P.R.; Ninan, K.N. Temperature and shear dependencies of rheology of poly(acrylonitrile-co-itaconic acid) dope in DMF. Polym. Adv. Technol. 2008, 19, 1771–1778. [Google Scholar] [CrossRef]
- Tan, L.; Liu, S.; Pan, D. Viscoelastic Behavior of Polyacrylonitrile/Dimethyl Sulfoxide Concentrated Solution during Thermal-Induced Gelation. J. Phys. Chem. B 2009, 113, 603–609. [Google Scholar] [CrossRef]
- Tan, L.; Pan, D.; Pan, N. Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration. Polymer 2008, 49, 5676–5682. [Google Scholar] [CrossRef]
- Yang, J.Y.; Lee, B.M.; Kuk, Y.S.; Seo, M.K.; Kim, B.S. Study on Rheological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures. Compos. Res. 2019, 32, 71–77. [Google Scholar]
- Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.J.; Ewoldt, R.H.; Mckinley, G.H. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753. [Google Scholar] [CrossRef]
- Szopinski, D.; Luinstra, G.A. Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS). Carbonhydr. Polym. 2016, 153, 312–319. [Google Scholar] [CrossRef]
- Song, H.Y.; Park, S.J.; Hyum, K. Characterization of dilution effect of semidilute polymer solution on intrinsic nonlinearity Q0 via FT Rheology. Macromolecules 2017, 50, 6238–6254. [Google Scholar] [CrossRef]
- Oh, Y.S.; Han, S.S.; Song, K.W. Gelation Gelation behavior of acrylonitrile copolymer/dimethylformamide solution and mechanical properties of films obtained from it’s solution. Polymer 2000, 24, 787–793. [Google Scholar]
- Chaloupka, A.; Pflock, T.; Horny, R.; Rudolph, N.; Horn, S.R. Dielectric and rheological study of the molecular dynamics during the cure of an epoxy resin. J. Polym. Sci. B Polym. Phys. 2018, 56, 907–913. [Google Scholar] [CrossRef]
- Ryu, S.W.; Song, E.H. Characterization of Ionic Liquid Contained Polymer Gel Electrolyte. Polymer 2008, 32, 85–89. [Google Scholar]
- Choi, M.H.; Kang, J.T.; Kim, D.K.; Kim, S.H. Rheological Properties of Poly(ethyleneoxide-propyleneoxide-ethyleneoxide) Hydrogel. Text. Sci. Eng. 2009, 46, 200–204. [Google Scholar]
- Tan, L.; Liu, S.; Pan, D.; Pan, N. Gelation of polyacrylonitrile in a mixed solvent: Scaling and fractal analysis. Soft Matter 2009, 5, 4297–4304. [Google Scholar] [CrossRef]
- Ten, E.; Bahr, D.F.; Li, B.; Jiang, L.; Wolcott, M.P. Effects of Cellulose Nanowhiskers on Mechanical, Dielectric, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites. Ind. Eng. Chem. Res. 2012, 51, 2941–2951. [Google Scholar] [CrossRef]
- Pu, Z.; Tong, L.; Feng, M.; Jia, K.; Liu, X. Influence of hyperbranched copper phthalocyanine grafted carbon nanotubes on the dielectric and rheological properties of polyarylene ether nitriles. RSC Adv. 2015, 5, 72028–72036. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Gracia-Fernández, C.A.; Gómez-Barreiro, S. Use of rheology, dielectric analysis and differential scanning calorimetry for gel time determination of a thermoset. Polymer 2005, 46, 5979–5985. [Google Scholar] [CrossRef]
- Ruiz-Virgen, L.; Miguel, A.H.M.; Gabriela, M.M.; Rubén, C.B.; Enrique, H.P.; José, M.R.; Mónica, C. Analysis of Structural Changes of pH–Thermo-Responsive Nanoparticles in Polymeric Hydrogels. Gels 2024, 10, 541. [Google Scholar] [CrossRef]
- Mo, G.; Zhang, R.; Wang, Y.; He, L. The interplay between gelation and phase separation in PAN/DMSO/H2O blends and the resulted critical gels. Eur. Polym. J. 2017, 92, 40–50. [Google Scholar] [CrossRef]
- Malkin, A.; Ilyin, S.; Roumyantseva, T.; Kulichikhin, V. Rheological Evidence of Gel Formation in Dilute Poly(acrylonitrile) Solutions. Macromolecules 2013, 46, 257–266. [Google Scholar] [CrossRef]
- Ishikawa, S.; Iijima, K.; Matsukuma, D.; Asawa, Y.; Hoshi, K.; Osawa, S.; Otsuka, H. Interpenetrating Polymer Network Hydrogels via a One-Pot and in Situ Gelation System Based on Peptide Self-Assembly and Orthogonal Cross-Linking for Tissue Regeneration. Chem. Mater. 2020, 32, 2353–2364. [Google Scholar] [CrossRef]
- Dana, M.S.; Marieta, C.; Irina, M.P.; Irina, P.; Cristina, M.R.; Cristina, E.H.; Gheorghe, F. Chitosan–Oxidized Pullulan Hydrogels Loaded with Essential Clove Oil: Synthesis, Characterization, Antioxidant and Antimicrobial Properties. Gels 2024, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Figueira, R.B. Hybrid Sol–gel Coatings for Corrosion Mitigation: A Critical Review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef]
- Tan, L.; Wan, A. Structural changes in thermal-induced polyacrylonitrile gel under uniaxial drawing. Colloids Surf. A Physicochem. Eng. Asp. 2011, 392, 350–354. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, W.; Wen, J.; Wu, Z.; Zhang, Y.; Zhang, H.; Wu, H.; Yao, H.; Xue, H.; Gao, J. Mixed solvent exchange enabled high-performance polymeric gels. Polymer 2023, 267, 125661. [Google Scholar] [CrossRef]
- Huo, L.; Cao, W. The dual effects of non-solvent on the sol-gel transition of polyacrylonitrile solution: The promotion in thermodynamics and hindrance in kinetics. Polym. Test 2022, 115, 107685. [Google Scholar] [CrossRef]
- Skvortsov, L.Y.; Malkin, A.Y.; Kuzin, M.S.; Bondar, G.N.; Gerasimenko, P.S.; Litmanovich, E.A. Rheology and molecular interactions in polyacrylonitrile solutions: Role of a solvent. J. Mol. Liq. 2022, 364, 119938. [Google Scholar] [CrossRef]
Samples | Complex Viscosity (Poise) at 80 °C | Gel Point (min) | |||
---|---|---|---|---|---|
6 h | 12 h | 24 h | 48 h | ||
P-WT0 | 495.2 | 684.0 | 1098.6 | 1679.0 | 3000 ↑ |
P-WT2 | 564.9 | 733.8 | 1153.6 | 1536.7 | 3000 ↑ |
P-WT3 | 457.6 | 613.7 | 1133.0 | 3749.6 | 2763 |
P-WT4 | 503.4 | 686.4 | 1179.1 | 4450.5 | 2589 |
P-WT5 | 538.4 | 764.8 | 1315.8 | 6444.8 | 2150 |
Samples | Complex Viscosity (Poise) at 80 °C | Gel Point (min) | |||
---|---|---|---|---|---|
1 h | 3 h | 6 h | 12 h | ||
P-WT0 | 320.5 | 386.5 | 495.2 | 684.1 | 3000 ↑ |
P-WT0-H80-24 | 344.2 | 597.8 | 858.1 | 1037.3 | 3000 ↑ |
P-WT0.5-H80-24 | 342.1 | 602.4 | 926.2 | 1174.7 | 1090 |
P-WT1-H80-24 | 363.0 | 634.2 | 956.1 | 1291.0 | 1370 |
P-WT2-H80-24 | 351.5 | 630.9 | 967.5 | 1262.5 | 991 |
P-WT3-H80-24 | 349.7 | 589.4 | 889.7 | 1232.5 | 963 |
P-WT4-H80-24 | 894.3 | - | - | - | 70 |
P-WT5-H80-24 | 1090.9 | - | - | - | 65 |
Sample | PAN Solution | Moisture Content (%) | ||||
---|---|---|---|---|---|---|
Heat Treatment Temperature (°C) | Time (h) | PAN (g) | DMSO (g) | Water (g) | ||
P-WT0 | 80 | 24 | 20 | 80.0 | 0 | 0 |
P-WT2 | 78.4 | 0.16 | 2.0 | |||
P-WT3 | 77.6 | 2.4 | 3.0 | |||
P-WT4 | 76.8 | 3.2 | 4.0 | |||
P-WT5 | 76.0 | 4.0 | 5.0 | |||
P-WT0-H80-24 | 80.0 | 0 | 0 | |||
P-WT0.5-H80-24 | 79.6 | 0.4 | 0.5 | |||
P-WT1-H80-24 | 79.2 | 0.8 | 1.0 | |||
P-WT2-H80-24 | 78.4 | 0.16 | 2.0 | |||
P-WT3-H80-24 | 77.6 | 2.4 | 3.0 | |||
P-WT4-H80-24 | 76.8 | 3.2 | 4.0 | |||
P-WT5-H80-24 | 76.0 | 4.0 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-Y.; Kuk, Y.-S.; Kim, B.-S.; Seo, M.-K. Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions. Gels 2024, 10, 728. https://doi.org/10.3390/gels10110728
Yang J-Y, Kuk Y-S, Kim B-S, Seo M-K. Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions. Gels. 2024; 10(11):728. https://doi.org/10.3390/gels10110728
Chicago/Turabian StyleYang, Jae-Yeon, Yun-Su Kuk, Byoung-Suhk Kim, and Min-Kang Seo. 2024. "Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions" Gels 10, no. 11: 728. https://doi.org/10.3390/gels10110728
APA StyleYang, J. -Y., Kuk, Y. -S., Kim, B. -S., & Seo, M. -K. (2024). Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions. Gels, 10(11), 728. https://doi.org/10.3390/gels10110728