Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Collagen Gels Extracted from Perch Skin
2.1.1. Physical/Chemical Analysis
2.1.2. Structural Analysis
- Circular Dichroism Spectroscopy
- Fourier transform infrared spectroscopy (FTIR)
2.2. Characterization of Collagen Scaffolds
2.2.1. Water Absorption of Collagen Scaffolds
2.2.2. Collagen Scaffolds Microbiological Analysis
- -
- 0–10 mm, inactive—marked "−";
- -
- 10–14 mm, weak activity—noted "+";
- -
- 15–19 mm, moderate activity—marked "++";
- -
- ≥20 mm, definite activity—marked “+++”.
- Total number of aerobic microorganisms (TAMC);
- Total number of yeasts and filamentous fungi (TYMC).
2.2.3. Collagen Scaffolds Biocompatibility
3. Conclusions
4. Materials and Methods
4.1. Process of Acidic Collagen Extraction
4.2. Physical/Chemical Analysis and Extracted Collagen Yields
4.3. Water Uptake of Collagen Scaffolds
4.4. Structural Analysis
- Circular Dichroism Spectroscopy
- Fourier transform infrared spectroscopy (FTIR)
4.5. Collagen Scaffolds Microbiological Analysis
4.6. Assessment of Biocompatibility of Collagen Scaffolds
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Susanti, E.; Lutfiana, N.; Suharti; Retnosari, R. Screening of Proteolytic Bacteria from Tauco Surabaya Based on Pathogenicity and Selectivity of Its Protease on Milky Fish (Chanos chanos) Scales for Healthy and Halal Collagen Production. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012044. [Google Scholar] [CrossRef]
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019, 31, 1801651. [Google Scholar] [CrossRef] [PubMed]
- Shavandi, A.; Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A.E.A. Marine Waste Utilization as a Source of Functional and Health Compounds. Adv. Food Nutr. Res. 2019, 87, 187–254. [Google Scholar] [PubMed]
- Furtado, M.; Chen, L.; Chen, Z.; Chen, A.; Cui, W. Development of Fish Collagen in Tissue Regeneration and Drug Delivery. Eng. Regen. 2022, 3, 217–231. [Google Scholar] [CrossRef]
- Rathod, N.K. Extraction of Functionally Active Collagen from Fish By-Products; Flinders University, College of Medicine and Public Health: Bedford Park, Australia, 2021. [Google Scholar]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of Marine (Fish and Crustaceans) Biowaste for High Added-Value Molecules and Bio(Nano)-Materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef]
- Shaw, C.; Knopf, K.; Kloas, W. Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems. Sustainability 2022, 14, 4064. [Google Scholar] [CrossRef]
- de Melo Oliveira, V.; Assis, C.R.D.; Costa, B.D.A.M.; de Araújo Neri, R.C.; Monte, F.T.D.; da Costa Vasconcelos, H.M.S.; França, R.C.P.; Santos, J.F.; de Souza Bezerra, R.; Porto, A.L.F. Physical, Biochemical, Densitometric and Spectroscopic Techniques for Characterization Collagen from Alternative Sources: A Review Based on the Sustainable Valorization of Aquatic by-Products. J. Mol. Struct. 2021, 1224, 129023. [Google Scholar] [CrossRef]
- Rajabimashhadi, Z.; Gallo, N.; Salvatore, L.; Lionetto, F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers 2023, 15, 544. [Google Scholar] [CrossRef]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef]
- Rodríguez, F.; Morán, L.; González, G.; Troncoso, E.; Zúñiga, R.N. Collagen Extraction from Mussel Byssus: A New Marine Collagen Source with Physicochemical Properties of Industrial Interest. J. Food Sci. Technol. 2017, 54, 1228–1238. [Google Scholar] [CrossRef]
- Khan, S.B.; Qian, Z.-J.; Ryu, B.; Kim, S.-K. Isolation and Biochemical Characterization of Collagens from Seaweed Pipefish, Syngnathus Schlegeli. Biotechnol. Bioprocess. Eng. 2009, 14, 436–442. [Google Scholar] [CrossRef]
- Aleman, A.; Martinez-Alvarez, O. Marine Collagen as a Source of Bioactive Molecules: A Review. Nat. Prod. J. 2013, 3, 105–114. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Marques, A.P.; Silva, T.H.; Reis, R.L. Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Mar. Drugs 2018, 16, 495. [Google Scholar] [CrossRef] [PubMed]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [PubMed]
- Albu, M.G.; Ferdes, M.; Kaya, D.A.; Ghica, M.V.; Titorencu, I.; Popa, L.; Albu, L. Collagen Wound Dressings with Anti-Inflammatory Activity. Mol. Cryst. Liq. Cryst. 2012, 555, 271–279. [Google Scholar] [CrossRef]
- Obagi, Z.; Damiani, G.; Grada, A.; Falanga, V. Principles of Wound Dressings: A Review. Surg. Technol. Int. 2019, 35, 50–57. [Google Scholar]
- Miguel, S.P.; Sequeira, R.S.; Moreira, A.F.; Cabral, C.S.D.; Mendonça, A.G.; Ferreira, P.; Correia, I.J. An Overview of Electrospun Membranes Loaded with Bioactive Molecules for Improving the Wound Healing Process. Eur. J. Pharm. Biopharm. 2019, 139, 1–22. [Google Scholar] [CrossRef]
- La Monica, F.; Campora, S.; Ghersi, G. Collagen-Based Scaffolds for Chronic Skin Wound Treatment. Gels 2024, 10, 137. [Google Scholar] [CrossRef]
- Berry, C.E.; Brenac, C.; Gonzalez, C.E.; Kendig, C.B.; Le, T.; An, N.; Griffin, M.F. Natural Compounds and Biomimetic Engineering to Influence Fibroblast Behavior in Wound Healing. Int. J. Mol. Sci. 2024, 25, 3274. [Google Scholar] [CrossRef]
- Girsang, V.; Reveny, J.; Nainggolan, M. Isolation and Characterization Collagen of Patin Fish Skin (Pangasius sp.). Asian J. Pharm. Res. Dev. 2020, 8, 47–51. [Google Scholar] [CrossRef]
- Wu, K.; Li, Y.; Chen, J. Effect of PH on the Structure, Functional Properties and Rheological Properties of Collagen from Greenfin Horse-Faced Filefish (Thamnaconus septentrionalis) Skin. Mar. Drugs 2024, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Matinong, A.M.E.; Chisti, Y.; Pickering, K.L.; Haverkamp, R.G. Collagen Extraction from Animal Skin. Biology 2022, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Agustina, M.; Patmawati, P.; Mubarok, S.; Sulmartiwi, L.; Wulandari, D.A.; Zai, K.; Siva, R.; Pujiastuti, D.Y.; Nirmala, D.; Carattri Kusuma Werdani, M.; et al. Effect of Ultrasonic Assisted Extraction with Ethanol for Removing Lipid on Catfish (Pangasius sp.) Skin as a Collagen Source and Its Characteristics. J. Ilm. Perikan. Dan Kelaut. 2023, 16, 274–284. [Google Scholar] [CrossRef]
- Ong, T.Y.; Shaik, M.I.; Sarbon, N.M. Isolation and Characterization of Acid and Pepsin Soluble Collagen Extracted from Sharpnose Stingray (Dasyatis zugei) Skin. Food Res. 2021, 5, 214–224. [Google Scholar] [CrossRef]
- Hadfi, N.H.; Sarbon, N.M. Physicochemical Properties of Silver Catfish (Pangasius sp.) Skin Collagen as Influenced by Acetic Acid Concentration. Food Res. 2019, 3, 783–790. [Google Scholar] [CrossRef]
- Baderi, N.A. Microstructure, Extractability and Physicochemical Properties of Shortfin Scad (Decapterus macrosoma) Bone Collagen as Influenced by Acetic Acid Concentration. Int. Food Res. J. 2019, 26, 451–458. [Google Scholar]
- Zhou, Y.; Li, S.; Wang, D.; Zhao, Y.; Lei, X. Estimation of Type i Collagen Structure Dissolved in Inorganical Acids from Circular Dichroism Spectra. Biosci. J. 2018, 34, 778–789. [Google Scholar] [CrossRef]
- Drzewiecki, K.E.; Grisham, D.R.; Parmar, A.S.; Nanda, V.; Shreiber, D.I. Circular Dichroism Spectroscopy of Collagen Fibrillogenesis: A New Use for an Old Technique. Biophys. J. 2016, 111, 2377–2386. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Ostos, F.J.; López-Cornejo, P.; Romero, A.; Guerrero, A. Assessment of the Denaturation of Collagen Protein Concentrates Using Different Techniques. Biol. Chem. 2019, 400, 1583–1591. [Google Scholar] [CrossRef]
- Gopinath, A.; Shanmugam, G.; Madhan, B.; Rao, J.R. Differential Behavior of Native and Denatured Collagen in the Presence of Alcoholic Solvents: A Gateway to Instant Structural Analysis. Int. J. Biol. Macromol. 2017, 102, 1156–1165. [Google Scholar] [CrossRef]
- Echave, M.C.; Hernáez-Moya, R.; Iturriaga, L.; Pedraz, J.L.; Lakshminarayanan, R.; Dolatshahi-Pirouz, A.; Taebnia, N.; Orive, G. Recent Advances in Gelatin-Based Therapeutics. Expert. Opin. Biol. Ther. 2019, 19, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Jeevithan, E.; Bao, B.; Bu, Y.; Zhou, Y.; Zhao, Q.; Wu, W. Type II Collagen and Gelatin from Silvertip Shark (Carcharhinus albimarginatus) Cartilage: Isolation, Purification, Physicochemical and Antioxidant Properties. Mar. Drugs 2014, 12, 3852–3873. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liang, Q.; Chen, T.; Wang, Z.; Xu, J.; Ma, H. Characterization of Collagen from the Skin of Amur Sturgeon (Acipenser schrenckii). Food Hydrocoll. 2014, 38, 104–109. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Jia, H.; Mráz, J.; Zhao, R.; Li, S.; Dong, X.; Pan, J. Modified Structural and Functional Properties of Fish Gelatin by Glycosylation with Galacto-Oligosaccharides. Foods 2023, 12, 2828. [Google Scholar] [CrossRef]
- Dănilă, E.; Stan, R.; Kaya, M.A.; Voicu, G.; Marin, M.M.; Moroşan, A.; Titorencu, I.; Ţuţuianu, R. Valorization of Cyprinus Carpio Skin for Biocompatible Collagen Hydrolysates with Potential Application in Foods, Cosmetics and Pharmaceuticals. Waste Biomass Valorization 2022, 13, 917–928. [Google Scholar] [CrossRef]
- Fang, Q.; Ma, N.; Ding, K.; Zhan, S.; Lou, Q.; Huang, T. Interaction between Negatively Charged Fish Gelatin and Cyclodextrin in Aqueous Solution: Characteristics and Formation Mechanism. Gels 2021, 7, 260. [Google Scholar] [CrossRef]
- Silva, J.C.; Barros, A.A.; Aroso, I.M.; Fassini, D.; Silva, T.H.; Reis, R.L.; Duarte, A.R.C. Extraction of Collagen/Gelatin from the Marine Demosponge Chondrosia reniformis (Nardo, 1847) Using Water Acidified with Carbon Dioxide—Process Optimization. Ind. Eng. Chem. Res. 2016, 55, 6922–6930. [Google Scholar] [CrossRef]
- Tihan, G.T.; Rău, I.; Zgârian, R.G.; Ungureanu, C.; Barbaresso, R.C.; Kaya, M.G.A.; Dinu-Pîrvu, C.; Ghica, M.V. Oxytetracycline versus Doxycycline Collagen Sponges Designed as Potential Carrier Supports in Biomedical Applications. Pharmaceutics 2019, 11, 363. [Google Scholar] [CrossRef]
- ISO-29621-2010. Available online: https://www.iso.org/standard/68310.html (accessed on 30 May 2024).
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available online: https://www.eucast.org/ (accessed on 30 May 2024).
- M02-A11: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. Available online: https://www.researchgate.net/file.PostFileLoader.html?id=58139aa4615e27240754da03&assetKey=AS%3A422233756704774%401477679780485 (accessed on 31 May 2024).
- The European Directorate for the Quality of Medicines & HealthCare (EDQM). The European Pharmacopoeia (Ph. Eur.), 11th ed.; Council of Europe: London, UK; Available online: https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition (accessed on 1 October 2024).
- Adib, Y.; Bensussan, A.; Michel, L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediat. Inflamm. 2022, 2022, 5344085. [Google Scholar] [CrossRef]
- Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers 2020, 12, 2010. [Google Scholar] [CrossRef]
- Gallant-Behm, C.L.; Hart, D.A. Genetic Analysis of Skin Wound Healing and Scarring in a Porcine Model. Wound Repair. Regen. 2006, 14, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Yannas, I.V.; Tzeranis, D.S. Mammals Fail to Regenerate Organs When Wound Contraction Drives Scar Formation. NPJ Regen. Med. 2021, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Ibidi Cells in Focus. Available online: https://ibidi.com/img/cms/products/cells_reagents/R_5020X_CollagenI/IN_5020X_CollagenI_05mg.pdf (accessed on 1 July 2024).
- Albu, M.G.; Ficai, A.; Lungu, A. Preparation and Characterization of Collagen Matrices Obtained at Different Freezing Temperatures. Leather Footwear J. 2010, 10, 39–50. [Google Scholar]
- Tutuianu, R.; Rosca, A.; Albu Kaya, M.G.; Pruna, V.; Neagu, T.P.; Lascar, I.; Simionescu, M.; Titorencu, I. Mesenchymal Stromal Cell-derived Factors Promote the Colonization of Collagen 3D Scaffolds with Human Skin Cells. J. Cell Mol. Med. 2020, 24, 9692–9704. [Google Scholar] [CrossRef]
Sample | Dry Substance Content, % | Ash Content, % | Total Nitrogen, % | Protein Content, % | pH, pH Units |
---|---|---|---|---|---|
GEL_COLL_Trt * | 3.41 | undetectable | 0.40 | 2.28 | 2.5 |
GEL_COLL_Tf ** | 1.85 | undetectable | 0.20 | 1.12 | 2.5 |
GEL_COLL_TCrt | 3.44 | undetectable | 0.40 | 2.25 | 2.5 |
GEL_COLL_TCf | 2.17 | undetectable | 0.21 | 1.18 | 2.5 |
GEL_COLL_Art | 2.14 | undetectable | 0.21 | 1.18 | 2.5 |
GEL_COLL_Af | 2.58 | undetectable | 0.28 | 1.57 | 2.5 |
Sample | Total Number of Aerobic Microorganisms (TAMC), CFU/g * | Total Number of Fungi and Filamentous Fungi (TYMC), CFU/g ** | E. coli Absent | S. aureus Absent | P. aeruginosa Absent |
---|---|---|---|---|---|
COLL_T | 5 CFU/g | 3 CFU/g | absent | absent | absent |
COLL_TC | 6 CFU/g | 2 CFU/g | absent | absent | absent |
COLL_A | 3 CFU/g | 2 CFU/g | absent | absent | absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, A.E.; Marin, M.M.; Roșca, A.M.; Albu Kaya, M.G.; Constantinescu, R.R.; Titorencu, I. Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization. Gels 2024, 10, 729. https://doi.org/10.3390/gels10110729
Coman AE, Marin MM, Roșca AM, Albu Kaya MG, Constantinescu RR, Titorencu I. Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization. Gels. 2024; 10(11):729. https://doi.org/10.3390/gels10110729
Chicago/Turabian StyleComan, Alina Elena, Maria Minodora Marin, Ana Maria Roșca, Madalina Georgiana Albu Kaya, Rodica Roxana Constantinescu, and Irina Titorencu. 2024. "Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization" Gels 10, no. 11: 729. https://doi.org/10.3390/gels10110729
APA StyleComan, A. E., Marin, M. M., Roșca, A. M., Albu Kaya, M. G., Constantinescu, R. R., & Titorencu, I. (2024). Marine Resources Gels as Main Ingredient for Wound Healing Biomaterials: Obtaining and Characterization. Gels, 10(11), 729. https://doi.org/10.3390/gels10110729