Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared (IR) Spectroscopy
2.2. X-Ray Diffraction (XRD)
2.3. Scanning Electron Microscopy (SEM)
2.4. Transmission Electron Microscopy
2.5. Photoluminescent Properties
2.6. Analysis of Porosity by the Brunauer–Emmett–Teller (BET) Technique
3. Conclusions
4. Materials and Methods
4.1. Synthesis
4.1.1. The Sol–Gel Process
4.1.2. Supercritical Drying of the Aerogels (scCO2)
4.1.3. Heat Treatment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, S.E.; Ohodnicki, P.R.; Baltrus, J.P. Materials for the photoluminescent sensing of rare earth elements: Challenges and opportunities. J. Mater. Chem. C 2020, 8, 7975–8006. [Google Scholar] [CrossRef]
- Maciel, G.S.; Rakov, N. Photon conversion in lanthanide-doped powder phosphors: Concepts and applications. RSC Adv. 2015, 5, 17283–17295. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, G.; Barillaro, G.; Qiu, J.; Yang, Z. Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Prog. Mater. Sci. 2021, 121, 100814. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, N.; Jia, Y.; Lv, W.; Shao, B.; Jiao, M.; You, H. Facile surfactant-free synthesis and luminescent properties of hierarchical europium-doped lutetium oxide phosphors. J. Colloid Interface Sci. 2013, 394, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Khan, M.I.; El-Denglawey, A. A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl. Mater. Today 2021, 24, 101104. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. Lanthanide Photonics: Shaping the Nanoworld. Trends Chem. 2019, 1, 751–762. [Google Scholar] [CrossRef]
- Paderni, D.; Giorgi, L.; Fusi, V.; Formica, M.; Ambrosi, G.; Micheloni, M. Chemical sensors for rare earth metal ions. Coord. Chem. Rev. 2021, 429, 213639. [Google Scholar] [CrossRef]
- Clapsaddle, B.; Neumann, B.; Wittstock, A.; Sprehn, D.; Gash, A.; Satcher, J., Jr.; Simpson, R.; Bäumer, M. A sol-gel methodology for the preparation of lanthanide-oxide aerogels: Preparation and characterization. J. Sol-Gel Sci. Technol. 2012, 64, 381–389. [Google Scholar] [CrossRef]
- Leventis, N.; Vassilaras, P.; Fabrizio, E.F.; Dass, A. Polymer nanoencapsulated rare earth aerogels: Chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J. Mater. Chem. 2007, 17, 1502–1508. [Google Scholar] [CrossRef]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Saf. Health Work 2013, 4, 12–26. [Google Scholar] [CrossRef]
- Yao, C.; Yao, C.; Tong, Y. Lanthanide ion-based luminescent nanomaterials for bioimaging. Trends Anal. Chem. 2012, 39, 60–71. [Google Scholar] [CrossRef]
- He, B.-X.; Liang, Y.; Xu, L.-W.; Shao, L.-B.; Liu, D.-G.; Yang, F.; Liang, G.-J. Extraction of REEs (Ce, Tb, Y, Eu) from Phosphors Waste by a Combined Alkali Roasting-Acid Leaching Process. Minerals 2021, 11, 437. [Google Scholar] [CrossRef]
- Zhou, J.; Leaño, J., Jr.; Liu, Z.; Jin, D.; Wong, K.-L.; Liu, R.-S.; Bünzli, J.-C. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2012, 14, e1801882. [Google Scholar] [CrossRef] [PubMed]
- Tshikovhi, A.; Koao, L.F.; Malevu, T.D.; Linganiso, E.C.; Motaung, T.E. Dopants concentration on the properties of various host materials by sol-gel method: Critical review. Results Mater. 2023, 19, 100447. [Google Scholar] [CrossRef]
- Sakka, S. Birth of the sol–gel method: Early history. J. Sol-Gel Sci. Technol. 2022, 102, 478–481. [Google Scholar] [CrossRef]
- Olvera, A.; García, M.; López, P.; López, A.; Reyes, A.; Morales, Á.; Hernández, F.; Aguilera, L. Influence of Eu3+ doping content on antioxidant properties of Lu2O3 sol-gel derived nanoparticles. Mater. Sci. Eng. C 2016, 69, 850–855. [Google Scholar] [CrossRef]
- Kameneva, S.; Yorov, K.; Kamilov, R.; Kottsov, S.; Teplonogova, M.; Khamova, T.; Popkov, M.; Tronev, I.; Baranchikov, A.; Ivanov, V. Epoxide synthesis of binary rare earth oxide aerogels with high molar ratios (1:1) of Eu, Gd, and Yb. J. Sol-Gel Sci. Technol. 2023, 107, 586–597. [Google Scholar] [CrossRef]
- García, V.M.; García, A.; Carrillo, F.; Álvarez, R.I.; Madrigal, E. A New Ultrafine Luminescent La2O3:Eu3+ Aerogel. Gels 2023, 9, 615. [Google Scholar] [CrossRef]
- Chu, W.; Guo, S.; Zhang, J.; Liu, X.; Zhao, X.; Yi, X.; Liu, B. Rare earth lanthanum based aerogels with reduced chlorine ions by a modified epoxide gelation method. Chem. Phys. Lett. 2020, 761, 138072. [Google Scholar] [CrossRef]
- Worsley, M.; Ilsemann, J.; Gesing, T.; Zielasek, V.; Nelson, A.; Ferreira, R.; Carlos, L.; Gash, A.; Bäumer, M. Chlorine-free, monolithic lanthanide series rare earth oxide aerogels via epoxide-assisted sol-gel method. J. Sol-Gel Sci. Technol. 2018, 89, 176–188. [Google Scholar] [CrossRef]
- Kistler, S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Stergar, J.; Maver, U. Review of aerogel-based materials in biomedical applications. J. Sol-Gel Sci. Technol. 2016, 77, 738–752. [Google Scholar] [CrossRef]
- Smirnova, I. Aerogels: Current status and challenges for the future. J. Supercrit. Fluids 2015, 106, 1. [Google Scholar] [CrossRef]
- Ferreira-Gonçalves, T.; Constantin, C.; Neagu, M.; Pinto, C.; Sabri, F.; Simón-Vázquez, R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed. Pharmacother. 2021, 144, 112356. [Google Scholar] [CrossRef] [PubMed]
- Montes, S.; Maleki, H. Aerogels and their applications. In Colloidal Metal Oxide Nanoparticles Synthesis, Characterization and Applications, 1st ed.; Thomas, S., Tresa, A., Velayudhan, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 1, pp. 337–399. [Google Scholar]
- Rusch, P.; Zámbó, D.; Bigall, N.C. Control over Structure and Properties in Nanocrystal Aerogels at the Nano-, Micro-, and Macroscale. Acc. Chem. Res. 2020, 53, 2414–2424. [Google Scholar] [CrossRef]
- Noman, M.T.; Amor, N.; Ali, A.; Petrik, S.; Coufal, R.; Adach, K.; Fijalkowski, M. Aerogels for Biomedical, Energy and Sensing Applications. Gels 2021, 7, 264. [Google Scholar] [CrossRef]
- Keller, J.; Wiemann, M.; Gröters, S.; Werle, K.; Vennemann, A.; Landsiedel, R.; Wohlleben, W. Aerogels are not regulated as nanomaterials, but can be assessed by tiered testing and grouping strategies for nanomaterials. Nanoscale Adv. 2021, 3, 3881–3893. [Google Scholar] [CrossRef]
- Bheekhun, N.; Rahim, A.; Talib, A.; Hassan, M.R. Aerogels in Aerospace: An Overview. Adv. Mater. Sci. Eng. 2013, 2013, 406065. [Google Scholar] [CrossRef]
- Fricke, J. Aerogels and their applications. J. Non-Cryst. Solids 1992, 147–148, 356–362. [Google Scholar] [CrossRef]
- Esquivel-Castro, T.A.; Ibarra-Alonso, M.C.; Oliva, J.; Martínez-Luévanos, A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. Mater. Sci. Eng. C 2019, 96, 915–940. [Google Scholar] [CrossRef]
- Innocenzi, P. Sol-gel processing for advanced ceramics, a perspective. Open Ceram. 2023, 16, 100477. [Google Scholar] [CrossRef]
- Pierre, A.C.; Pajonk, M. Chemistry of Aerogels and Their Applications. Chem. Rev. 2002, 102, 4243–4265. [Google Scholar] [CrossRef] [PubMed]
- Carrol, M.K.; Anderson, A.M. Twenty years of aerogel research at an undergraduate institution. J. Sol-Gel Sci. Technol. 2023, 1, 1–12. [Google Scholar] [CrossRef]
- Rechberger, F.; Niederberger, M. Synthesis of aerogels: From molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horiz. 2017, 2, 6–30. [Google Scholar] [CrossRef] [PubMed]
- García-González, C.A.; Camino-Rey, M.C.; Alnaief, M.; Zetzl, C.; Smirnova, I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J. Supercrit. Fluids 2012, 66, 297–306. [Google Scholar] [CrossRef]
- Lazrag, M.; Lemaitre, C.; Castel, C.; Hannachi, A.; Barth, D. Aerogel production by supercritical drying of organogels: Experimental study and modelling investigation of drying kinetics. J. Supercrit. Fluids 2018, 140, 394–405. [Google Scholar] [CrossRef]
- Scherer, G.W. Characterization of aerogels. Adv. Colloid Interface Sci. 1998, 76–77, 321–339. [Google Scholar] [CrossRef]
- Lebedev, A.E.; Lovskaya, D.D.; Menshutina, N.V. Modeling and scale-up of supercritical fluid processes. Part II: Supercritical drying of gel particles. J. Supercrit. Fluids 2021, 174, 105238. [Google Scholar] [CrossRef]
- Vareda, J.P.; Lamy-Mendes, A.; Durães, L. A reconsideration on the definition of the term aerogel based on current drying trends. Microporous Mesoporous Mater. 2018, 258, 211–216. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Guo, H. Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers. J. Rare Earths 2010, 28, 232–235. [Google Scholar] [CrossRef]
- Carrera, M.; García, A.; Carrillo, F.; García-Hernández, M.; Morales, A.; Velumani, S.; Rosa, E.; Kassiba, A. Lu2O3:Eu3+ glass ceramic films: Synthesis, structural and spectroscopic studies. Mater. Res. Bull. 2014, 51, 418–425. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, Z.; Wang, Y.; Wan, H.; Xu, Z.; Mao, R.; Feng, H.; Zhao, J. Afterglow Behavior, Energy Transfer and Trap States in Lu2O3:Eu Single Crystal Scintillator. ECS J. Solid State Sci. Technol. 2018, 7, R17–R20. [Google Scholar] [CrossRef]
- Zych, E.; Trojan-Piegza, J. Anomalous activity of Eu3+ in S6 site of Lu2O3 in persistent luminescence. J. Lumin. 2007, 122–123, 335–338. [Google Scholar] [CrossRef]
- Feng, H.; Zhuang, L.; Huang, S.; Zhang, Z.; Xu, Z.; Mao, R.; Zhao, J. Correlation of afterglow, trap states and site preference in RE2O3:1%Eu (RE = Lu, Y, Sc) single crystal scintillators. J. Lumin. 2018, 209, 232–236. [Google Scholar] [CrossRef]
- Zhuang, L.; Feng, H.; Huang, S.; Zhang, Z.; Yong, W.; Mao, R.; Zhao, J. The luminescent properties comparison of RE2O3:Eu(RE=Lu,Y,Sc) with high and low Eu doping concentrations. J. Alloys Compd. 2019, 781, 302–307. [Google Scholar] [CrossRef]
- Won, H.; Kim, D.H. Luminescent Properties of Lu2O3:Eu3+ Nanophosphors Synthesized by Using Acid-Catalyzed Sol-Gel Method. New Phys. Sae Mulli 2013, 63, 319–323. [Google Scholar] [CrossRef]
- Jia, G.; You, H.; Zheng, Y.; Liu, K.; Guo, N.; Zhang, H. Synthesis and characterization of highly uniform Lu2O3:Ln3+ (Ln = Eu, Er, Yb) luminescent hollow microspheres. CrystEngComm 2010, 12, 2943–2948. [Google Scholar] [CrossRef]
- Gao, Y.; Gong, J.; Fan, M.; Fang, Q.; Wang, N.; Han, W.; Xu, Z. Large-scale synthesis of Lu2O3:Ln3+ (Ln3+ = Eu3+, Tb3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) microspheres and their photoluminescence properties. Mater. Res. Bull. 2012, 47, 4137–4145. [Google Scholar] [CrossRef]
- Popielarski, P.; Zeler, J.; Bolek, P.; Zorenko, T.; Paprocki, K.; Zych, E.; Zorenko, Y. Radio-, Thermo- and Photoluminescence Properties of Lu2O3:Eu and Lu2O3:Tb Nanopowder and Film Scintillators. Crystals 2019, 9, 148. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, C.; Du, J.; Li, X.; Jia, X.; Jia, G. Controllable synthesis and luminescence properties of monodisperse lutetium oxide spheres with tunable particle sizes and multicolor emissions. J. Alloys Compd. 2021, 867, 159029. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, J.; Sun, Y.; Ding, F.; Fan, H.; Shi, S.; Fang, Q.; Bi, Y.; Gao, Y. Facile Synthesis and Down-Conversion Emission of RE3+-Doped Lutetium Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2017, 18, 2850–2855. [Google Scholar] [CrossRef]
- Nair, S.G.; Satapathy, J.; Kumar, N.P. Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (BiFeO3). Appl. Phys. A 2020, 126, 836. [Google Scholar] [CrossRef]
- Shakirzyanov, R.I.; Volodina, N.O.; Kozlovskiy, A.L.; Zdorovets, M.V.; Shlimas, D.I.; Borgekov, D.B.; Garanin, Y.A. Study of the Structural, Electrical, and Mechanical Properties and Morphological Features of Y-Doped CeO2 Ceramics with Porous Structure. J. Compos. Sci. 2023, 7, 411. [Google Scholar] [CrossRef]
- Das, T.; Das, D.; Parashar, K.; Parashar, S.K.S.; Anupama, A.V.; Sahoo, B.; Das, B.K. Influence of Mg doping on structural, dielectric properties and Urbach energy in ZnO ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 2056. [Google Scholar] [CrossRef]
- Bart, C. What is the ‘Lanthanide Contraction’? Inorg. Chem. 2023, 63, 3713–3714. [Google Scholar] [CrossRef] [PubMed]
- Aegerter, M.; Leventis, N.; Koebel, M. Aerogels Handbook (Advances in Sol-Gel Derived Materials and Technologies); Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Thoř, T.; Rubešova, K.; Jakeš, V.; Cajzl, J.; Nádherný, L.; Mikolášova, D.; Beitlerová, A.; Nikl, M. Europium-doped Lu2O3 phosphors prepared by a sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 465, 012009. [Google Scholar] [CrossRef]
- García, V.M.; García, A.; Carrillo, F.; Cervantes, A.; Cayetano, N. Luminescent aerogels of Gd2O3:Eu3+ and Gd2O3:(Eu3+,Tb3+). Bull. Mater. Sci. 2023, 46, 75. [Google Scholar] [CrossRef]
- Iordanova, R.; Milanova, M.; Yordanova, A.; Aleksandrov, L.; Nedyalkov, N.; Kukeva, R.; Petrova, P. Structure and Luminescent Properties of Niobium-Modified ZnO-B2O3:Eu3+ Glass. Materials 2024, 17, 1415. [Google Scholar] [CrossRef]
- Aleksandrov, L.; Yordanova, A.; Milanova, M.; Iordanova, R.; Tzvetkov, P.; Markov, P.; Petrova, P. Glass-Ceramic Materials with Luminescent Properties in the System ZnO-B2O3-Nb2O5-Eu2O3. Molecules 2024, 29, 3452. [Google Scholar] [CrossRef]
- Trond, S.; Martin, J.; Stanavage, J.; Smith, A. Properties of Some Selected Europium-Activated Red Phosphors. J. Electrochem. Soc. 1969, 116, 1047–1050. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.L.; Rouquerol, F. Is the BET Equation Applicable to Microporous Adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Matter, F.; Luna, A.L.; Niederberger, M. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 2020, 30, 100827. [Google Scholar] [CrossRef]
- Cheng, W.; Rechberger, F.; Niederberger, M. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties. ACS Nano 2016, 10, 2467–2475. [Google Scholar] [CrossRef]
Ceramic Powder|Crystallized Aerogel | Eu2O3 mol% | System | Description |
---|---|---|---|
CPLu|CALu | 0 | Lu2O3 | Host matrix |
CPLu2|CALu2 | 2 | Lu2O3:Eu3+ | Doping |
CPLu5|CALu5 | 5 | ||
CPLu8|CALu8 | 8 | ||
CPLu10|CALu10 | 10 | ||
CPEu|CAEu | 100 | Eu2O3 | Matrix |
Material | Sample | Crystallite Size Average (nm) | Rietveld Analysis D-Spacing (222) Plane (nm) | SAED Analysis D-Spacing (nm) |
---|---|---|---|---|
Ceramic Powders | CPLu | 15.8 | 3 | - |
CPLu2 | 13.11 | 3 | - | |
CPLu5 | 15.7 | 2.9 | - | |
CPLu8 | 9.6 | 3 | - | |
CPLu10 | 10.3 | 3 | 2.9 | |
CPEu | - | 3.1 | - | |
Crystallized Aerogels | CALu | 17.7 | 2.99 | - |
CALu2 | 10.4 | 2.99 | - | |
CALu5 | 17.1 | 2.99 | - | |
CALu8 | 8.2 | 3 | - | |
CALu10 | 13.5 | 2.99 | 2.99 | |
CAEu | - | 3.1 | - |
Sample | a/b/c [Å] | Volume [Å3] | α/β/γ [°] | |
---|---|---|---|---|
Ceramic Powders | CPLu | 10.38/10.38/10.38 | 1119.584 | 90/90/90 |
CPLu2 | 10.40/10.40/10.40 | 1127.454 | ||
CPLu5 | 10.42/10.42/10.42 | 1133.297 | ||
CPLu8 | 10.45/10.45/10.45 | 1141.643 | ||
CPLu10 | 10.47/10.47/10.47 | 1148.084 | ||
CPEu | 10.85/10.85/10.85 | 1280.276 | ||
Crystallized Aerogels | CALu | 10.39/10.39/10.39 | 1124.719 | |
CALu2 | 10.41/10.41/10.41 | 1128.958 | ||
CALu5 | 10.41/10.41/10.41 | 1130.718 | ||
CALu8 | 10.45/10.45/10.45 | 1141.607 | ||
CALu10 | 10.45/10.45/10.45 | 1142.101 | ||
CAEu | 10.87/10.87/10.87 | 1287.275 |
Sample | Chromaticity Coordinates (x, y) | R | Quantum Yield (%) | Ref. | |
---|---|---|---|---|---|
Ceramic Powders | CPLu | - | - | - | n.a. |
CPLu2 | (0.4983, 0.3388) | 3.88 | - | ||
CPLu5 | (0.5266, 0.3349) | 4.1 | - | ||
CPLu8 | (0.5128, 0.3243) | 4.1 | - | ||
CPLu10 | (0.4823, 0.3128) | 4.2 | 17.1 | ||
CPEu | (0.6322, 0.3673) | 2 | 2.03 | ||
Crystallized Aerogels | CALu | - | - | - | |
CALu2 | (0.4855, 0.3284) | 4.1 | - | ||
CALu5 | (0.4915, 0.3291) | 4.1 | - | ||
CALu8 | (0.4635, 0.3184) | 4.09 | - | ||
CALu10 | (0.5383, 0.3318) | 4.6 | 37.92 | ||
CAEu | (0.6220, 0.3775) | 1.45 | 1.05 | ||
92% Gd-8% Eu | - | 7.47 | 2.4 | [60] | |
50ZnO:47B2O3: 3Nb2O3:0.5Eu2O3 | (0.656, 0.343) | 5.16 | - | [61] | |
Glass-ceramics 25 h | (0.652, 0.348) | 5.49 | - | [62] | |
NTSC red phosphors standard | (0.67, 0.33) | - | - | [61] | |
Y2O2S:Eu3+ | (0.658, 0.340) | - | - | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcantar Mendoza, A.D.; García Murillo, A.; Carrillo Romo, F.d.J.; Guzmán Mendoza, J. Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels. Gels 2024, 10, 736. https://doi.org/10.3390/gels10110736
Alcantar Mendoza AD, García Murillo A, Carrillo Romo FdJ, Guzmán Mendoza J. Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels. Gels. 2024; 10(11):736. https://doi.org/10.3390/gels10110736
Chicago/Turabian StyleAlcantar Mendoza, Alan D., Antonieta García Murillo, Felipe de J. Carrillo Romo, and José Guzmán Mendoza. 2024. "Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels" Gels 10, no. 11: 736. https://doi.org/10.3390/gels10110736
APA StyleAlcantar Mendoza, A. D., García Murillo, A., Carrillo Romo, F. d. J., & Guzmán Mendoza, J. (2024). Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels. Gels, 10(11), 736. https://doi.org/10.3390/gels10110736