Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of the Anti-Drying Stretchable Hydrogel
2.2. Fabrication of the Shape-Transformable Organohydrogel
2.3. Mechanical Characterization of a Gallium-Reinforced Shape-Transformable Organohydrogel
2.4. Demonstration of Shape-Transformable Organohydrogel Behavior
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Stretchable Anti-Drying Organohydrogel
4.3. Fabrication of the Gallium Mesh Frame
4.4. Mechanical Analysis of the Organohydrogels
4.5. Shape Fixation and Recovery Test
4.6. Thermal Imaging of the Shape Recovery Process of a Shape-Transformable Organohydrogel
4.7. FTIR Analysis of the Organohydrogels
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Dayyoub, T.; Maksimkin, A.V.; Filippova, O.V.; Tcherdyntsev, V.V.; Telyshev, D.V. Shape Memory Polymers as Smart Materials: A Review. Polymers 2022, 14, 3511. [Google Scholar] [CrossRef] [PubMed]
- Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-Memory Polymers for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1909047. [Google Scholar] [CrossRef]
- Lin, S.; Yuk, H.; Zhang, T.; Parada, G.A.; Koo, H.; Yu, C.; Zhao, X. Stretchable Hydrogel Electronics and Devices. Adv. Mater. 2016, 28, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel Bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef]
- Li, S.; Cong, Y.; Fu, J. Tissue Adhesive Hydrogel Bioelectronics. J. Mater. Chem. B 2021, 9, 4423–4443. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers 2022, 14, 3023. [Google Scholar] [CrossRef]
- Cha, G.D.; Lee, W.H.; Sunwoo, S.-H.; Kang, D.; Kang, T.; Cho, K.W.; Kim, M.; Park, O.K.; Jung, D.; Lee, J.; et al. Multifunctional Injectable Hydrogel for In Vivo Diagnostic and Therapeutic Applications. ACS Nano 2022, 16, 554–567. [Google Scholar] [CrossRef]
- Choi, H.; Kim, Y.; Kim, S.; Jung, H.; Lee, S.; Kim, K.; Han, H.-S.; Kim, J.Y.; Shin, M.; Son, D. Adhesive Bioelectronics for Sutureless Epicardial Interfacing. Nat. Electron. 2023, 6, 779–789. [Google Scholar] [CrossRef]
- Korde, J.M.; Kandasubramanian, B. Naturally Biomimicked Smart Shape Memory Hydrogels for Biomedical Functions. Chem. Eng. J. 2020, 379, 122430. [Google Scholar] [CrossRef]
- Farrukh, A.; Nayab, S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Ramey-Ward, A.N.; Salaita, K. Programmable Mechanically Active Hydrogel-Based Materials. Adv. Mater. 2021, 33, 2006600. [Google Scholar] [CrossRef] [PubMed]
- Tartivel, L.; Blocki, A.M.; Braune, S.; Jung, F.; Behl, M.; Lendlein, A. An Inverse Shape-Memory Hydrogel Scaffold Switching Upon Cooling in a Tissue-Tolerated Temperature Range. Adv. Mater. Interfaces 2022, 9, 2101588. [Google Scholar] [CrossRef]
- Zhu, C.N.; Bai, T.; Wang, H.; Ling, J.; Huang, F.; Hong, W.; Zheng, Q.; Wu, Z.L. Dual-Encryption in a Shape-Memory Hydrogel with Tunable Fluorescence and Reconfigurable Architecture. Adv. Mater. 2021, 33, 2102023. [Google Scholar] [CrossRef]
- Yang, T.; Wang, M.; Jia, F.; Ren, X.; Gao, G. Thermo-Responsive Shape Memory Sensors Based on Tough, Remolding and Anti-Freezing Hydrogels. J. Mater. Chem. C 2020, 8, 2326–2335. [Google Scholar] [CrossRef]
- Liang, R.; Yu, H.; Wang, L.; Lin, L.; Wang, N.; Naveed, K.-R. Highly Tough Hydrogels with the Body Temperature-Responsive Shape Memory Effect. ACS Appl. Mater. Interfaces 2019, 11, 43563–43572. [Google Scholar] [CrossRef]
- Zhang, Y.; Desai, M.S.; Wang, T.; Lee, S.-W. Elastin-Based Thermoresponsive Shape-Memory Hydrogels. Biomacromolecules 2020, 21, 1149–1156. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, H.; Wang, H.; Xu, Z.; Chen, X.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L.; Li, Y.; et al. Radiopaque Highly Stiff and Tough Shape Memory Hydrogel Microcoils for Permanent Embolization of Arteries. Adv. Funct. Mater. 2018, 28, 1705962. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Meng, F.; Xu, Z.; Hao, L.; Yao, Y.; Zhu, H.; Wang, C.; Wu, J.; Bian, S.; et al. 4D Printed Hydrogel Scaffold with Swelling-Stiffening Properties and Programmable Deformation for Minimally Invasive Implantation. Nat. Commun. 2024, 15, 1587. [Google Scholar] [CrossRef]
- Costa, D.C.S.; Costa, P.D.C.; Gomes, M.C.; Chandrakar, A.; Wieringa, P.A.; Moroni, L.; Mano, J.F. Universal Strategy for Designing Shape Memory Hydrogels. ACS Mater. Lett. 2022, 4, 701–706. [Google Scholar] [CrossRef]
- Byun, S.-H.; Sim, J.Y.; Zhou, Z.; Lee, J.; Qazi, R.; Walicki, M.C.; Parker, K.E.; Haney, M.P.; Choi, S.H.; Shon, A.; et al. Mechanically Transformative Electronics, Sensors, and Implantable Devices. Sci. Adv. 2019, 5, eaay0418. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.; Kim, C.S.; Agno, K.; Lee, S.; Li, Z.; Cho, B.J.; Jeong, J. Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning Using Graphene and Flexible Thermoelectric Device Interfaces. Adv. Mater. 2021, 33, 2007239. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.P.; Li, C.Y.; Zhang, C.W.; Du, M.; Ying, Z.; Zheng, Q.; Wu, Z.L. Self-Shaping Soft Electronics Based on Patterned Hydrogel with Stencil-Printed Liquid Metal. Adv. Funct. Mater. 2021, 31, 2105481. [Google Scholar] [CrossRef]
- Nam, S.; Cha, G.D.; Sunwoo, S.; Jeong, J.H.; Kang, H.; Park, O.K.; Lee, K.; Oh, S.; Hyeon, T.; Choi, S.H.; et al. Needle-Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics. Adv. Mater. 2024, 36, 2404101. [Google Scholar] [CrossRef] [PubMed]
- Ohm, Y.; Pan, C.; Ford, M.J.; Huang, X.; Liao, J.; Majidi, C. An Electrically Conductive Silver–Polyacrylamide–Alginate Hydrogel Composite for Soft Electronics. Nat. Electron. 2021, 4, 185–192. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Zhao, X.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133–136. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.; Zhou, X. Synthesis Antifreezing and Antidehydration Organohydrogels: One-Step In-Situ Gelling versus Two-Step Solvent Displacement. Polymers 2020, 12, 2670. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Lopes, P.; Carneiro, M.; Serra, A.; Coelho, J.; De Almeida, A.T.; Tavakoli, M. Nondrying, Sticky Hydrogels for the Next Generation of High-Resolution Conformable Bioelectronics. ACS Appl. Electron. Mater. 2020, 2, 3390–3401. [Google Scholar] [CrossRef]
- Tang, J.; He, Y.; Xu, D.; Zhang, W.; Hu, Y.; Song, H.; Zhang, Y.; Chen, Y.M.; Yang, Y.; Zhang, K. Tough, Rapid Self-Recovery and Responsive Organogel-Based Ionotronic for Intelligent Continuous Passive Motion System. Npj Flex. Electron. 2023, 7, 28. [Google Scholar] [CrossRef]
- Jiang, Z.; Abbasi, B.B.A.; Aloko, S.; Mokhtari, F.; Spinks, G.M. Ultra-Soft Organogel Artificial Muscles Exhibiting High Power Density, Large Stroke, Fast Response and Long-Term Durability in Air. Adv. Mater. 2023, 35, 2210419. [Google Scholar] [CrossRef]
- Giz, A.S.; Aydelik-Ayazoglu, S.; Catalgil-Giz, H.; Bayraktar, H.; Alaca, B.E. Stress Relaxation and Humidity Dependence in Sodium Alginate-Glycerol Films. J. Mech. Behav. Biomed Mater. 2019, 100, 103374. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Xiao, X. High Cycle-Life Shape Memory Polymer at High Temperature. Sci. Rep. 2016, 6, 33610. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jang, S.; Choi, S.; Yang, J.; Kim, J.; Choi, D. Analysis of Shape Memory Behavior and Mechanical Properties of Shape Memory Polymer Composites Using Thermal Conductive Fillers. Micromachines 2021, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Choi, Y.; Bae, Y.M.; Nam, S.; Shin, K. Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame. Gels 2024, 10, 769. https://doi.org/10.3390/gels10120769
Lee M, Choi Y, Bae YM, Nam S, Shin K. Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame. Gels. 2024; 10(12):769. https://doi.org/10.3390/gels10120769
Chicago/Turabian StyleLee, Mincheol, Youngjin Choi, Young Min Bae, Seonghyeon Nam, and Kiyoung Shin. 2024. "Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame" Gels 10, no. 12: 769. https://doi.org/10.3390/gels10120769
APA StyleLee, M., Choi, Y., Bae, Y. M., Nam, S., & Shin, K. (2024). Stretchable and Shape-Transformable Organohydrogel with Gallium Mesh Frame. Gels, 10(12), 769. https://doi.org/10.3390/gels10120769