Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of SXE-NTF Formulations
2.2. Response Y1 (Effect of Independent Variables on Vesicle Size)
2.3. Response Y2 (Effect of Independent Variables on PDI)
2.4. Response Y3 (Effect of Independent Variables on % EE)
2.5. Vesicle Size and PDI
2.6. Zeta Potential (ZP)
2.7. Estimation of Entrapment Efficiency and Drug-Loading (DL) Capacity
2.8. Transmission Electron Microscopy Imaging (TEM)
2.9. Thermal Analysis with Differential Scanning Calorimeter (DSC)
2.10. Extract and Excipient Compatibility Study Using Fourier Transform Infrared (FTIR) Spectroscopy
2.11. In Vitro Release Study
2.12. DPPH Antioxidant Assay
2.13. Characterization and Evaluation of SXE-NTF Gel
2.14. Ex Vivo Skin Permeation
2.15. Confocal Laser Scanning Microscopy
2.16. Dermatokinetics
2.17. Stability
2.18. Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction Preparation of Solanum xanthocarpum
4.2.2. Method of Preparation of Transferosome
4.2.3. Optimization
4.2.4. Method of Preparation of Gel Containing SXE-NTFs
4.2.5. Characterization
Vesicle Characterization
Entrapment Efficiency and Drug-Loading Capacity
Morphological Analysis by TEM
Lyophilization
Thermal Analysis
Excipients Compatibility by FTIR
4.2.6. Drug Release Study
4.2.7. Antioxidant Activity
4.2.8. Characterization and Evaluation of SXE-NTF Gel
pH
Extrudability
Spreadability
Texture Analysis
4.2.9. Ex Vivo Skin Permeation Study
4.2.10. Confocal Laser Scanning Microscopy (CLSM)
4.2.11. Dermatokinetic
4.2.12. Stability Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamata, M.; Tada, Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front. Immunol. 2022, 13, 941071. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, J.E.; Chan, T.C.; Krueger, J.G. Psoriasis Pathogenesis and the Development of Novel Targeted Immune Therapies. J. Allergy Clin. Immunol. 2017, 140, 645–653. [Google Scholar] [CrossRef]
- Damiani, G.; Bragazzi, N.L.; Aksut, C.K.; Wu, D.; Alicandro, G.; McGonagle, D.; Guo, C.; Dellavalle, R.; Grada, A.; Wong, P.; et al. The Global, Regional, and National Burden of Psoriasis: Results and Insights from the Global Burden of Disease 2019 Study. Front. Med. 2021, 8, 743180. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA J. Am. Med. Assoc. 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Ramanunny, A.K.; Wadhwa, S.; Singh, S.K.; Sharma, D.S.; Khursheed, R.; Awasthi, A. Treatment Strategies against Psoriasis: Principle, Perspectives and Practices. Curr. Drug Deliv. 2020, 17, 52–73. [Google Scholar] [CrossRef]
- Parmar, K.M.; Itankar, P.R.; Joshi, A.; Prasad, S.K. Anti-Psoriatic Potential of Solanum Xanthocarpum Stem in Imiquimod-Induced Psoriatic Mice Model. J. Ethnopharmacol. 2017, 198, 158–166. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Medicinal Attributes of Solanum Xanthocarpum Fruit Consumed by Several Tribal Communities as Food: An In Vitro Antioxidant, Anticancer and Anti HIV Perspective. BMC Complement. Altern. Med. 2014, 14, 112. [Google Scholar] [CrossRef]
- Arumuganainar, D.; Subramaniam, G.; Kurumathur Vasudevan, A.; Subbusamy Kanakasabapathy, B. An In Vitro Evaluation of the Antibacterial Efficacy of Solanum Xanthocarpum Extracts on Bacteria from Dental Plaque Biofilm. Cureus 2023, 15, e45202. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Liu, Y.; Wang, S.-Y.; Li, Z.-W.; Lu, D.-X.; Jiang, P.; Pan, J.; Guan, W.; Kuang, H.-X.; Yang, B.-Y. Phenolic Compounds of Solanum Xanthocarpum Play an Important Role in Anti-Inflammatory Effects. Arab. J. Chem. 2022, 15, 103877. [Google Scholar] [CrossRef]
- Khan, A.; Qadir, A.; Ali, F.; Aqil, M. Phytoconstituents Based Nanomedicines for the Management of Psoriasis. J. Drug Deliv. Sci. Technol. 2021, 64, 102663. [Google Scholar] [CrossRef]
- Benson, H.A. Transfersomes for Transdermal Drug Delivery. Expert Opin. Drug Deliv. 2006, 3, 727–737. [Google Scholar] [CrossRef]
- Kadu, P.J.; Kushare, S.S.; Thacker, D.D.; Gattani, S.G. Enhancement of Oral Bioavailability of Atorvastatin Calcium by Self-Emulsifying Drug Delivery Systems (SEDDS). Pharm. Dev. Technol. 2011, 16, 65–74. [Google Scholar] [CrossRef]
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, D.; Horváth, S.; Kemény, Á.; Varga-Medveczky, Z.; Pongor, C.; Molnár, R.; Mihály, A.; Farkas, D.; Naszlady, B.M.; Fülöp, A.; et al. Drug Delivery through the Psoriatic Epidermal Barrier—A “Skin-On-A-Chip” Permeability Study and Ex Vivo Optical Imaging. Int. J. Mol. Sci. 2022, 23, 4237. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Kim, M. Challenges and Future Trends in the Treatment of Psoriasis. Int. J. Mol. Sci. 2023, 24, 13313. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Perlak, M.; Szpadel, K.; Jabłońska, I.; Pizon, M.; Woźniak, M. Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022, 27, 591. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Madan, S.; Walia, R.; Tyagi, R.; Fantoukh, O.I.; Hawwal, M.F.; Akhtar, A.; Almarabi, I.; Alam, P.; Saxena, S. Multi-Target Mechanism of Solanum Xanthocarpum for Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. Saudi Pharm. J. 2023, 31, 101788. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Fernández-García, R.; Lalatsa, A.; Statts, L.; Bolás-Fernández, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as Nanocarriers for Drugs across the Skin: Quality by Design from Lab to Industrial Scale. Int. J. Pharm. 2020, 573, 118817. [Google Scholar] [CrossRef]
- Waheed, A.; Zameer, S.; Sultana, N.; Ali, A.; Aqil, M.; Sultana, Y.; Iqbal, Z. Engineering of QbD Driven and Ultrasonically Shaped Lyotropic Liquid Crystalline nanoparticles for Apigenin in the management of Skin Cancer. Eur. J. Pharm. Biopharm. 2022, 180, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Qadir, A.; Aqil, M.; Ali, A.; Warsi, M.H.; Mujeeb, M.; Ahmad, F.J.; Ahmad, S.; Beg, S. Nanostructured Lipidic Carriers for Dual Drug Delivery in the Management of Psoriasis: Systematic Optimization, Dermatokinetic and Preclinical Evaluation. J. Drug Deliv. Sci. Technol. 2020, 57, 101775. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Song, Y.; Lan, L.; Wang, J.; Xu, X.; Du, Y. Nano Transdermal System Combining Mitochondria-Targeting Cerium Oxide Nanoparticles with All-Trans Retinoic Acid for Psoriasis. Asian J. Pharm. Sci. 2023, 18, 100846. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.T.; Vir, S.; Bhutani, K.K. Liquid Chromatography–Mass Spectrometry-Based Quantification of Steroidal Glycoalkaloids from Solanum Xanthocarpum and Effect of Different Extraction Methods on Their Content. J. Chromatogr. A 2008, 1208, 141–146. [Google Scholar] [CrossRef]
- Ali, M.; Salem, H.; Abdelmohsen, H.; Attia, S. Preparation and Clinical Evaluation of Nano-Transferosomes for Treatment of Erectile Dysfunction. Drug Des. Dev. Ther. 2015, 9, 2431–2447. [Google Scholar] [CrossRef]
- Alyahya, E.M.; Alwabsi, K.; Aljohani, A.E.; Albalawi, R.; El-Sherbiny, M.; Ahmed, R.; Mortagi, Y.; Qushawy, M. Preparation and Optimization of Itraconazole Transferosomes-Loaded HPMC Hydrogel for Enhancing Its Antifungal Activity: 2^3 Full Factorial Design. Polymers 2023, 15, 995. [Google Scholar] [CrossRef]
- Ali, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Parveen, A.; Qadir, A.; Ali, M.H.; Akhtar, M. Formulation and Evaluation of Embelin Loaded Nanoliposomes: Optimization, In Vitro and Ex Vivo Evaluation. J. Drug Deliv. Sci. Technol. 2022, 72, 103414. [Google Scholar] [CrossRef]
- Gupta, D.K.; Aqil, M.; Ahad, A.; Imam, S.S.; Waheed, A.; Qadir, A.; Iqubal, M.K.; Sultana, Y. Tailoring of Berberine Loaded Transniosomes for the Management of Skin Cancer in Mice. J. Drug Deliv. Sci. Technol. 2020, 60, 102051. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Hsiao, C.-Y.; Alshetaili, A.; Aljuffali, I.A.; Chen, E.-L.; Fang, J.-Y. Lipid-Based Nanoformulation Optimization for Achieving Cutaneous Targeting: Niosomes as the potential candidates to Fulfill This Aim. Eur. J. Pharm. Sci. 2023, 186, 106458. [Google Scholar] [CrossRef]
- Yue, P.-F.; Lu, X.-Y.; Zhang, Z.-Z.; Yuan, H.-L.; Zhu, W.-F.; Zheng, Q.; Yang, M. The Study on the Entrapment Efficiency and In Vitro Release of Puerarin Submicron Emulsion. AAPS PharmSciTech 2009, 10, 376–383. [Google Scholar] [CrossRef]
- Abd-Elghany, A.A.; Mohamad, E.A. Ex-Vivo Transdermal Delivery of Annona Squamosa Entrapped in Niosomes by Electroporation. J. Radiat. Res. Appl. Sci. 2020, 13, 164–173. [Google Scholar] [CrossRef]
- Raghuwanshi, N.; Yadav, T.C.; Srivastava, A.K.; Raj, U.; Varadwaj, P.; Pruthi, V. Structure-Based Drug Designing and Identification of Woodfordia Fruticosa Inhibitors Targeted against Heat Shock Protein (HSP70-1) as Suppressor for Imiquimod-Induced Psoriasis like Skin Inflammation in Mice Model. Mater. Sci. Eng. C 2019, 95, 57–71. [Google Scholar] [CrossRef]
- Gledovic, A.; Lezaic, A.J.; Nikolic, I.; Tasic-Kostov, M.; Antic-Stankovic, J.; Krstonosic, V.; Randjelovic, D.; Bozic, D.; Ilic, D.; Tamburic, S.; et al. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. Nanomaterials 2021, 11, 217. [Google Scholar] [CrossRef]
- Jayachandran, P.; Ilango, S.; Suseela, V.; Nirmaladevi, R.; Shaik, M.R.; Khan, M.; Khan, M.; Shaik, B. Green Synthesized Silver Nanoparticle-Loaded Liposome-Based Nanoarchitectonics for Cancer Management: In Vitro Drug Release Analysis. Biomedicines 2023, 11, 217. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, W.; Li, D.; Schwendeman, A.; Schwendeman, S.P. Predicting Drug Release Kinetics from Nanocarriers inside Dialysis Bags. J. Control. Release 2019, 315, 23–30. [Google Scholar] [CrossRef]
- Lyu, J.I.; Ryu, J.; Seo, K.-S.; Kang, K.-Y.; Park, S.H.; Ha, T.H.; Ahn, J.-W.; Kang, S.-Y. Comparative Study on Phenolic Compounds and Antioxidant Activities of Hop (Humulus lupulus L.) Strobile Extracts. Plants 2022, 11, 135. [Google Scholar] [CrossRef]
- Gupta, S.; Shende, P. L-Proline Adsorbed Oxygen-Loaded Nanobubbles in-Situ Gel for Wound Healing. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129028. [Google Scholar] [CrossRef]
- Moin, A.; Deb, T.; Osmani, R.M.; Bhosale, R.R.; Hani, U. Fabrication, Characterization, and Evaluation of Microsponge Delivery System for Facilitated Fungal Therapy. J. Basic Clin. Pharm. 2016, 7, 39–48. [Google Scholar] [CrossRef]
- Feng, R.; van der Berg, F.W.J.; Mokso, R.; Lillevang, S.K.; Ahrné, L. Structural, Rheological and Functional Properties of Extruded Mozzarella Cheese Influenced by the Properties of the Renneted Casein Gels. Food Hydrocoll. 2023, 137, 108322. [Google Scholar] [CrossRef]
- Idrovo Encalada, A.M.; Pérez, C.D.; Rossetti, L.; Rojas, A.M.; Fissore, E.N. Carrot Pectin Enriched Fraction as a Functional Additive: Antioxidant and Gelling Effects in a Model Spreadable Chia Oil-in-Water Emulsion. Food Hydrocoll. 2020, 108, 106037. [Google Scholar] [CrossRef]
- Walewijk, A.; Cooper-White, J.J.; Dunstan, D.E. Adhesion Measurements between Alginate Gel Surfaces via Texture Analysis. Food Hydrocoll. 2008, 22, 91–96. [Google Scholar] [CrossRef]
- Al-Mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Nano-Transfersomal Ciprofloxacin Loaded Vesicles for Non-Invasive Trans-Tympanic Ototopical Delivery: In-Vitro Optimization, Ex-Vivo Permeation Studies, and In-Vivo Assessment. Int. J. Pharm. 2014, 472, 304–314. [Google Scholar] [CrossRef] [PubMed]
- del Pozo-Rodríguez, A.; Solinís, M.A.; Gascón, A.R.; Pedraz, J.L. Short- and Long-Term Stability Study of Lyophilized Solid Lipid Nanoparticles for Gene Therapy. Eur. J. Pharm. Biopharm. 2009, 71, 181–189. [Google Scholar] [CrossRef] [PubMed]
Formulation Run | X1 p90G (mg) | X2 Cholesterol (mg) | X3 Sodium Cholate (mg) | Y1 Vesicle Size (nm) | Y2 PDI | Y3 EE (%) |
---|---|---|---|---|---|---|
1 | 90 | 5 | 15 | 141.97 | 0.3281 | 90.54 |
2 | 90 | 7.5 | 12.5 | 135.76 | 0.2159 | 85.19 |
3 | 90 | 7.5 | 12.5 | 135.61 | 0.2151 | 84.86 |
4 | 100 | 7.5 | 10 | 168.43 | 0.3051 | 82.79 |
5 | 80 | 5 | 12.5 | 141.09 | 0.2594 | 64.23 |
6 | 100 | 5 | 12.5 | 148.9 | 0.3351 | 88.24 |
7 | 90 | 10 | 10 | 158.9 | 0.313 | 85.39 |
8 | 80 | 10 | 12.5 | 147.8 | 0.3225 | 73.99 |
9 | 100 | 7.5 | 15 | 162.17 | 0.3946 | 87.45 |
10 | 100 | 10 | 12.5 | 157.73 | 0.2724 | 85.91 |
11 | 90 | 7.5 | 12.5 | 136.1 | 0.2157 | 86.45 |
12 | 90 | 10 | 15 | 161.23 | 0.3046 | 92.04 |
13 | 80 | 7.5 | 15 | 152.64 | 0.3076 | 73.86 |
14 | 90 | 7.5 | 12.5 | 135.4 | 0.2157 | 85.68 |
15 | 80 | 7.5 | 10 | 157.98 | 0.3674 | 62.04 |
16 | 90 | 7.5 | 12.5 | 134.7 | 0.2157 | 85.68 |
17 | 90 | 5 | 10 | 160.18 | 0.2915 | 81.79 |
Quadratic Model | R2 | Adjusted R2 | Predicted R2 | Std. Dev. | C.V. % | Adequate Precision |
---|---|---|---|---|---|---|
Response Y1 | 0.9978 | 0.9949 | 0.9715 | 0.8237 | 0.5521 | 52.5036 |
Response Y2 | 1.0000 | 0.9999 | 0.9996 | 0.0005 | 0.1597 | 508.9363 |
Response Y3 | 0.9978 | 0.9950 | 0.9826 | 0.6080 | 0.7403 | 65.3868 |
Korsmeyer Peppas Model | First Order Release Model | Zero Order Release Model | Higuchi Model | |
---|---|---|---|---|
Correlation coefficient (R2) | 0.9755 | 0.9078 | 0.7886 | 0.9393 |
Release exponent (n) | 0.5383 | −0.0004 | 0.0004 | 0.0221 |
Mathematical equation | Qt = ktn | ln Qt = ln Q0 + K1t | Qt = Q0 +K0t | Qt = KH √t |
SXE Gel | SXE Gel | SXE-NTF Gel | SXE-NTF Gel | |
---|---|---|---|---|
Dermatokinetics Parameters | Epidermis | Dermis | Epidermis | Dermis |
Tskin max (h) | 2 ± 0.05 | 2 ± 0.10 | 2 ± 0.05 | 2 ± 0.10 |
Cskin max (μg/cm2) | 121.48 ± 4.00 | 102.68 ± 5.00 | 202.71 ± 9.00 | 175.35 ± 11.00 |
AUC0-t (μg/cm2h) | 464.98 ± 8.00 | 399.07 ± 11.00 | 807.52± 14.00 | 710.87 ± 17.00 |
Ke (h−1) | 0.15 ± 0.003 | 0.15 ± 0.004 | 0.12 ± 0.005 | 0.12 ± 0.002 |
Evaluation Parameters | Initial | 1 Month | 2 Months | 3 Months | |||
---|---|---|---|---|---|---|---|
4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | ||
Appearance | +++ | +++ | +++ | ++ | ++ | ++ | + |
Phase separation | NO | NO | NO | NO | NO | NO | NO |
shape | Spherical | Spherical | Spherical | Spherical | Spherical | Spherical | Spherical |
Vesicle size (nm) | 146.3 | 146.5 | 149.8 | 154.1 | 155.9 | 158.5 | 156.2 |
PDI | 0.2594 | 0.2596 | 0.2607 | 0.2748 | 0.2761 | 0.2811 | 0.2849 |
EE (%) | 82.24 | 81.66 | 78.83 | 79.34 | 73.71 | 75.68 | 70.58 |
Reconstitution time (s) | 10 ± 2 | 11 ± 2 | 15 ± 5 | 10 ± 3 | 16 ± 4 | 14 ± 3 | 20 ± 4 |
Evaluation Parameters | Initial | 1 Month | 2 Months | 3 Months | |||
---|---|---|---|---|---|---|---|
4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | 4 ± 2 °C | 25 ± 2 °C/ 60 ± 5% RH | ||
Color | Slightly Brownish | Slightly Brownish | Slightly Brownish | Slightly Brownish | Slightly Brownish | Slightly Brownish | Slightly Brownish |
Appearance | Translucent | Translucent | Translucent | Translucent | Translucent | Translucent | Translucent |
Phase Separation | NO | NO | NO | NO | NO | NO | NO |
Clarity | YES | YES | YES | YES | YES | YES | YES |
pH | 5.82 ± 0.19 | 5.83 ± 0.05 | 5.84 ± 0.08 | 5.86 ± 0.12 | 5.81 ± 0.06 | 5.85 ± 0.14 | 5.91 ± 0.08 |
Homogeneity | *** | *** | ** | *** | ** | ** | * |
Washability | Washable | Washable | Washable | Washable | Washable | Washable | Washable |
Odor | NO | NO | NO | NO | NO | NO | NO |
Variables | |||
---|---|---|---|
Independent variables | Low | Medium | High |
X1 = p90G (mg) | 80 | 90 | 100 |
X2 = Cholesterol (mg) | 5 | 7.5 | 10 |
X3 = Sodium cholate (mg) | 10 | 12.5 | 15 |
Dependent variables | |||
Y1 = Vesicle size (nm) | |||
Y2 = PDI | |||
Y3 = EE (%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, N.; Alam, P.; Ali, A.; Kumar, N.; Tyagi, R.; Madan, S.; Walia, R.; Saxena, S. Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis. Gels 2024, 10, 119. https://doi.org/10.3390/gels10020119
Sahu N, Alam P, Ali A, Kumar N, Tyagi R, Madan S, Walia R, Saxena S. Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis. Gels. 2024; 10(2):119. https://doi.org/10.3390/gels10020119
Chicago/Turabian StyleSahu, Nilanchala, Perwez Alam, Asad Ali, Neeraj Kumar, Rama Tyagi, Swati Madan, Ramanpreet Walia, and Shikha Saxena. 2024. "Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis" Gels 10, no. 2: 119. https://doi.org/10.3390/gels10020119
APA StyleSahu, N., Alam, P., Ali, A., Kumar, N., Tyagi, R., Madan, S., Walia, R., & Saxena, S. (2024). Optimization, In Vitro and Ex Vivo Assessment of Nanotransferosome Gels Infused with a Methanolic Extract of Solanum xanthocarpum for the Topical Treatment of Psoriasis. Gels, 10(2), 119. https://doi.org/10.3390/gels10020119