Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Multiple Crosslinked Polymers
2.1.1. Molecular Structure
2.1.2. Thermal Property
2.1.3. Micro-Morphology
2.1.4. Colloidal Stability
2.2. Performance Evaluation of Emulsions
2.2.1. Shear-Thinning Behavior
2.2.2. Emulsion Stability
2.3. Performance Evaluation of SBDF
2.3.1. API Rheological Performance
2.3.2. Filtration Performance
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Crosslinked Polymers
4.3. Characterization of Crosslinked Polymers
4.4. Performance Evaluation Methods for SBDF
4.4.1. Preparation of Emulsions and SBDF
4.4.2. Emulsion Rheology Testing
4.4.3. Electrical Stability Testing
4.4.4. API Rheological Testing
4.4.5. Evaluation of Filtration Performance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gautam, S.; Guria, C.; Rajak, V.K. A state of the art review on the performance of high-pressure and high-temperature drilling fluids: Towards understanding the structure-property relationship of drilling fluid additives. J. Petrol. Sci. Eng. 2022, 213, 110318. [Google Scholar] [CrossRef]
- Jiang, G.; Sun, J.; He, Y.; Cui, K.; Dong, T.; Yang, L.; Yang, X.; Wang, X. Novel Water-Based Drilling and Completion Fluid Technology to Improve Wellbore Quality During Drilling and Protect Unconventional Reservoirs. Engineering 2022, 18, 129–142. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, G.; Wang, G.; Yang, L.; He, Y.; Dong, T.; Yuan, X. Performance evaluation of polymer nanolatex particles as fluid loss control additive in water-based drilling fluids. Geoenergy Sci. Eng. 2023, 223, 211462. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Zhang, S.; Liao, B.; Zhao, K.; Li, Y.; Xu, J.; Chen, L. Review of the Perspectives and Study of Thermo-Responsive Polymer Gels and Applications in Oil-Based Drilling Fluids. Gels 2023, 9, 969. [Google Scholar] [CrossRef] [PubMed]
- Kania, D.; Yunus, R.; Omar, R.; Rashid, S.A.; Jan, B.M.; Arsanjani, N. Nonionic polyol esters as thinner and lubricity enhancer for synthetic-based drilling fluids. J. Mol. Liq. 2018, 266, 846–855. [Google Scholar] [CrossRef]
- Peixoto, R.; Bicudo, T.C.; Moura, H.; Sousa, A.S.; de Carvalho, L.S. Synthesis of decyl methyl carbonate and a comparative assessment of its performance as the continuous phase of synthetic-based drilling fluids. J. Petrol. Sci. Eng. 2021, 199, 108301. [Google Scholar] [CrossRef]
- Aboulrous, A.A.; Rafati, R.; Alsabagh, A.M.; Haddad, A.S.; Boyou, N.V. Review of synthesis, characteristics and technical challenges of biodiesel based drilling fluids. J. Clean. Prod. 2022, 336, 130344. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review. J. Mol. Liq. 2023, 371, 121117. [Google Scholar] [CrossRef]
- Oh, Y.; Park, J.; Park, J.; Jeong, S.; Kim, H. Dual Cross-Linked, Polymer Thermosets: Modular Design, Reversible Transformation, and Triggered Debonding. Chem. Mater. 2020, 32, 6384–6391. [Google Scholar] [CrossRef]
- Parvate, S.; Mahanwar, P. Advances in self-crosslinking of acrylic emulsion: What we know and what we would like to know. J. Disper. Sci. Technol. 2019, 40, 519–536. [Google Scholar] [CrossRef]
- Song, P.A.; Wang, H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. Adv. Mater. 2020, 32, e1901244. [Google Scholar] [CrossRef] [PubMed]
- Mikhienkova, E.I.; Lysakov, S.V.; Neverov, A.L.; Zhigarev, V.A.; Minakov, A.V.; Rudyak, V.Y. Experimental study on the influence of nanoparticles on oil-based drilling fluid properties. J. Petrol. Sci. Eng. 2022, 208, 109452. [Google Scholar] [CrossRef]
- Aftab, A.; Ismail, A.R.; Ibupoto, Z.H.; Akeiber, H.; Malghani, M.G.K. Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renew. Sust. Energ. Rev. 2017, 76, 1301–1313. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, R.; Zhou, J.; Chen, H.; Tan, Y. A novel hyper-cross-linked polymer for high-efficient fluid-loss control in oil-based drilling fluids. Colloid Surf. A 2021, 626, 127004. [Google Scholar] [CrossRef]
- Lei, M.; Huang, W.A.; Sun, J.S.; Jin, Z.H.; Huang, X.B. The Utilization of Self- Crosslinkable Nanoparticles as High-Temperature Plugging Agent in Water- Based Drilling Fluid. SPE J. 2022, 27, 2628–2641. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.S.; Lv, K.H.; Ji, Y.X.; Liu, J.P.; Huang, X.B.; Bai, Y.R.; Wang, J.T.; Jin, J.F.; Shi, S.L. Temperature- and Salt-Resistant Micro-Crosslinked Polyampholyte Gel as Fluid-Loss Additive for Water-Based Drilling Fluids. Gels 2022, 8, 289. [Google Scholar] [CrossRef]
- Huang, X.B.; Meng, X.; Li, M.; Sun, J.S.; Lv, K.H.; Gao, C.Y. Improving the Weak Gel Structure of an Oil-Based Drilling Fluid by Using a Polyamide Wax. Gels 2022, 8, 631. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Rong, K.; Yin, Z.; Lu, T.; Yu, Y.; Li, Y.; Yang, Z.; Yang, J.; Zhao, Z. Synthesis and Plugging Performance of Nano-Micron Polymeric Gel Microsphere Plugging Agents for Oil-Based Drilling Fluids. Gels 2023, 9, 290. [Google Scholar] [CrossRef]
- Zhong, H.; Shen, G.; Qiu, Z.; Lin, Y.; Fan, L.; Xing, X.; Li, J. Minimizing the HTHP filtration loss of oil-based drilling fluid with swellable polymer microspheres. J. Petrol. Sci. Eng. 2019, 172, 411–424. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Sun, Y.; Lin, D.; Feng, X.; Wang, F. Insights into the high temperature-induced failure mechanism of bentonite in drilling fluid. Chem. Eng. J. 2022, 445, 136680. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, G.; Fu, Y.; Yang, J.; He, Y.; Dong, T. pH-responsive water-in-oil emulsions with reversible phase inversion behavior stabilized by a novel dynamic covalent surfactant. J. Mol. Liq. 2022, 364, 120004. [Google Scholar] [CrossRef]
- Pu, L.; Xu, P.; Xu, M.; Song, J.; He, M.; Wei, M. Enhanced stability of low oil-to-water ratio water-in-oil emulsions (oil-based drilling fluids): Synergistic effect of nano-SiO2 and emulsifiers. J. Petrol. Sci. Eng. 2022, 219, 111053. [Google Scholar] [CrossRef]
- Kania, D.; Yunus, R.; Omar, R.; Rashid, S.A.; Jan, B.M. Rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design. Colloid Surf. A 2021, 625, 126700. [Google Scholar] [CrossRef]
- You, L.J.; Kang, Y.L.; Chen, Z.X.; Chen, Q.; Yang, B. Wellbore instability in shale gas wells drilled by oil-based fluids. Int. J. Rock. Mech. Min. 2014, 72, 294–299. [Google Scholar] [CrossRef]
- Huang, X.; Meng, X.; Wu, L.; Gao, C.; Lv, K.; Sun, B. Improvement of Emulsion Stability and Plugging Performance of Nanopores Using Modified Polystyrene Nanoparticles in Invert Emulsion Drilling Fluids. Front. Chem. 2022, 10, 890478. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Sun, J.S.; Zhang, K.; Lv, K.H.; Huang, X.B.; Wang, J.T.; Wang, R.; Meng, X. A Temperature-Sensitive Polymeric Rheology Modifier Used in Water-Based Drilling Fluid for Deepwater Drilling. Gels 2022, 8, 338. [Google Scholar] [CrossRef]
- API RP 13B-2-2014; API Recommended Practice for Field Testing Oil-Based Drilling Fluids. 5th ed. American Petroleum Institute: Washington, DC, USA, April 2014.
Component | Emulsions | SBDF |
---|---|---|
Natural gas synthetic oil | 280 mL | 280 mL |
Primary emulsifier | 14 g | 14 g |
Secondary emulsifier | 10.5 g | 10.5 g |
Calcium chloride solution (25 wt%) | 70 mL | 70 mL |
Organophilic clay | 7 g | 10.5 g |
Calcium carbonate | / | 7 g |
Calcium carbonate | / | 17.5 g |
Barite | / | 200 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Dong, T.; Yi, J.; Jiang, G. Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids. Gels 2024, 10, 120. https://doi.org/10.3390/gels10020120
Yang J, Dong T, Yi J, Jiang G. Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids. Gels. 2024; 10(2):120. https://doi.org/10.3390/gels10020120
Chicago/Turabian StyleYang, Jun, Tengfei Dong, Jingtian Yi, and Guancheng Jiang. 2024. "Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids" Gels 10, no. 2: 120. https://doi.org/10.3390/gels10020120
APA StyleYang, J., Dong, T., Yi, J., & Jiang, G. (2024). Development of Multiple Crosslinked Polymers and Its Application in Synthetic-Based Drilling Fluids. Gels, 10(2), 120. https://doi.org/10.3390/gels10020120