Gels in Motion: Recent Advancements in Energy Applications
Abstract
:1. Introduction
1.1. Hydrogels
Stimuli-Responsive Polymer Hydrogels
1.2. Physical Properties
1.3. Gel Mechanics
2. Energy Applications
2.1. Supercapacitors
2.1.1. Hybrid Polymer Gel Electrodes for Supercapacitors
2.1.2. Hybrid Polymer Gel Electrolytes for Supercapacitors
3. Fuel Cells
4. Battery Technology
4.1. Gel Electrolyte Membrane in LIB Technology
4.2. Challenges of Using Hydrogels
4.2.1. Hydrogels and Global Energy Consumption
Critical Challenges
4.2.2. Production Challenge
4.2.3. Long-Term Stability
4.2.4. Cost Consideration
4.2.5. Material Selection
4.2.6. Regulations and Environmental Concerns
4.2.7. Integration with Existing Technologies
4.2.8. Lab to Field
5. Future Prospects and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wagner, L.; Mastroianni, S.; Hinsch, A. Reverse Manufacturing Enables Perovskite Photovoltaics to Reach the Carbon Footprint Limit of a Glass Substrate. Joule 2020, 4, 882–901. [Google Scholar] [CrossRef]
- Singh, A.N.; Jana, A.; Selvaraj, M.; Assiri, M.A.; Yun, S.; Nam, K.-W. Achieving Order in Disorder: Stabilizing Red Light-Emitting α-Phase Formamidinium Lead Iodide. Nanomaterials 2023, 13, 3049. [Google Scholar] [PubMed]
- Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13. [Google Scholar] [CrossRef]
- Singh, A.N.; Kajal, S.; Kim, J.; Jana, A.; Kim, J.Y.; Kim, K.S. Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Adv. Energy Mater. 2020, 10, 2000768. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.P.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef]
- Singh, A.N.; Islam, M.; Meena, A.; Faizan, M.; Han, D.; Bathula, C.; Hajibabaei, A.; Anand, R.; Nam, K.-W. Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage. Adv. Funct. Mater. 2023, 33, 2304617. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M. Polymer gels: Classification and recent developments in biomedical applications. Gels 2023, 9, 161. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Liu, S.; Tang, J.; Ji, F.; Lin, W.; Chen, S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022, 8, 46. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Li, T.; Zhang, J.; Tian, H. Stimuli-responsive hydrogels: Fabrication and biomedical applications. View 2022, 3, 20200112. [Google Scholar] [CrossRef]
- Stoychev, G.; Kirillova, A.; Ionov, L. Light-responsive shape-changing polymers. Adv. Opt. Mater. 2019, 7, 1900067. [Google Scholar] [CrossRef]
- Shi, W.; Huang, J.; Fang, R.; Liu, M. Imparting Functionality to the Hydrogel by Magnetic-Field-Induced Nano-assembly and Macro-response. ACS Appl. Mater. Interfaces 2020, 12, 5177–5194. [Google Scholar] [CrossRef] [PubMed]
- Mallawarachchi, S.; Gejji, V.; Sierra, L.S.; Wang, H.; Fernando, S. Electrical field reversibly modulates enzyme kinetics of hexokinase entrapped in an electro-responsive hydrogel. ACS Appl. Bio Mater. 2019, 2, 5676–5686. [Google Scholar] [CrossRef] [PubMed]
- Werzer, O.; Tumphart, S.; Keimel, R.; Christian, P.; Coclite, A.M. Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter 2019, 15, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Shen, J.; Zhang, L.; Wang, L.; Xu, H.; Han, Y.; Jia, J.; Lu, Y.; Yu, R.; Liu, H. Injectable postoperative enzyme-responsive hydrogels for reversing temozolomide resistance and reducing local recurrence after glioma operation. Biomater. Sci. 2020, 8, 5306–5316. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Amanor-Boadu, J.M.; Guiseppi-Elie, A. Toward impedimetric measurement of acidosis with a pH-responsive hydrogel sensor. ACS Sens. 2020, 5, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Ghosh, B.; Kumar, A.; Koley, R.; Dhara, S.; Chattopadhyay, S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J. Drug Deliv. Sci. Technol. 2023, 80, 104111. [Google Scholar] [CrossRef]
- Neumann, M.; di Marco, G.; Iudin, D.; Viola, M.; van Nostrum, C.F.; van Ravensteijn, B.G.P.; Vermonden, T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023, 56, 8377–8392. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Sun, Z.; Zhu, X.; Zhao, Q.; Zhang, T.; Cholewinski, A.; Yang, F.K.; Zhao, B.; Pinnaratip, R. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464. [Google Scholar] [CrossRef]
- Schiller, J.L.; Lai, S.K. Tuning Barrier Properties of Biological Hydrogels. ACS Appl. Bio Mater. 2020, 3, 2875–2890. [Google Scholar] [CrossRef]
- Gibas, I.; Janik, H. Synthetic polymer hydrogels for biomedical applications. Chemistry 2010, 4, 297–304. [Google Scholar] [CrossRef]
- Karvinen, J.; Kellomäki, M. Characterization of self-healing hydrogels for biomedical applications. Eur. Polym. J. 2022, 181, 111641. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, J. A self-healing and wearable hydrogel sensor with a dynamic physical cross-linking structure can detect strain stimulus in a wide temperature range. J. Mater. Chem. C 2023, 11, 11988–11999. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Y.; Yu, M.; Hou, M.; Gong, G.; Tan, H.; Li, N.; Xu, J. NIR light-induced rapid self-healing hydrogel toward multifunctional applications in sensing. Nano Energy 2023, 107, 108119. [Google Scholar] [CrossRef]
- Flory, P.J. Introductory lecture. Faraday Discuss. Chem. Soc. 1974, 57, 7–18. [Google Scholar] [CrossRef]
- Salihovic, M.; Zickler, G.A.; Fritz-Popovski, G.; Ulbricht, M.; Paris, O.; Hüsing, N.; Presser, V.; Elsaesser, M.S. Reversibly compressible and freestanding monolithic carbon spherogels. Carbon 2019, 153, 189–195. [Google Scholar] [CrossRef]
- Buglakov, A.I.; Vasilevskaya, V.V. Fibrillar gel self-assembly via cononsolvency of amphiphilic polymer. J. Colloid Interface Sci. 2022, 614, 181–193. [Google Scholar] [CrossRef]
- Mills, C.E.; Ding, E.; Olsen, B.D. Cononsolvency of elastin-like polypeptides in water/alcohol solutions. Biomacromolecules 2019, 20, 2167–2173. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Nair, A.; Bag, A.; Kumar Ghorai, P.; Shunmugam, R. Engineering photo cross-linked porous network for efficient and selective removal of toxicants from wastewater. MOJ Res. Rev. 2019, 2, 69–81. [Google Scholar]
- Wu, C.; Ma, W.; Chen, Y.; Navicha, W.B.; Wu, D.; Du, M. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size. LWT 2019, 103, 125–130. [Google Scholar] [CrossRef]
- Yu, H.; Xiao, Q.; Qi, G.; Chen, F.; Tu, B.; Zhang, S.; Li, Y.; Chen, Y.; Yu, H.; Duan, P. A Hydrogen Bonds-Crosslinked Hydrogels With Self-Healing and Adhesive Properties for Hemostatic. Front. Bioeng. Biotechnol. 2022, 10, 855013. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Dong, L.; Wu, J.; Shi, Y.; Feng, X.; Lu, X.; Zhu, J.; Mu, L. Versatile Ionic Gel Driven by Dual Hydrogen Bond Networks: Toward Advanced Lubrication and Self-Healing. ACS Appl. Polym. Mater. 2021, 3, 5932–5941. [Google Scholar] [CrossRef]
- Erbaş, A.; Olvera de la Cruz, M. Interactions between Polyelectrolyte Gel Surfaces. Macromolecules 2016, 49, 9026–9034. [Google Scholar] [CrossRef]
- Shah, R.A.; Runge, T.; Ostertag, T.W.; Tang, S.; Dziubla, T.D.; Hilt, J.Z. Development of temperature-responsive polymeric gels with physical crosslinking due to intermolecular π–π interactions. Polym. Int. 2022, 71, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhou, W.; Chen, Z.; Hu, Y.; Yang, Y.; Zhang, G.; Yang, Z. A Supramolecular Hydrogel Enabled by the Synergy of Hydrophobic Interaction and Quadruple Hydrogen Bonding. Gels 2022, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Parmar, I.A.; Shedge, A.S.; Badiger, M.V.; Wadgaonkar, P.P.; Lele, A.K. Thermo-reversible sol–gel transition of aqueous solutions of patchy polymers. RSC Adv. 2017, 7, 5101–5110. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, Y.; Pan, L.; Yu, G. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Acc. Chem. Res. 2017, 50, 1734–1743. [Google Scholar] [CrossRef]
- Liu, C.; Qi, J.; He, B.; Zhang, H.; Ju, J.; Yao, X. Ionic conductive gels based on deep eutectic solvents. Int. J. Smart Nano Mater. 2021, 12, 337–350. [Google Scholar] [CrossRef]
- Abu-El Khair, A.G.; Soliman, T.N.; Hashim, A.F. Development of composite nanoemulsion gels as carriers for co-delivery of wheat germ oil and probiotics and their incorporation in yoghurt. Food Biosci. 2023, 55, 103001. [Google Scholar] [CrossRef]
- Nandi, A.K.; Chatterjee, D.P. Hybrid polymer gels for energy applications. J. Mater. Chem. A 2023, 11, 12593–12642. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef]
- Kurra, N.; Wang, R.; Alshareef, H.N. All conducting polymer electrodes for asymmetric solid-state supercapacitors. J. Mater. Chem. A 2015, 3, 7368–7374. [Google Scholar] [CrossRef]
- Vu, V.-P.; Mai, V.-D.; Lee, S.-H. Hybrid carbon nanofiller/polymer composites as self-healable current collector electrodes for use in high-performance flexible metal-free supercapacitors. J. Alloys Compd. 2023, 933, 167823. [Google Scholar] [CrossRef]
- Siva, V.; Murugan, A.; Shameem, A.; Thangarasu, S.; Kannan, S.; Raja, A. Gel combustion synthesized NiMoO4 anchored polymer nanocomposites as a flexible electrode material for solid state asymmetric supercapacitors. Int. J. Hydrogen Energy 2023, 48, 18856–18870. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, G.; Rawach, D.; Fu, C.; Wang, C.; Liu, X.; Dubois, M.; Lai, C.; Sun, S. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 320–355. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Han, Y.; Li, T. Flexible supercapacitor: Overview and outlooks. J. Energy Storage 2021, 42, 103053. [Google Scholar] [CrossRef]
- Na, Y.W.; Cheon, J.Y.; Kim, J.H.; Jung, Y.; Lee, K.; Park, J.S.; Park, J.Y.; Song, K.S.; Lee, S.B.; Kim, T.; et al. All-in-one flexible supercapacitor with ultrastable performance under extreme load. Sci. Adv. 2022, 8, eabl8631. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cao, J.; Yu, J.; Tian, F.; Luo, X.; Hao, Y.; Huang, J.; Wang, F.; Zhou, W.; Xu, J.; et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers 2023, 15, 1856. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, C.; Yang, J.; Wang, Z.; Yao, W.; Huang, L.; Cui, J.; Liu, J.; Hu, X.; Wu, Y. A 2.6 V Flexible Supercapacitor Based on Al-MnO2-Na2SO4//AC-KOH with High Specific Energy. ACS Energy Lett. 2023, 8, 2033–2041. [Google Scholar] [CrossRef]
- Kwon, H.; Han, D.J.; Lee, B.Y. All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures. RSC Adv. 2020, 10, 41495–41502. [Google Scholar] [CrossRef]
- Helmholtz, H.V. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.). Ann. Phys. 1853, 165, 353–377. [Google Scholar] [CrossRef]
- Choi, N.S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef] [PubMed]
- Bohlen, O.; Kowal, J.; Sauer, D.U. Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model. J. Power Sources 2007, 172, 468–475. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Mehta, S.; Chen, Y.; Ma, L.; Renner, P.; Parkinson, D.Y.; Liang, H. Design and synthesis of lignin-based flexible supercapacitors. ACS Sustain. Chem. Eng. 2019, 8, 498–511. [Google Scholar] [CrossRef]
- Karthika, P.; Rajalakshmi, N.; Dhathathreyan, K.S. Flexible polyester cellulose paper supercapacitor with a gel electrolyte. ChemPhysChem 2013, 14, 3822–3826. [Google Scholar] [CrossRef]
- Khosrozadeh, A.; Xing, M.; Wang, Q. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl. Energy 2015, 153, 87–93. [Google Scholar] [CrossRef]
- Zhang, L.; DeArmond, D.; Alvarez, N.T.; Malik, R.; Oslin, N.; McConnell, C.; Adusei, P.K.; Hsieh, Y.Y.; Shanov, V. Flexible micro-supercapacitor based on graphene with 3D structure. Small 2017, 13, 1603114. [Google Scholar] [CrossRef]
- Lv, X.; Li, G.; Li, D.; Huang, F.; Liu, W.; Wei, Q. A new method to prepare no-binder, integral electrodes-separator, asymmetric all-solid-state flexible supercapacitor derived from bacterial cellulose. J. Phys. Chem. Solids 2017, 110, 202–210. [Google Scholar] [CrossRef]
- Chen, J.; Fang, K.; Chen, Q.; Xu, J.; Wong, C.-P. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 2018, 53, 337–344. [Google Scholar] [CrossRef]
- Kim, S.-I.; Kang, J.-H.; Kim, S.-W.; Jang, J.-H. A new approach to high-performance flexible supercapacitors: Mesoporous three-dimensional Ni-electrodes. Nano Energy 2017, 39, 639–646. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, C.; Liu, J. A non-polarity flexible asymmetric supercapacitor with nickel nanoparticle@ carbon nanotube three-dimensional network electrodes. Energy Storage Mater. 2018, 11, 75–82. [Google Scholar] [CrossRef]
- Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J.M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Song, B.; Li, K.; Zhang, J.; Ma, H. Cobalt hexacyanoferrate nanoparticles and MoO3 thin films grown on carbon fiber cloth for efficient flexible hybrid supercapacitor. J. Power Sources 2017, 370, 98–105. [Google Scholar] [CrossRef]
- Wang, C.; Wu, X.; Ma, Y.; Mu, G.; Li, Y.; Luo, C.; Xu, H.; Zhang, Y.; Yang, J.; Tang, X. Metallic few-layered VSe 2 nanosheets: High two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 8299–8306. [Google Scholar] [CrossRef]
- Sun, K.; Feng, E.; Zhao, G.; Peng, H.; Wei, G.; Lv, Y.; Ma, G. A single robust hydrogel film based integrated flexible supercapacitor. ACS Sustain. Chem. Eng. 2018, 7, 165–173. [Google Scholar] [CrossRef]
- Liu, L.; Dou, Q.; Sun, Y.; Lu, Y.; Zhang, Q.; Meng, J.; Zhang, X.; Shi, S.; Yan, X. A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures. J. Mater. Chem. A 2019, 7, 20398–20404. [Google Scholar] [CrossRef]
- Esawy, T.; Khairy, M.; Hany, A.; Mousa, M. Flexible solid-state supercapacitors based on carbon aerogel and some electrolyte polymer gels. Appl. Phys. A 2018, 124, 566. [Google Scholar] [CrossRef]
- Cevher, D.; Cevher, S.C.; Cirpan, A. Gel electrolyte modification on D-A-D type conjugated polymer based supercapacitor. J. Energy Storage 2023, 62, 106962. [Google Scholar] [CrossRef]
- Li, M.; Jia, C.; Türker, Y.; Özkaynak, M.U.; Zhao, L.; Zhang, D.; Luo, Y.; Luo, G.; Wang, L.; Xia, Y.; et al. Wide-Temperature-Range Flexible Micro-Supercapacitors Using Liquid Crystal Gel Electrolyte. ACS Appl. Energy Mater. 2023, 6, 5230–5238. [Google Scholar] [CrossRef]
- Huynh, N.; Fernandes, J.P.C.; Bayle, P.A.; Bardet, M.; Espuche, E.; Dillet, J.; Perrin, J.C.; El Kaddouri, A.; Lottin, O.; Mareau, V.H.; et al. Sol-gel route: An original strategy to chemically stabilize proton exchange membranes for fuel cell. J. Power Sources 2020, 462, 228164. [Google Scholar] [CrossRef]
- Wang, X.; You, J.; Wu, Y. In situ gelation of aqueous sulfuric acid solution for fuel cells. RSC Adv. 2021, 11, 22461–22466. [Google Scholar] [CrossRef] [PubMed]
- Aruchamy, K.; Ramasundaram, S.; Divya, S.; Chandran, M.; Yun, K.; Oh, T.H. Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications. Gels 2023, 9, 585. [Google Scholar] [CrossRef]
- Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J.A.; Morant-Miñana, M.C.; Villaverde, A.; González-Marcos, J.A.; Zhang, H.; Armand, M.; et al. Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chem. Mater. 2021, 33, 8812–8821. [Google Scholar] [CrossRef]
- Baskoro, F.; Wong, H.Q.; Yen, H.-J. Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 2019, 1, 335–348. [Google Scholar] [CrossRef]
- Singh, A.N.; Hassan, K.; Bathula, C.; Nam, K.-W. Decoding the puzzle: Recent breakthroughs in understanding degradation mechanisms of Li-ion batteries. Dalton Trans. 2023, 52, 17061–17083. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Dharmaraj, V.R.; Yi, C.-H.; Iputera, K.; Huang, S.-Y.; Chung, R.-J.; Hu, S.-F.; Liu, R.-S. Recent Advances in Rechargeable Metal–CO2 Batteries with Nonaqueous Electrolytes. Chem. Rev. 2023, 123, 9497–9564. [Google Scholar] [CrossRef]
- Singh, A.N.; Singh, A.K.; Nam, K.-W. Cutting the Gordian knot of Li-rich layered cathodes. Matter 2022, 5, 2587–2589. [Google Scholar] [CrossRef]
- Reynaud, M.; Serrano-Sevillano, J.; Casas-Cabanas, M. Imperfect Battery Materials: A Closer Look at the Role of Defects in Electrochemical Performance. Chem. Mater. 2023, 35, 3345–3363. [Google Scholar] [CrossRef]
- Cresce, A.V.; Eidson, N.; Schroeder, M.; Ma, L.; Ding, M.; Xu, K. Gel Electrolytes for Lithium-Ion Batteries: An In-Situ Approach. Proc. Electrochem. Soc. Meet. Abstr. 2021, 240, 269. [Google Scholar] [CrossRef]
- Singh, A.N.; Nam, K.-W. Solid-state synthesized batteries get upset. Matter 2022, 5, 1347–1349. [Google Scholar] [CrossRef]
- Li, W.; Wu, Y.; Wang, J.; Huang, D.; Chen, L.; Yang, G. Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur. Polym. J. 2015, 67, 365–372. [Google Scholar] [CrossRef]
- Xiao, Q.; Deng, C.; Wang, Q.; Zhang, Q.; Yue, Y.; Ren, S. In Situ Cross-Linked Gel Polymer Electrolyte Membranes with Excellent Thermal Stability for Lithium Ion Batteries. ACS Omega 2019, 4, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Park, I.K.; Cha, W.J.; Lee, C.H. A Gel Polymer Electrolyte Reinforced Membrane for Lithium-Ion Batteries via the Simultaneous-Irradiation of the Electron Beam. Membranes 2021, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ye, T.; Li, Y.; Wang, L.; Li, L.; Li, F.; He, E.; Zhang, Y. Ultrasoft all-hydrogel aqueous lithium-ion battery with a coaxial fiber structure. Polym. J. 2022, 54, 1383–1389. [Google Scholar] [CrossRef]
- Cao, X.; Tan, D.; Guo, Q.; Zhang, T.; Hu, F.; Sun, N.; Huang, J.; Fang, C.; Ji, R.; Bi, S.; et al. High-performance fully-stretchable solid-state lithium-ion battery with a nanowire-network configuration and crosslinked hydrogel. J. Mater. Chem. A 2022, 10, 11562–11573. [Google Scholar] [CrossRef]
- Li, H.; Han, C.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Wang, Z.; Liu, Z.; Tang, Z. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951. [Google Scholar] [CrossRef]
- Li, C.; Zhu, X.; Wang, D.; Yang, S.; Zhang, R.; Li, P.; Fan, J.; Li, H.; Zhi, C. Fine Tuning Water States in Hydrogels for High Voltage Aqueous Batteries. ACS Nano 2024, 18, 3101–3114. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, W. Application of hydrogel for energy storage and conversion. Next Mater. 2023, 1, 100049. [Google Scholar] [CrossRef]
- Jin, L.; Xiao, X.; Deng, W.; Nashalian, A.; He, D.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T. Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 2020, 20, 6404–6411. [Google Scholar] [CrossRef]
- Singh, A.N.; Hajibabaei, A.; Diorizky, M.H.; Ba, Q.; Nam, K.-W. Remarkably Enhanced Lattice Oxygen Participation in Perovskites to Boost Oxygen Evolution Reaction. Nanomaterials 2023, 13, 905. [Google Scholar] [CrossRef]
- Zhu, T.; Ni, Y.; Biesold, G.M.; Cheng, Y.; Ge, M.; Li, H.; Huang, J.; Lin, Z.; Lai, Y. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509. [Google Scholar] [CrossRef]
- Rahman, M.A.; Saghir, M.Z. Thermodiffusion or Soret effect: Historical review. Int. J. Heat Mass Transf. 2014, 73, 693–705. [Google Scholar] [CrossRef]
- Ghani, S.M.M.; Chow, X.E.; Kumeressan, R.; Rabat, N.E. Improved Hydrogel as Potential Carbon Dioxide Adsorbent. Chem. Eng. Trans. 2022, 97, 457–462. [Google Scholar]
- Sun, X.; Bai, B.; Long, Y.; Wang, Z. A comprehensive review of hydrogel performance under CO2 conditions for conformance control. J. Pet. Sci. Eng. 2020, 185, 106662. [Google Scholar] [CrossRef]
- Vandeginste, V.; Wang, J. A Review of the Synthesis of Biopolymer Hydrogel Electrolytes for Improved Electrode–Electrolyte Interfaces in Zinc-Ion Batteries. Energies 2024, 17, 310. [Google Scholar]
- Deptuła, M.; Zawrzykraj, M.; Sawicka, J.; Banach-Kopeć, A.; Tylingo, R.; Pikuła, M. Application of 3D-printed hydrogels in wound healing and regenerative medicine. Biomed. Pharmacother. 2023, 167, 115416. [Google Scholar] [CrossRef]
- Mani, M.P.; Sadia, M.; Jaganathan, S.K.; Khudzari, A.Z.; Supriyanto, E.; Saidin, S.; Ramakrishna, S.; Ismail, A.F.; Faudzi, A.A.M. A review on 3D printing in tissue engineering applications. J. Polym. Eng. 2022, 42, 243–265. [Google Scholar] [CrossRef]
- Cruz-Medina, R.; Ayala-Hernández, D.A.; Vega-Rios, A.; López-Martínez, E.I.; Mendoza-Duarte, M.E.; Estrada-Monje, A.; Zaragoza-Contreras, E.A. Curing of Cellulose Hydrogels by UV Radiation for Mechanical Reinforcement. Polymers 2021, 13, 2342. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.J.; Alsberg, E.; Kaigler, D.; Lee, K.Y.; Mooney, D.J. Controlling Degradation of Hydrogels via the Size of Cross-Linked Junctions. Adv. Mater. 2004, 16, 1917–1921. [Google Scholar] [CrossRef]
- Xia, Z.; Patchan, M.; Maranchi, J.; Elisseeff, J.; Trexler, M. Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J. Appl. Polym. Sci. 2013, 127, 4537–4541. [Google Scholar] [CrossRef]
- Barrett-Catton, E.; Pedersen, K.; Mobed-Miremadi, M.; Asuri, P. Modeling the Additive Effects of Nanoparticles and Polymers on Hydrogel Mechanical Properties Using Multifactor Analysis. Nanomaterials 2022, 12, 4461. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, J.; Van Dam, E.P.; Giubertoni, G.; Rezus, Y.L.; Hammink, R.; Bakker, H.J.; Zhan, Y.; Rowan, A.E.; Xing, C. Strategies to increase the thermal stability of truly biomimetic hydrogels: Combining hydrophobicity and directed hydrogen bonding. Macromolecules 2017, 50, 9058–9065. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.N.; Kim, M.-H.; Meena, A.; Wi, T.-U.; Lee, H.-W.; Kim, K.S. Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for High-Performance Li-Ion Battery and Oxygen Evolution Reaction. Small 2021, 17, 2005605. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jena, A.K.; Miyasaka, T. Halide Perovskites for Indoor Photovoltaics: The Next Possibility. ACS Energy Lett. 2023, 8, 90–95. [Google Scholar] [CrossRef]
- Nikolić, L.B.; Zdravković, A.S.; Nikolić, V.D.; Ilić-Stojanović, S.S. Synthetic Hydrogels and Their Impact on Health and Environment. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–29. [Google Scholar]
- Solieman, N.Y.; Afifi, M.M.I.; Abu-ElMagd, E.; Baker, N.A.; Ibrahim, M.M. Hydro- physical, biological and economic study on simply, an environment- friendly and valuable rice straw-based hydrogel production. Ind. Crop. Prod. 2023, 201, 116850. [Google Scholar] [CrossRef]
- Bonalumi, D.; Kolahchian Tabrizi, M. Re-evaluation of the Global Warming Potential for the Production of Lithium-Ion Batteries with Nickel–Manganese–Cobalt Cathode Chemistries in China. Energy Fuels 2022, 36, 13753–13767. [Google Scholar] [CrossRef]
- Chae, W.; Kim, B.; Ryoo, W.S.; Earmme, T. A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries. Polymers 2023, 15, 803. [Google Scholar] [CrossRef]
- Shin, W.-K.; Cho, J.; Kannan, A.G.; Lee, Y.-S.; Kim, D.-W. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries. Sci. Rep. 2016, 6, 26332. [Google Scholar] [CrossRef]
- Srivastava, S.; Schaefer, J.L.; Yang, Z.; Tu, Z.; Archer, L.A. 25th Anniversary Article: Polymer–Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage. Adv. Mater. 2014, 26, 201–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.N.; Meena, A.; Nam, K.-W. Gels in Motion: Recent Advancements in Energy Applications. Gels 2024, 10, 122. https://doi.org/10.3390/gels10020122
Singh AN, Meena A, Nam K-W. Gels in Motion: Recent Advancements in Energy Applications. Gels. 2024; 10(2):122. https://doi.org/10.3390/gels10020122
Chicago/Turabian StyleSingh, Aditya Narayan, Abhishek Meena, and Kyung-Wan Nam. 2024. "Gels in Motion: Recent Advancements in Energy Applications" Gels 10, no. 2: 122. https://doi.org/10.3390/gels10020122
APA StyleSingh, A. N., Meena, A., & Nam, K. -W. (2024). Gels in Motion: Recent Advancements in Energy Applications. Gels, 10(2), 122. https://doi.org/10.3390/gels10020122