A Comparative Study between Beeswax and Glycerol Monostearate for Food-Grade Oleogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acid Composition
2.2. Physicochemical and Structural Properties of Beeswax and Glycerol Monostearate Oleogels
2.3. Thermal Properties Evaluation
2.4. Peroxide Value Evaluation
2.5. Oleogel Firmness
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Fatty Acid Composition Analysis
4.3. Oleogel Preparation
4.4. Oleogel Characterization
4.4.1. Oil Binding Capacity
4.4.2. Light Microscopy
4.4.3. Color Evaluation
4.4.4. Thermal Analysis
4.4.5. Peroxide Value Evaluation
4.4.6. Firmness Evaluation
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.G.; Fors, N.A.; Hu, F.B.; Zelman, K.M.; Mozzafarian, D.; Kris-Etherton, P.M. A healty approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutr. J. 2017, 16, 53. [Google Scholar] [CrossRef]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schunemann, H.; Beyene, J. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease and type 2 diabetes: Systematic review and meta-analysis of observational studies. Food Qual. Prefer. 2017, 56, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoglu, H.; Demirci, M.; Toker, O.S.; Konar, N.; Karasu, S.; Sagdic, O. Oleogels, a promising structured oil for decreasing saturated fatty acid concetrations: Production and food-based applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1330–1341. [Google Scholar] [CrossRef]
- Relkin, P.; Fabre, M.; Guichard, E. Effect of Fat Nature and Aroma Compound Hydrophobicity on Flavor release from Complex Food Emulsion. J. Agric. Food Chem. 2004, 52, 6257–6263. [Google Scholar] [CrossRef]
- Hyvonen, L.; Linna, M.; Tuorila, H.; Dijksterhuis, G. Perception of Melting and Flavor Release of Ice Cream Containing Different Types and Contents of Fat. Int. J. Dairy Sci. 2003, 86, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A review of current and potential applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef]
- Martins, A.J.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Edible oleogels: An opportunity for fat replacement in foods. Food Funct. 2018, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Valoppi, F.; Calligaris, S.; Barba, L.; Segatin, N.; Poklar, U.; Nicoli, M.C. Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride-based organogel. Eur. J. Lipid Sci. Technol. 2017, 119, 1500549. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Bogojevic, G.; Pedersen, J.N.; Guo, Z. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2077–2104. [Google Scholar] [CrossRef]
- Doan, C.D.; Tavernier, I.; Okuro, P.K.; Dewettinck, K. Internal and external factors affecting the crystallization, gelation and applicability of wax-based oleogels in food industry. Innov. Food Sci. Emerg. Technol. 2018, 45, 42–52. [Google Scholar] [CrossRef]
- Gomez-Estaca, J.; Herrero, A.M.; Herranz, B.; Alvarez, M.D.; Jimenez-Colmenero, F.; Cofrades, S. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healtier lipid pates development. Food Hydrocol. 2019, 87, 960–969. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M. A novel propolis wax-based organogel: Effect of oil type on its formation, crystal structure and thermal properties. J. Am. Oil Chem. 2016, 94, 47–55. [Google Scholar] [CrossRef]
- Pang, M.; Shi, Z.; Lei, Z.; Ge, Y.; Jiang, S.; Cao, L. Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas Aceites 2020, 71, 380. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Morales-Rueda, J.A.; Dibildox-Alvarado, E.; Charo-Alonso, M.; Alonzo-macias, M.; Gonzalez-Chavez, M.M. Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. J. Am. Oil Chem. Soc. 2007, 84, 989–1000. [Google Scholar] [CrossRef]
- Ferro, A.C.; Okuro, P.K.; Badan, A.P.; Cunha, R.L. Role of the oil on glyceryl monostearate based oleogels. Int. Food Res. J. 2019, 120, 610–661. [Google Scholar] [CrossRef] [PubMed]
- Giacomozzi, A.S.; Palla, C.A.; Carrin, E.; Martini, S. Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound. J. Food Sci. 2019, 84, 9. [Google Scholar] [CrossRef] [PubMed]
- Palla, C.; de Vicente, J.; Carrin, M.E.; Galvez Ruiz, M.J. Effects of cooling temperature profiles on the monoglycerides oleogel properties: A rheo-microscopy study. Int. Food Res. J. 2019, 125, 108613. [Google Scholar] [CrossRef] [PubMed]
- Frolova, Y.; Sarkisyan, V.; Sobolev, R.; Makarenko, M.; Semin, M.; Kochetkova, A. The influence of Edible Oils’ composition on the properties of Beeswax-based oleogels. Gels 2022, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Cipolatti, E.P.; Aguieiras, E.C.; Pinto, M.C.C.; Kopsahelis, N.; Freire, D.M.G.; Mandala, I.; Koutinas, A.A. Development of microbial oil wax-based oleo gel with potential application in food formulations. Food Bioprocess. Technol. 2019, 12, 899–909. [Google Scholar] [CrossRef]
- Da Pieve, S.; Calligaris, S.; Co, E.; Nicoli, M.C.; Marangoni, A.G. Shear Nanostructuring of Monoglyceride Organogels. Food Biophys. 2010, 5, 211–217. [Google Scholar] [CrossRef]
- Kesselman, E.; Shimoni, E. Imaging of oil/monoglyceride networks by polarizing near-field scanning optical microscopy. Food Biophys. 2007, 2, 117–123. [Google Scholar] [CrossRef]
- Winkler-Moser, J.K.; Anderson, J.; Felker, F.C.; Hwang, H. Physical Properties of Beeswax, SunflowerWax, and Candelilla Wax Mixtures and Oleogels. J. Am. Oil Chem. Soc. 2019, 96, 1125–1142. [Google Scholar] [CrossRef]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Plant wax crystals display platelet-like morphology. Food Struct. 2015, 3, 30–34. [Google Scholar] [CrossRef]
- Yilmaz, F.; Dagdemir, E. The effects of beeswax coating on quality of Kashar cheese during ripening. Int. J. Food Sci. Technol. 2012, 47, 2582–2589. [Google Scholar] [CrossRef]
- Gavahian, M.; Khaneghah, A.M.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Melendez-Martinez, A.J.; Barba, F.J. Healt benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive Oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef]
- Alfutimie, A.; Al-Janabi, N.; Curtis, R.; Tiddy, G.J.T. The effect of monoglycerides on the crystallization of triglyceride. Colloids Surf. A Physicochem. Eng. 2016, 494, 170–179. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ogutcu, M. Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. Int. J. Food Sci. 2014, 79, 9. [Google Scholar] [CrossRef]
- Borriello, A.; Miele, N.A.; Masi, P.; Aielloi, A.; Cavella, S. Effect of fatty acid composition of vegetable oils on crystallization and gelation kinetics of oleogels based on natural wax. Food Chem. 2022, 375, 131805. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Cerqueira, M.A.; Fasoli, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Int. Food Res. J. 2016, 84, 170–179. [Google Scholar] [CrossRef]
- Blake, A.I.; Co, E.D.; Marangoni, A.G. Structural and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Oil Chem. Soc. 2014, 91, 885–903. [Google Scholar] [CrossRef]
- Lopez-Martinez, A.; Charo-Alonso, M.A.; Marangoni, A.G.; Toro-Vazquez, J.F. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Int. Food Res. J. 2015, 72, 37–46. [Google Scholar] [CrossRef]
- Doan, C.D.; Vam de Walle, D.; Dewettinck, K.; Patel, A.R. Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal and microstructural study. J. Am. Oil Chem. 2015, 92, 801–811. [Google Scholar] [CrossRef]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological profiling of organogels prepared at critical gelling concetrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef]
- Han, W.; Chai, X.; Liu, Y.; Xu, Y.; Tan, C.P. Crystal network structure and stability of beeswax-based oleogels with different polyunsaturated fatty acid oils. Food Chem. 2022, 381, 131745. [Google Scholar] [CrossRef]
- Fayaz, G.; Goli, S.A.H.; Kadivar, M.; Valoppi, F.; Barba, L.; Balducci, C.; Conte, L.; Calligaris, S.; Nicoli, M.C. Pomegranate seed oil organogels structured by propolis wax, beeswax, and their mixture. Eur. J. Lipid Sci. Technol. 2017, 119, 1700032. [Google Scholar] [CrossRef]
- Brykczynski, H.; Wettlaufer, T.; Floter, E. Revisiting pure component wax esters as basis of wax-based oleogels. J. Am. Oil Chem. Soc. 2021, 99, 925–941. [Google Scholar] [CrossRef]
- Lupi, F.R.; Greco, V.; Baldino, N.; de Cindio, B.; Fischer, P.; Gabriele, D. The effects of intermolecular interactions on the physical properties of organogels in edible oils. J. Colloid. Interface Sci. 2016, 483, 154–164. [Google Scholar] [CrossRef]
- Vereecken, J.; Meeussen, W.; Foubert, I.; Lesaffer, A.; Wouters, J.; Dewettinck, K. Comparing the crystallization and polymorphic behaviour of saturated and unsaturated monoglycerides. Food Res. Int. 2009, 42, 1415–1425. [Google Scholar] [CrossRef]
- Yilmaz, E.; Ogutcu, M. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Oil Chem. Soc. 2014, 91, 1007–1017. [Google Scholar] [CrossRef]
- Doan, C.D.; To, C.M.; De Vrieze, M.; Lynen, F.; Danthine, S.; Brown, A.; Dewettinck, K.; Patel, A.R. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 2017, 214, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Noor Lida, H.M.D.; Kalyana, S.; Nor, A.I. Effect of chemical interesterification on triacylglycerol and solid fat contents of palm stearin, sunflower oil and palm kernel olein blends. Eur. J. Lipid Sci. Technol. 2007, 109, 147–156. [Google Scholar]
- de Oliveira, G.M.; Stahl, M.A.; Ribeiro, A.P.B.; Grimaldi, R.; Cardoso, L.P.; Kieckbusch, T.G. Development of zero trans/low sat fat systems structured with sorbitan monostearate and fully hydrogenated canola oil. Eur. J. Lipid Sci. Technol. 2015, 117, 1762–1771. [Google Scholar] [CrossRef]
- Lim, J.; Hwang, H.S.; Lee, S. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties. Appl. Biol. Chem. 2016, 60, 17–22. [Google Scholar] [CrossRef]
- O’Brien, R.D. Fats and Oils: Formulating and Processing for Application, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Han, L.J.; Li, L.; Li, B.; Zhao, L.; Liu, G.Q.; Liu, X.; Wang, X. Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil. J. Am. Oil Chem. Soc. 2014, 91, 1783–1792. [Google Scholar] [CrossRef]
- Memoli, A.; Albanese, D.; Esti, M.; Lombardelli, C.; Crescitelli, A.; Di Matteo, M.; Benucci, I. Effect of bug damage and mold contamination on fatty acids and sterols of hazelnut oil. Eur. Food Res. Technol. 2017, 43, 651–658. [Google Scholar] [CrossRef]
- Uslu, E.K.; Yilmaz, E. Preparation and characterization of glycerol monostearate and polyglycerol stearate oleogels with selected amphiphiles. Food Struct. 2021, 28, 100192. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Apicella, A.; Bradley, K.; Meile, J.C.; Chillet, M.; Scarfato, P.; Incarnato, L.; Remize, F. Effect of maturity level, steam treatment, or active packaging to maintain the quality of minimally processed mango (Mangifera indica cv. Iosè). J. Food Process. Preserv. 2021, 45, e15600. [Google Scholar] [CrossRef]
Olive Oil [%] | Peanut Oil [%] | |
---|---|---|
SFA | 14.00 ± 0.01 a | 12.20 ± 0.01 b |
MUFA | 75.30 ± 0.02 a | 68.40 ± 0.04 b |
PUFA | 10.70 ± 0.01 a | 19.40 ± 0.02 b |
MUFA/SFA | 5.38 ± 0.00 a | 5.61 ± 0.00 b |
Palmitic Acid C16:0 | 12.10 ± 0.01 a | 9.80 ± 0.01 b |
Palmitoleic Acid C16:1 | 1.40 ± 0.00 a | 0.10 ± 0.00 b |
Stearic Acid C18:0 | 1.90 ± 0.00 a | 2.40 ± 0.00 b |
Oleic Acid C18:1 | 73.90 ± 0.02 a | 68.30 ± 0.0 ba |
Linolenic Acid C18:3 | - | 1.20 ± 0.00 |
Linoleic Acid C18:2 | 9.90 ± 0.01 a | 17.30 ± 0.02 b |
Gamma-Linolenic Acid C18:3 | 0.80 ± 0.00 a | 0.20 ± 0.00 b |
Cis-Eicosenoic acid C20:1 | - | 0.70 ± 0.00 |
Sample | Oil Binding Capacity [%] t = 0 | Oil Binding Capacity [%] t = 6 Months | L | a | b |
---|---|---|---|---|---|
OO | nd | nd | 50.15 ± 0.16 a | −5.18 ± 0.14 a | 20.10 ± 0.05 a |
PO | nd | nd | 64.06 ± 0.06 b | −2.64 ± 0.28 b | 13.42 ± 0.17 b |
BW3.00%-OO | 97.39 ± 0.95 aA | 96.12 ± 0.75 aA | 50.45 ± 1.23 a | −5.12 ± 0.18 a | 19.85 ± 1.01 a |
BW4.00%-OO | 97.00 ± 1.09 aA | 96.34 ± 0.78 aA | 50.22 ± 1.45 a | −5.21 ± 0.11 a | 20.01 ± 1.02 a |
BW5.00%-OO | 97.24 ± 1.06 aA | 97.01 ± 0.56 aA | 50.34 ± 1.32 a | −5.11 ± 0.15 a | 20.11 ± 1.11 a |
BW3.00%-PO | 97.16 ± 1.01 aA | 96.76 ± 1.34 aA | 64.12 ± 1.23 b | −2.78 ± 0.12 b | 13.12 ± 1.07 b |
BW4.00%-PO | 97.14 ± 0.93 aA | 96.56 ± 0.89 aA | 64.11 ± 1.45 b | −2.81 ± 0.11 b | 13.89 ± 0.99 b |
BW5.00%-PO | 97.06 ± 0.65 aA | 96.23 ± 0.78 aA | 64.03 ± 1.54 b | −2.75 ± 0.13 b | 12.99 ± 1.05 b |
GMS3.00%-OO | 99.85 ± 0.19 bB | 98.97 ± 0.34 bB | 50.32 ± 1.21 a | −5.12 ± 0.11 a | 19.89 ± 1.23 a |
GMS4.00%-OO | 99.47 ± 0.62 bB | 99.01 ± 0.56 bB | 50.01 ± 1.11 a | −5.21 ± 0.09 a | 19.99 ± 1.25 a |
GMS5.00%-OO | 99.93 ± 0.05 bB | 98.94 ± 0.42 bB | 50.89 ± 1.14 a | −5.19 ± 0.12 a | 20.04 ± 1.31 a |
GMS3.00%-PO | 98.48 ± 0.56 bB | 98.08 ± 0.56 bB | 64.12 ± 1.45 b | −2.11 ± 0.11 b | 13.21 ± 1.02 b |
GMS4.00%-PO | 98.52 ± 0.24 bB | 98.51 ± 0.65 bB | 64.19 ± 1.21 b | −2.15 ± 0.09 b | 13.67 ± 1.04 b |
GMS5.00%-PO | 98.93 ± 0.34 bB | 98.34 ± 0.55 bB | 64.78 ± 1.38 b | −2.19 ± 0.11 b | 12.87 ± 1.08 b |
Crystallization | |||||
Sample | Tconset [°C] | Tc1 [°C] | Tc2 [°C] | ΔHc1 [J/g] | ΔHc2 [J/g] |
BW | 60.76 ± 0.45 a | 58.28 ± 0.23 a | - | 170.67 ± 5.67 a | - |
BW3.00%-OO | 29.24 ± 0.12 b | 16.94 ± 0.12 b | - | 2.65 ± 0.01 b | - |
BW4.00%-OO | 31.87 ± 0.31 c | 19.58 ± 0.23 c | - | 2.78 ± 0.03 c | - |
BW5.00%-OO | 31.87 ± 0.40 c | 20.71 ± 0.21 d | - | 2.83 ± 0.02 d | - |
BW3.00%-PO | 38.24 ± 0.23 e | 20.33 ± 0.15 e | - | 2.82 ± 0.01 e | - |
BW4.00%-PO | 41.07 ± 0.41 f | 22.37 ± 0.36 f | - | 2.91 ± 0.05 f | - |
BW5.00%-PO | 42.98 ± 0.09 g | 23.36 ± 0.39 g | - | 2.96 ± 0.03 g | - |
GMS | 64.27 ± 0.56 a | 62.27 ± 0.56 a | 17.23 ± 0.56 a | 150.45 ± 4.56 a | 80.34 ± 12.56 a |
GMS3.00%-OO | 46.12 ± 0.11 b | 41.99 ± 0.23 b | 10.03 ± 0.03 b | 2.82 ± 0.03 b | 1.13 ± 0.01 b |
GMS3.00%-OO | 48.25 ± 0.10 c | 45.16 ± 0.12 c | 10.45 ± 0.02 c | 2.28 ± 0.02 c | 1.28 ± 0.02 c |
GMS5.00%-OO | 48.95 ± 0.08 c | 45.42 ± 0.35 c | 11.33 ± 0.08 d | 2.60 ± 0.05 d | 1.45 ± 0.05 d |
GMS3.00%-PO | 45.82 ± 0.15 d | 37.21 ± 0.56 d | 10.59 ± 0.05 e | 2.06 ± 0.01 e | 0.38 ± 0.01 e |
GMS4.00%-PO | 43.29 ± 0.11 e | 39.72 ± 0.23 e | 11.55 ± 0.03 f | 2.56 ± 0.06 f | 0.57 ± 0.01 f |
GMS5.00%-PO | 50.06 ± 0.09 f | 43.09 ± 0.45 f | 12.44 ± 0.01 g | 2.88 ± 0.02 g | 0.86 ± 0.02 g |
Melting | |||||
Tm1onset [°C] | Tm1 [°C] | Tm2 [°C] | ΔHm1 [J/g] | ΔHm2 [J/g] | |
BW | 51.23 ± 2.67 a | 63.25 ± 0.98 a | - | 160.23 ± 3.45 a | - |
BW3.00%-OO | 20.22 ± 0.34 b | 31.37 ± 0.67 b | - | 2.81 ± 0.04 b | - |
BW4.00%-OO | 20.46 ± 0.23 b | 35.01 ± 0.45 c | - | 2.82 ± 0.03 b | - |
BW5.00%-OO | 20.17 ± 0.12 b | 36.42 ± 0.23 d | - | 2.80 ± 0.06 b | - |
BW3.00%-PO | 20.06 ± 0.16 b | 35.10 ± 0.56 c | - | 2.80 ± 0.02 b | - |
BW4.00%-PO | 20.10 ± 0.15 b | 36.44 ± 0.24 d | - | 2.80 ± 0.03 b | - |
BW5.00%-PO | 20.79 ± 0.21 b | 37.11 ± 0.54 e | - | 2.83 ± 0.04 b | - |
GMS | 10.23 ± 1.03 a | 16.68 ± 0.87 a | 63.15 ± 0.56 a | 81.67 ± 5.23 a | 150.45 ± 12.45 a |
GMS3.00%-OO | 7.34 ± 0.18 b | 11.43 ± 0.05 b | 47.29 ± 0.13 b | 11.37 ± 0.06 b | 1.05 ± 0.01 b |
GMS4.00%-OO | 6.84 ± 0.14 c | 12.75 ± 0.07 c | 48.90 ± 0.15 c | 8.34 ± 0.09 c | 1.24 ± 0.03 c |
GMS5.00%-OO | 9.87 ± 0.19 d | 12.29 ± 0.10 d | 50.10 ± 0.20 d | 12.16 ± 0.11 d | 1.51 ± 0.02 d |
GMS3.00%-PO | 5.27 ± 0.19 e | 7.21 ± 0.03 e | 44.58 ± 0.16 e | 7.49 ± 0.04 e | 1.55 ± 0.01 e |
GMS4.00%-PO | 6.83 ± 0.18 f | 12.71 ± 0.04 c | 45.94 ± 0.12 f | 7.39 ± 0.03 f | 1.19 ± 0.04 f |
GMS5.00%-PO | 5.22 ± 0.15 g | 13.76 ± 0.05 f | 48.52 ± 0.14 g | 9.14 ± 0.01 g | 1.10 ± 0.01 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malvano, F.; Albanese, D.; Cinquanta, L.; Liparoti, S.; Marra, F. A Comparative Study between Beeswax and Glycerol Monostearate for Food-Grade Oleogels. Gels 2024, 10, 214. https://doi.org/10.3390/gels10040214
Malvano F, Albanese D, Cinquanta L, Liparoti S, Marra F. A Comparative Study between Beeswax and Glycerol Monostearate for Food-Grade Oleogels. Gels. 2024; 10(4):214. https://doi.org/10.3390/gels10040214
Chicago/Turabian StyleMalvano, Francesca, Donatella Albanese, Luciano Cinquanta, Sara Liparoti, and Francesco Marra. 2024. "A Comparative Study between Beeswax and Glycerol Monostearate for Food-Grade Oleogels" Gels 10, no. 4: 214. https://doi.org/10.3390/gels10040214
APA StyleMalvano, F., Albanese, D., Cinquanta, L., Liparoti, S., & Marra, F. (2024). A Comparative Study between Beeswax and Glycerol Monostearate for Food-Grade Oleogels. Gels, 10(4), 214. https://doi.org/10.3390/gels10040214