Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. Thermal Properties
2.3. Mechanical Strength
2.4. The Effect of Drying Conditions
2.5. Limitations and Future Work
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of CF-PI Aerogel Composites
4.3. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sonu, S.S.; Rai, N.; Chauhan, I. Multifunctional aerogels: A comprehensive review on types, synthesis and applications of aerogels. J. Sol-Gel Sci. Technol. 2023, 105, 324–336. [Google Scholar] [CrossRef]
- Ahmad, Z.; Mark, J.E. Polyimide-ceramic hybrid composites by the Sol-Gel route. Chem. Mater. 2001, 13, 3320–3330. [Google Scholar] [CrossRef]
- Randall, J.P.; Meador, M.A.B.; Jana, S.C. Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interfaces 2011, 3, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Bheekhun, N.; Talib, A.R.A.; Hassan, M.R. Aerogels in aerospace: An overview. Adv. Mater. Sci. Eng. 2013, 2013, 406065. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, G.; Kong, Y.; Shen, X.; Cui, S. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture. Chem. Eng. J. 2017, 322, 1–9. [Google Scholar] [CrossRef]
- BMartins, F.; de Toledo, P.V.O.; Petri, D.F.S. Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants. Carbohydr. Polym. 2017, 155, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, G.; Liu, Z.; Zhang, X. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal Sol-Gel confined transition strategy. ACS Nano 2021, 15, 4759–4768. [Google Scholar] [CrossRef]
- Passaro, J.; Bifulco, A.; Calabrese, E.; Imparato, C.; Raimondo, M.; Pantani, R.; Aronne, A.; Guadagno, L. Hybrid hemp particles as functional fillers for the manufacturing of hydrophobic and anti-icing epoxy composite coatings. ACS Omega 2023, 8, 23596–23606. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Jiang, S.; Yu, S.; Chen, Y.; Tang, X.; Wu, X.; Zhong, Y.; Shen, X.; Cui, S. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines. J. Sol-Gel Sci. Technol. 2018, 88, 386–394. [Google Scholar] [CrossRef]
- Ghaffari-Mosanenzadeh, S.; Tafreshi, O.A.; Karamikamkar, S.; Saadatnia, Z.; Rad, E.; Meysami, M.; Naguib, H.E. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv. Colloid Interface Sci. 2022, 304, 102646. [Google Scholar] [CrossRef]
- Meador, M.A.B.; Malow, E.J.; Silva, R.; Wright, S.; Quade, D.; Vivod, S.L.; Guo, H.; Guo, J.; Cakmak, M. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl. Mater. Interfaces 2012, 4, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, R.P.; Williams, J.C.; Schiraldi, D.A.; Meador, M.A.B. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl. Mater. Interfaces 2017, 9, 8287–8296. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, X.; Wan, M.; Tang, Y. Recent progress on polyimide aerogels against shrinkage: A review. J. Mater. Sci. 2022, 57, 13233–13263. [Google Scholar] [CrossRef]
- Kim, M.; Eo, K.; Lim, H.J.; Kwon, Y.K. Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres. Compos. Sci. Technol. 2018, 165, 355–361. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, C.; Hu, S.; Zhang, D.; Wu, G. Facile fabrication of mechanically strong and thermal resistant polyimide aerogels with an excess of cross-linker. J. Mater. Res. Technol. 2020, 9, 10719–10731. [Google Scholar] [CrossRef]
- Guo, H.; Meador, M.A.B.; McCorkle, L.S.; Scheiman, D.A.; McCrone, J.D.; Wilkewitz, B. Poly(maleic anhydride) cross-linked polyimide aerogels: Synthesis and properties. RSC Adv. 2016, 6, 26055–26065. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.; Li, X.; Ma, X.; Li, S.; Sun, M.; Liu, H.; Wang, K. Ultralight and heat-insulating mesoporous polyimide aerogels cross-linked with aminated SiO2 nanoparticles. Microporous Mesoporous Mater. 2021, 319, 111074. [Google Scholar] [CrossRef]
- Wang, Y.; He, T.; Cheng, Z.; Liu, M.; Ji, J.; Chang, X.; Xu, Q.; Liu, Y.; Liu, X.; Qin, J. Mechanically strong and tough polyimide aerogels cross-linked with amine functionalized carbon nanotubes synthesized by fluorine displacement reaction. Compos. Sci. Technol. 2020, 195, 108204. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, Y.; Yao, W.-S.; Zhang, X.-T. Polyimide aerogels crosslinked with chemically modified graphene oxide. Acta Phys.-Chim. Sin. 2015, 31, 1179–1185. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, F.; Peng, T.; Liu, H.; Xie, L.; Jiang, C. Highly elastic and robust hydroxyapatite nanowires/polyimide composite aerogel with anisotropic structure for thermal insulation. Compos. Part B Eng. 2021, 223, 109081. [Google Scholar] [CrossRef]
- Hou, X.; Li, Y.; Luo, X.; Zhang, R. SiC whiskers-reinforced polyimide aerogel composites with robust compressive properties and efficient thermal insulation performance. J. Appl. Polym. Sci. 2021, 138, 49892. [Google Scholar] [CrossRef]
- Zuo, L.; Fan, W.; Zhang, Y.; Zhang, L.; Gao, W.; Huang, Y.; Liu, T. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos. Sci. Technol. 2017, 139, 57–63. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, H.; Wang, F.; Dong, J.; Wu, K.; Cao, J.; Long, D. Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation. Macromol. Mater. Eng. 2019, 304, 1800676. [Google Scholar] [CrossRef]
- Kantor, Z.; Wu, T.; Zeng, Z.; Gaan, S.; Lehner, S.; Jovic, M.; Bonnin, A.; Pan, Z.; Mazrouei-Sebdani, Z.; Opris, D.M.; et al. Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chem. Eng. J. 2022, 443, 136401. [Google Scholar] [CrossRef]
- Liu, S.; Chen, W.; Zhou, X. Polyimide aerogels using melamine as an economical yet effective crosslinker. J. Porous Mater. 2021, 28, 1155–1165. [Google Scholar] [CrossRef]
- Chen, W.; Liu, S.; Sun, Y.; Zhou, X.; Zhou, F. Melamine-crosslinked polyimide aerogels from supercritical ethanol drying with improved in-use shape stability against shrinking. Macromol. Mater. Eng. 2022, 307, 2100645. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, Z.; Chen, G.; Li, K.; Zhao, S.; Su, G. Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area. J. Mater. Sci. 2018, 53, 12885–12893. [Google Scholar] [CrossRef]
- Jaxel, J.; Markevicius, G.; Rigacci, A.; Budtova, T. Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers. Compos. Part A Appl. Sci. Manuf. 2017, 103, 113–121. [Google Scholar] [CrossRef]
- Mosanenzadeh, S.G.; Alshrah, M.; Saadatnia, Z.; Park, C.B.; Naguib, H.E. Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications. Macromol. Mater. Eng. 2020, 305, 1900777. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, X.; Li, C.; You, B.; Sun, G. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy. J. Mater. Chem. A 2020, 8, 9701–9712. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Song, P.; You, B.; Sun, G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2020, 381, 122784. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Liu, T.; Liu, L.; Xi, S.; Zhang, X.; Zu, G.; Shen, J. Properties improvement of linear polyimide aerogels via formation of doubly cross-linked polyimide-polyvinylpolymethylsiloxane network structure. J. Non-Cryst. Solids 2021, 559, 120679. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zu, G.; Kanamori, K.; Nakanishi, K.; Shen, J. Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite aerogel prepared via stepwise chemical liquid deposition. Mater. Des. 2019, 183, 108096. [Google Scholar] [CrossRef]
- Feng, J.; Wang, X.; Jiang, Y.; Du, D.; Feng, J. Study on thermal conductivities of aromatic polyimide aerogels. ACS Appl. Mater. Interfaces 2016, 8, 12992–12996. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Du, A.; Xiang, Y.; Liu, M.; Li, T.; Shen, J.; Zhang, Z.; Li, C.; Zhou, B. Silica-aerogel-powders “jammed” polyimide aerogels with excellent hydrophobicity and conversion to ultra-light polyimide aerogel. RSC Adv. 2016, 6, 58268–58278. [Google Scholar] [CrossRef]
- Wu, T.; Dong, J.; De France, K.J.; Li, M.; Zhao, X.; Zhang, Q. Fabrication of polyimide aerogels cross-linked by a cost-effective amine-functionalized hyperbranched polysiloxane (NH2–HBPSi). ACS Appl. Polym. Mater. 2020, 2, 3876–3885. [Google Scholar] [CrossRef]
- Xi, S.; Wang, X.; Zhang, Z.; Liu, T.; Zhang, X.; Shen, J. Influence of diamine rigidity and dianhydride rigidity on the microstructure, thermal and mechanical properties of cross-linked polyimide aerogels. J. Porous Mater. 2021, 28, 717–725. [Google Scholar] [CrossRef]
- Xi, S.; Wang, X.; Liu, T.; Zhang, Z.; Zhang, X.; Shen, J. Moisture-resistant and mechanically strong polyimide-polymethylsilsesquioxane hybrid aerogels with tunable microstructure. Macromol. Mater. Eng. 2021, 306, 2000612. [Google Scholar] [CrossRef]
- ISO 22007-2: 2015; Plastics–Determination of Thermal Conductivity and Thermal Diffusivity–Part 2: Transient Plane Heat Source (Hot Disc) Method. ISO: Geneva, Switzerland, 2015.
CF-PI Aerogel Composites | Density/g·cm−3 | Shrinkage/% | Thermal Conductivity/mW·m−1·k−1 | Young’s Modulus/MPa | T-5wt%/°C | |
---|---|---|---|---|---|---|
Sd | Sv | |||||
CF1-PI1-1-ScD (Et) | 0.158 ± 0.007 | 1.6 ± 0.3 | 6.7 ± 1.8 | 31.2 ± 0.2 | 2.46 | 493.0 |
CF1-PI3-2-ScD (Et) | 0.190 ± 0.004 | 0.8 ± 0.3 | 6.5 ± 0.4 | 32.1 ± 0.1 | 2.63 | 506.4 |
CF1-PI2-1-ScD (Et) | 0.220 ± 0.007 | 0.4 ± 0.2 | 5.0 ± 0.4 | 35.3 ± 0.1 | 2.77 | 518.7 |
CF0.5-PI3-2-ScD (Et) | 0.189 ± 0.007 | 0.6 ± 0.5 | 6.0 ± 3.6 | 31.1 ± 0.3 | 2.70 | 512.6 |
CF1.5-PI3-2-ScD (Et) | 0.195 ± 0.004 | 1.2 ± 0.4 | 7.4 ± 2.5 | 33.4 ± 0.2 | 2.60 | — |
CF1-PI1-1-AD | 0.213 ± 0.006 | — | 13.9 ± 4.1 | 42.8 ± 0.2 | 2.18 | 483.7 |
CF1-PI1-1-FD | 0.231 ± 0.010 | — | 17.5 ± 2.5 | 47.8 ± 0.2 | 3.42 | 452.5 |
CF1-PI1-1-ScD (CO2) | 0.146 ± 0.007 | — | 0.8 ± 0.1 | 31.6 ± 0.1 | 1.62 | 476.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Wan, M.; Tang, Y.; Chen, W. Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage. Gels 2024, 10, 327. https://doi.org/10.3390/gels10050327
Shi W, Wan M, Tang Y, Chen W. Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage. Gels. 2024; 10(5):327. https://doi.org/10.3390/gels10050327
Chicago/Turabian StyleShi, Wanlin, Mengmeng Wan, Yating Tang, and Weiwang Chen. 2024. "Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage" Gels 10, no. 5: 327. https://doi.org/10.3390/gels10050327
APA StyleShi, W., Wan, M., Tang, Y., & Chen, W. (2024). Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage. Gels, 10(5), 327. https://doi.org/10.3390/gels10050327