Study of the Synthesis of Multi-Cationic Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Co-Ni-O Aerogels and Their Catalytic Activity in the Dry Reforming of Methane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Aerogels
2.2. Reduction in Calcined Aerogels
2.3. Catalytic Performance of Reduced Aerogels
2.4. Characterization of Spent Catalysts
3. Conclusions
4. Materials and Methods
4.1. Synthesis of Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Ni-Co-O Aerogels
4.2. Characterization of Aerogels
4.3. Tests of Catalytic Activity of Aerogel Catalysts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Dhir, A.; Mohapatra, S.K.; Mahla, S.K. Dry reforming of methane using various catalysts in the process: Review. Biomass Convers. Bior 2020, 10, 567–587. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Guo, S.; Sun, Y.; Zhang, Y.; Zhang, C.; Li, Y.; Bai, J. Bimetallic Nickel-Cobalt catalysts and their application in dry reforming reaction of methane. Fuel 2024, 358, 130290. [Google Scholar] [CrossRef]
- Bitters, J.S.; He, T.N.; Nestler, E.; Senanayake, S.D.; Chen, J.G.G.; Zhang, C. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. J. Energy Chem. 2022, 68, 124–142. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Patel, N.; Fakeeha, A.H.; Alotibi, M.F.; Alreshaidan, S.B.; Kumar, R. Reforming of methane: Effects of active metals, supports, and promoters. Catal. Rev. 2023, 1–99. [Google Scholar] [CrossRef]
- Torimoto, M.; Sekine, Y. Effects of alloying for steam or dry reforming of methane: A review of recent studies. Catal. Sci. Technol. 2022, 12, 3387–3411. [Google Scholar] [CrossRef]
- Maleki, H.; Hüsing, N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B 2018, 221, 530–555. [Google Scholar] [CrossRef]
- Brinker, C.J.; Schere, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press, Inc.: San Diego, CA, USA, 1990. [Google Scholar]
- Livage, J. Sol–gel synthesis of heterogeneous catalysts from aqueous solutions. Catal. Today 1998, 41, 3–19. [Google Scholar] [CrossRef]
- Sakka, S.E. Handbook of Sol-Gel Science and Technology-Processing, Characterization and Applications; Kluwer Academic Publishers: New York, NY, USA, 2005; p. 1968. [Google Scholar]
- Baumann, T.F.; Gash, A.E.; Satcher, J.H., Jr. A Robust Approach to Inorganic Aerogels: The Use of Epoxides in Sol–Gel Synthesis. In Aerogels Handbook; Michel, A., Aegerter, N.L., Koebel, M.M., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wei, T.Y.; Chen, C.H.; Chien, H.C.; Lu, S.Y.; Hu, C.C. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Adv. Mater. 2010, 22, 347–351. [Google Scholar] [CrossRef]
- House, J.E. Inorganic Chemistry; Elsevier: New York, NY, USA, 2008; p. 864. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Rayner-Canham, G.; Overton, T. Descriptive Inorganic Chemistry; W. H. Freeman and Company: New York, NY, USA, 2010. [Google Scholar]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, S.H.; Zheng, L.; Zhang, G.N.; Hao, Z.P.; Kang, L.P.; Liu, Z.H. Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance. Electrochim. Acta 2013, 87, 546–553. [Google Scholar] [CrossRef]
- Clapsaddle, B.J.N.B.; Wittstock, A.; Sprehn, D.W.; Gash, A.E.; Satcher, J.H.; Simpson, R.L.; Bäumer, M. A sol–gel methodology for the preparation of lanthanide-oxide aerogels: Preparation and characterization. J. Sol-Gel Sci. Technol. 2012, 64, 381–389. [Google Scholar] [CrossRef]
- Juhl, S.J.; Dunn, N.J.H.; Carroll, M.K.; Anderson, A.M.; Bruno, B.A.; Madero, J.E.; Bono, M.S. Epoxide-assisted alumina aerogels by rapid supercritical extraction. J. Non-Cryst. Solids 2015, 426, 141–149. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lago, R.; Bini, G.; Pena, M.A.; Fierro, J.L.G. Partial oxidation of methane to synthesis gas using LnCoO3 perovskites as catalyst precursors. J. Catal. 1997, 167, 198–209. [Google Scholar] [CrossRef]
- Osazuwa, O.U.; Cheng, C.K. Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalyst. J. Clean Prod. 2017, 148, 202–211. [Google Scholar] [CrossRef]
- Osazuwa, O.U.; Setiabudi, H.D.; Abdullah, S.; Cheng, C.K. Syngas production from methane dry reforming over SmCoO3 perovskite catalyst: Kinetics and mechanistic studies. Int. J. Hydrogen Energy 2017, 42, 9707–9721. [Google Scholar] [CrossRef]
- Osazuwa, O.U.; Setiabudi, H.D.; Rasid, R.A.; Cheng, C.K. Syngas production via methane dry reforming: A novel application of SmCoO3 perovskite catalyst. J. Nat. Gas Sci. Eng. 2017, 37, 435–448. [Google Scholar] [CrossRef]
- Lima, S.M.; Assaf, J.M.; Pena, M.A.; Fierro, J.L.G. Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane. Appl. Catal. A-Gen. 2006, 311, 94–104. [Google Scholar] [CrossRef]
- Wu, L.A.; Jiang, X.C.; Wu, S.L.; Yao, R.; Qiao, X.S.; Fan, X.P. Synthesis of monolithic zirconia with macroporous bicontinuous structure via epoxide-driven sol-gel process accompanied by phase separation. J. Sol-Gel Sci. Technol. 2014, 69, 1–8. [Google Scholar] [CrossRef]
- Mousavi, M.; Pour, A.N. Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: Influence of the preparation method. New J. Chem. 2019, 43, 10763–10773. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Cao, Y.; Li, H.R.; Zhang, J.P.; Shi, L.Y.; Zhang, D.S. Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane. Rsc Adv. 2017, 7, 4735–4745. [Google Scholar] [CrossRef]
- Wang, C.Z.; Sun, N.N.; Zhao, N.; Wei, W.; Zhao, Y.X. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane. Catal. Today 2017, 281, 268–275. [Google Scholar] [CrossRef]
- Hao, Z.G.; Zhu, Q.S.; Jiang, Z.; Li, H.Z. Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming. Powder Technol. 2008, 183, 46–52. [Google Scholar] [CrossRef]
- Hao, Z.G.; Zhu, Q.S.; Lei, Z.; Li, H.Z. CH4-CO2 reforming over Ni/Al2O3 aerogel catalysts in a fluidized bed reactor. Powder Technol. 2008, 182, 474–479. [Google Scholar] [CrossRef]
- Li, P.C.; Li, J.; Zhu, Q.S.; Cui, L.J.; Li, H.Z. Effect of granulation on the activity and stability of a Co-Al2O3 aerogel catalyst in a fluidized-bed reactor for CH4-CO2 reforming. Rsc Adv. 2013, 3, 8939–8946. [Google Scholar] [CrossRef]
- Cao, A.N.T.; Pham, C.Q.; Pham, L.H.; Nguyen, D.L.; Phuong, P.T.T.; Tran, T.T.V.; Nguyen, V.; Nguyen, T.B.; Van Le, Q.; Nguyen, N.A.; et al. Boosted methane dry reforming for hydrogen generation on cobalt catalyst with small cerium dosage. Int. J. Hydrogen Energy 2022, 47, 42200–42212. [Google Scholar] [CrossRef]
- Cao, A.N.T.; Pham, C.Q.; Nguyen, T.M.; Van Tran, T.; Phuong, P.T.T.; Vo, D.V.N. Dysprosium promotion on Co/Al2O3 catalysts towards enhanced hydrogen generation from methane dry reforming. Fuel 2022, 324, 124818. [Google Scholar] [CrossRef]
- Sheng, K.; Luan, D.; Jiang, H.; Zeng, F.; Wei, B.; Pang, F.; Ge, J. NixCoy Nanocatalyst Supported by ZrO2 Hollow Sphere for Dry Reforming of Methane: Synergetic Catalysis by Ni and Co in Alloy. Acs Appl. Mater. Inter. 2019, 11, 24078–24087. [Google Scholar] [CrossRef]
- Yang, T.Z.; Chen, W.; Chen, L.; Liu, W.F.; Zhang, D.C. Promotion effect between Ni and Co aerogel catalysts in CH4 reforming with CO2 and O2. J. CO2 Util. 2016, 16, 130–137. [Google Scholar] [CrossRef]
- Tran, N.T.; Le, Q.V.; Cuong, N.V.; Nguyen, T.D.; Phuc, N.H.H.; Phuong, P.T.T.; Monir, M.U.; Abd Aziz, A.; Truong, Q.D.; Abidin, S.Z.; et al. La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation. J. Energy Inst. 2020, 93, 1571–1580. [Google Scholar] [CrossRef]
- Bahari, M.B.; Phuc, N.H.H.; Alenazey, F.; Vu, K.B.; Ainirazali, N.; Vo, D.-V.N. Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal. Today 2017, 291, 67–75. [Google Scholar] [CrossRef]
- Li, K.; Chang, X.; Pei, C.; Li, X.; Chen, S.; Zhang, X.; Assabumrungrat, S.; Zhao, Z.-J.; Zeng, L.; Gong, J. Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane. Appl. Catal. B 2019, 259, 118092. [Google Scholar] [CrossRef]
- Bian, Z.F.; Kawi, S. Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane. J. CO2 Util. 2017, 18, 345–352. [Google Scholar] [CrossRef]
- Gupta, S.; Fernandes, R.; Patel, R.; Spreitzer, M.; Patel, N. A review of cobalt-based catalysts for sustainable energy and environmental applications. Appl. Catal. A 2023, 661, 119254. [Google Scholar] [CrossRef]
- San-Jose-Alonso, D.; Juan-Juan, J.; Illan-Gomez, M.J.; Roman-Martinez, M.C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane. Appl. Catal. A-Gen. 2009, 371, 54–59. [Google Scholar] [CrossRef]
- You, X.J.; Wang, X.; Ma, Y.H.; Liu, J.J.; Liu, W.M.; Xu, X.L.; Peng, H.G.; Li, C.Q.; Zhou, W.F.; Yuan, P.; et al. Ni-Co/Al2O3 Bimetallic Catalysts for CH4 Steam Reforming: Elucidating the Role of Co for Improving Coke Resistance. Chemcatchem 2014, 6, 3377–3386. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation. J. Phys. Chem. C 2009, 113, 20214–20220. [Google Scholar] [CrossRef]
- Yumitori, S. Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 2000, 35, 139–146. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; MacDonald, S.M.; Affrossman, S. Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts. J. Phys. Chem. 1996, 100, 744–754. [Google Scholar] [CrossRef]
- Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R.; Stankovich, S.; Jung, I.; Field, D.; Ventrice, J.C.; et al. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152. [Google Scholar] [CrossRef]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
Synthesis Precursors | Concentration (mol) | H2O/Mi (mol/mol) | tgel (min) | Charge Density of Cations (C/mm3) |
---|---|---|---|---|
CoCl2·6H2O | 0.0144 | 6 | 25 | 155 |
SmCl3·6H2O | 0.0144 | 86 | ||
propylene oxide | 0.2858 | |||
ethanol | 1.182 | |||
NiCl2·6H2O | 0.0144 | 6 | 7 | 134 |
SmCl3·6H2O | 0.0144 | 86 | ||
propylene oxide | 0.2858 | |||
ethanol | 1.182 | |||
CoCl2·6H2O | 0.0144 | 6 | 3 | 155 |
AlCl3·6H2O | 0.0144 | 364 | ||
propylene oxide | 0.2858 | |||
ethanol | 1.182 | |||
NiCl2·6H2O | 0.0144 | 6 | 3 | 134 |
AlCl3·6H2O | 0.0144 | 364 | ||
propylene oxide | 0.2858 | |||
ethanol | 1.182 | |||
NiCl2·6H2O | 0.0072 | 6 | 4 | 134 |
CoCl2·6H2O | 0.0072 | 155 | ||
AlCl3·6H2O | 0.0144 | 364 | ||
propylene oxide | 0.2858 | |||
ethanol | 1.182 |
Sample/Peak | (Dm)TG | (Q)DSC | (Tmax)DTG | (Tmax)DSC | (Tmax)H2O | (Tmax)CO2 | (Tmax)HCl |
---|---|---|---|---|---|---|---|
(wt%) | (J/g) | (°C) | |||||
SmCoO/1 | −6 | −122 | 134 | 120 | 123 | ||
SmCoO/2 | −17 | 642 | 287 | 294 | 288 | 288 | 254 |
SmNiO/1 | −9 | −241 | 144 | 135 | 138 | 134 | |
SmNiO/2 | −7 | 588 | 259 | 260 | 259 | 259 | 226 |
SmNiO/3 | −16 | 324 | 324 | 317 | 317 | ||
AlCoO/1 | −16 | −202 | 134 | 134 | 144 | ||
AlCoO/2 | −10 | 363 | 287 | 310 | 286 | 301 | 225 |
AlNiO/1 | −12 | −162 | 134 | 125 | 140 | 122 | |
AlNiO/2 | −15 | 77 | 291 | 305 | 273 | 293 | |
AlNiO/3 | −5 | 80 | 615 | 376 | 359 | ||
AlNiCoO/1 | −254 | 136 | 136 | 144 | 136 | ||
AlNiCoO/2 | 242 | 289 | 337 | 289 | 330 |
Sample | Specific Surface (m2/g) | |
---|---|---|
Thermally Treated | Calcined | |
Sm-Co-O | 325 | 1.51 |
Sm-Ni-O | 470 | 18.9 |
Al-Co-O | 459 | 11.9 |
Al-Ni-O | 395 | 68.7 |
Al-Co-Ni-O | 346 | 34.4 |
Sample | At. % | ||||
---|---|---|---|---|---|
Sm | Al | Co | Ni | O | |
Sm-Co-O | 27.7 | 0.0 | 25.0 | 0.0 | 47.4 |
Sm-Ni-O | 29.0 | 0.0 | 24.5 | 0.0 | 46.5 |
Al-Co-O | 0.0 | 28.6 | 23.4 | 0.0 | 48.0 |
Al-Ni-O | 0.0 | 27.9 | 0.0 | 24.8 | 47.4 |
Al-Co-Ni-O | 0.0 | 24.2 | 9.3 | 25.3 | 41.2 |
Sample | Conversion (%) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
Yield (%) | 600 | 650 | 700 | 750 | 800 | |
Sm-Co-O | X(CH4) | 51.1 ± 0.3 | 81.2 ± 0.3 | 91.8 ± 0.4 | 98.0 ± 0.4 | 99.6 ± 0.2 |
X(CO2) | 60.2 ± 0.2 | 80.4 ± 0.2 | 90.2 ± 0.3 | 92.5 ±0.6 | 93.7 ± 0.5 | |
Y(H2) | 46.6 ± 0.2 | 77.3 ± 0.1 | 90.6 ± 0.3 | 96.4 ± 0.4 | 95.8 ± 0.3 | |
Y(CO) | 36.4 ± 0.1 | 69.5 ± 0.3 | 87.4 ± 0.4 | 93.8 ± 0.3 | 95.7 ± 0.6 | |
Sm-Ni-O | X(CH4) | 85.2 ± 0.1 | 93.8 ± 0.1 | 97.6 ± 0.1 | 99.3 ± 0.2 | 99.8 ± 0.1 |
X(CO2) | 80.6 ± 0.4 | 87.6 ± 0.3 | 91.4 ± 0.2 | 92.5 ± 0.3 | 94.1 ± 0.3 | |
Y(H2) | 88.4 ± 0.2 | 88.7 ± 0.2 | 93.2 ± 0.2 | 93.7 ± 0.2 | 94.6 ± 0.4 | |
Y(CO) | 76.3 ± 0.1 | 80.1 ± 0.2 | 92.7 ± 0.3 | 92.6 ± 0.2 | 96.3 ± 0.1 | |
Al-Co-O | X(CH4) | 82.2 ± 0.1 | 92.6 ± 0.5 | 97.6 ± 0.2 | 99.3 ± 0.4 | 99.7 ± 0.2 |
X(CO2) | 76.4 ± 0.2 | 84.0 ± 0.3 | 89.2 ± 0.1 | 91.2 ± 0.2 | 92.3 ± 0.5 | |
Y(H2) | 76.6 ± 0.2 | 88.6 ± 0.1 | 94.3 ± 0.2 | 94.7 ± 0.2 | 95.4 ± 0.1 | |
Y(CO) | 70.4 ± 0.1 | 85.2 ± 0.6 | 92.4 ± 0.1 | 94.6 ± 0.2 | 95.2 ± 0.2 | |
Al-Ni-O | X(CH4) | 85.1 ± 0.3 | 93.7 ± 0.2 | 98.4 ± 0.1 | 99.2 ± 0.2 | 99.9 ± 0.1 |
X(CO2) | 80.6 ± 0.1 | 88.4 ± 0.2 | 91.3 ± 0.4 | 93.1 ± 0.2 | 94.6 ± 0.2 | |
Y(H2) | 80.5 ± 0.4 | 91.0 ± 0.3 | 94.7 ± 0.1 | 95.6 ± 0.5 | 96.4 ± 0.2 | |
Y(CO) | 74.6 ± 0.2 | 87.4 ± 0.2 | 93.3 ± 0.2 | 94.5 ± 0.3 | 95.7 ± 0.2 | |
Al-Co-Ni-O | X(CH4) | 84.3 ± 0.2 | 84.3 ± 0.1 | 97.5 ± 0.2 | 99.4 ± 0.2 | 99.7 ± 0.3 |
X(CO2) | 79.4 ± 0.2 | 86.5 ± 0.2 | 89.6 ± 0.2 | 91.3 ± 0.4 | 92.3 ± 0.2 | |
Y(H2) | 81.1 ± 0.1 | 92.3 ± 0.4 | 95.3 ± 0.3 | 96.4 ± 0.3 | 95.7 ± 0.2 | |
Y(CO) | 73.1 ± 0.3 | 86.2 ± 0.2 | 92.1 ± 0.2 | 94.0 ± 0.6 | 95.3 ± 0.1 |
Sample/Peak | TCO2 (°C) | ICCO2 (A·s·109) | C-Deposit (mg C/gcat.h) | SC-Deposit | ||||
---|---|---|---|---|---|---|---|---|
Mean | Sdev | Mean | Sdev | Mean | Sdev | Mean | Sdev | |
Sm-Co-O/1 | 275 | 3 | 3.8 | 0.6 | 0.028 | 0.011 | 0.042 | 0.021 |
Sm-Co-O/2 | 532 | 6 | 1.9 | 0.3 | 0.014 | 0.01 | ||
Sm-Ni-O/1 | 343 | 22 | 35.3 | 5.2 | 0.26 | 0.005 | 0.29 | 0.008 |
Sm-Ni-O/2 | 496 | 5 | 4.3 | 0.6 | 0.03 | 0.004 | ||
Al-Co-O/1 | 484 | 16 | 607.7 | 89.4 | 4.47 | 0.43 | 4.47 | 0.43 |
Al-Ni-O/1 | 538 | 3 | 282.7 | 41.6 | 2.08 | 0.023 | 2.93 | 0.077 |
Al-Ni-O/2 | 600 | 3 | 115.3 | 17.0 | 0.85 | 0.074 | ||
Al-Co-Ni-O/1 | 335 | 5 | 14.4 | 2.1 | 0.11 | 0.005 | 0.35 | 0.011 |
Al-Co-Ni-O/2 | 483 | 4 | 33.1 | 4.9 | 0.24 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cihlar, J.; Tkachenko, S.; Bednarikova, V.; Cihlar, J., Jr.; Castkova, K.; Trunec, M.; Celko, L. Study of the Synthesis of Multi-Cationic Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Co-Ni-O Aerogels and Their Catalytic Activity in the Dry Reforming of Methane. Gels 2024, 10, 328. https://doi.org/10.3390/gels10050328
Cihlar J, Tkachenko S, Bednarikova V, Cihlar J Jr., Castkova K, Trunec M, Celko L. Study of the Synthesis of Multi-Cationic Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Co-Ni-O Aerogels and Their Catalytic Activity in the Dry Reforming of Methane. Gels. 2024; 10(5):328. https://doi.org/10.3390/gels10050328
Chicago/Turabian StyleCihlar, Jaroslav, Serhii Tkachenko, Vendula Bednarikova, Jaroslav Cihlar, Jr., Klara Castkova, Martin Trunec, and Ladislav Celko. 2024. "Study of the Synthesis of Multi-Cationic Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Co-Ni-O Aerogels and Their Catalytic Activity in the Dry Reforming of Methane" Gels 10, no. 5: 328. https://doi.org/10.3390/gels10050328
APA StyleCihlar, J., Tkachenko, S., Bednarikova, V., Cihlar, J., Jr., Castkova, K., Trunec, M., & Celko, L. (2024). Study of the Synthesis of Multi-Cationic Sm-Co-O, Sm-Ni-O, Al-Co-O, Al-Ni-O, and Al-Co-Ni-O Aerogels and Their Catalytic Activity in the Dry Reforming of Methane. Gels, 10(5), 328. https://doi.org/10.3390/gels10050328