Sequential Fabrication of a Three-Layer Retina-like Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of the ECM-Based Hydrogel
2.2. Engineering the Choroid Layer
2.3. Engineering the RPE Layer on Top of the Printed Vascular Layer
2.4. Fabrication of the Three-Layer Retina-Like Structure
3. Conclusions
4. Materials and Methods
4.1. Bio-Ink Preparation
4.1.1. Extracellular Matrix Hydrogel Production
4.1.2. Sacrificial Material Preparation
4.2. Sacrificial Material Extraction
4.3. Rheological Properties
4.4. Cell Culture
4.5. Perfusion Culture
4.6. Immunofluorescence Staining
4.7. Phagocytosis Assay
4.8. Calcium Imaging
4.9. TEM
4.10. SEM
4.11. Trans-Epithelial Electrical Resistance (TEER)
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, J.Z. Age-Related Macular Degeneration (AMD): Pathogenesis and Therapy. Pharmacol. Rep. 2006, 58, 353–363. [Google Scholar]
- Schmitz-Valckenberg, S.; Fleckenstein, M.; Göbel, A.P.; Hohman, T.C.; Holz, F.G. Optical Coherence Tomography and Autofluorescence Findings in Areas with Geographic Atrophy Due to Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Pimentel, M.; Wu, L. Complement Inhibitors for Advanced Dry Age-Related Macular Degeneration (Geographic Atrophy): Some Light at the End of the Tunnel? J. Clin. Med. 2023, 12, 5131. [Google Scholar] [CrossRef]
- Bhutto, I.; Lutty, G. Understanding Age-Related Macular Degeneration (AMD): Relationships between the Photoreceptor/Retinal Pigment Epithelium/Bruch’s Membrane/Choriocapillaris Complex. Mol. Asp. Med. 2012, 33, 295. [Google Scholar] [CrossRef] [PubMed]
- Saksens, N.T.M.; Fleckenstein, M.; Schmitz-Valckenberg, S.; Holz, F.G.; den Hollander, A.I.; Keunen, J.E.E.; Boon, C.J.F.; Hoyng, C.B. Macular Dystrophies Mimicking Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2014, 39, 23–57. [Google Scholar] [CrossRef] [PubMed]
- Shapira, A.; Dvir, T. 3D Tissue and Organ Printing—Hope and Reality. Adv. Sci. 2021, 8, 2003751. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for Tissue Engineering Applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. sheng Fabrication of Scaffolds in Tissue Engineering: A Review. Front. Mech. Eng. 2018, 13, 107–119. [Google Scholar] [CrossRef]
- Maeda, T.; Mandai, M.; Sugita, S.; Kime, C.; Takahashi, M. Strategies of Pluripotent Stem Cell-Based Therapy for Retinal Degeneration: Update and Challenges. Trends Mol. Med. 2022, 28, 388–404. [Google Scholar] [CrossRef]
- Falkner-Radler, C.I.; Krebs, I.; Glittenberg, C.; Považay, B.; Drexler, W.; Graf, A.; Binder, S. Human Retinal Pigment Epithelium (RPE) Transplantation: Outcome after Autologous RPE-Choroid Sheet and RPE Cell-Suspension in a Randomised Clinical Study. Br. J. Ophthalmol. 2011, 95, 370–375. [Google Scholar] [CrossRef]
- Hinkle, J.W.; Mahmoudzadeh, R.; Kuriyan, A.E. Cell-Based Therapies for Retinal Diseases: A Review of Clinical Trials and Direct to Consumer “Cell Therapy” Clinics. Stem Cell Res. Ther. 2021, 12, 538. [Google Scholar] [CrossRef] [PubMed]
- Barzelay, A.; Algor, S.W.; Niztan, A.; Katz, S.; Benhamou, M.; Nakdimon, I.; Azmon, N.; Gozlan, S.; Mezad-Koursh, D.; Neudorfer, M.; et al. Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress. Stem Cells Int. 2018, 2018, 9682856. [Google Scholar] [CrossRef] [PubMed]
- Krief, B.; Algor, S.W.; Nakdimon, I.; Elhikis, A.; Benhamou, M.; Kadmon, A.S.; Keren, S.; Ohana, O.; Feldman, I.; Cnaan, R.B.; et al. Retinal Lineage Therapeutic Specific Effect of Human Orbital and Abdominal Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int. 2021, 2021, 7022247. [Google Scholar] [CrossRef]
- Sharma, R.; Khristov, V.; Rising, A.; Jha, B.S.; Dejene, R.; Hotaling, N.; Li, Y.; Stoddard, J.; Stankewicz, C.; Wan, Q.; et al. Clinical-Grade Stem Cell-Derived Retinal Pigment Epithelium Patch Rescues Retinal Degeneration in Rodents and Pigs. Sci. Transl. Med. 2019, 11, eaat5580. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Bose, D.; Maminishkis, A.; Bharti, K. Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2020, 60, 553–572. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Gu, Q.; Liu, Z.; Li, Q.; Li, Z.; Fang, J.; Liu, W.; Wu, J.; Zhang, Y.; et al. The Effect of Clinical-Grade Retinal Pigment Epithelium Derived from Human Embryonic Stem Cells Using Different Transplantation Strategies. Protein Cell 2019, 10, 455. [Google Scholar] [CrossRef]
- De Quadros Costa, M.T.M. Autologous Transplantation of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Geographic Atrophy Associated with Age-Related Macular Degeneration. NCT04339764. 2020. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04339764 (accessed on 15 May 2024).
- Stahl, A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch. Arztebl. Int. 2020, 117, 513. [Google Scholar] [CrossRef]
- Fontaine, V.; Kinkl, N.; Sahel, J.; Dreyfus, H.; Hicks, D. Survival of Purified Rat Photoreceptors In Vitro Is Stimulated Directly by Fibroblast Growth Factor-2. J. Neurosci. 1998, 18, 9662. [Google Scholar] [CrossRef]
- Noor, N.; Shapira, A.; Edri, R.; Gal, I.; Wertheim, L.; Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019, 6, 1900344. [Google Scholar] [CrossRef]
- Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered Hybrid Cardiac Patches with Multifunctional Electronics for Online and Regulation of Tissue Function. Nat. Mater. 2016, 15, 679. [Google Scholar] [CrossRef]
- Shevach, M.; Zax, R.; Abrahamov, A.; Fleischer, S.; Shapira, A.; Dvir, T. Omentum ECM-Based Hydrogel as a Platform for Cardiac Cell Delivery. Biomed. Mater. 2015, 10, 034106. [Google Scholar] [CrossRef] [PubMed]
- Levato, R.; Dudaryeva, O.; Garciamendez-Mijares, C.E.; Kirkpatrick, B.E.; Rizzo, R.; Schimelman, J.; Anseth, K.S.; Chen, S.; Zenobi-Wong, M.; Zhang, Y.S. Light-Based Vat-Polymerization Bioprinting. Nat. Rev. Methods Primers 2023, 3, 47. [Google Scholar] [CrossRef]
- Ng, W.L.; Shkolnikov, V. Optimizing Cell Deposition for Inkjet-Based Bioprinting. Int. J. Bioprinting 2024, 10, 2135. [Google Scholar] [CrossRef]
- Boularaoui, S.; Al Hussein, G.; Khan, K.A.; Christoforou, N.; Stefanini, C. An Overview of Extrusion-Based Bioprinting with a Focus on Induced Shear Stress and Its Effect on Cell Viability. Bioprinting 2020, 20, e00093. [Google Scholar] [CrossRef]
- Shapira, A.; Noor, N.; Asulin, M.; Dvir, T. Stabilization Strategies in Extrusion-Based 3D Bioprinting for Tissue Engineering. Appl. Phys. Rev. 2018, 5, 041112. [Google Scholar] [CrossRef]
- Shapira, A.; Noor, N.; Oved, H.; Dvir, T. Transparent Support Media for High Resolution 3D Printing of Volumetric Cell-Containing ECM Structures. Biomed. Mater. 2020, 15, 045018. [Google Scholar] [CrossRef]
- Rodriguez-Boulan, E.J.; Swaroop, A.; Nasonkin, I.O.; Merbs, S.L.; Lazo, K.; Oliver, V.F.; Brooks, M.; Patel, K.; Enke, R.A.; Nellissery, J.; et al. Conditional Knockdown of DNA Methyltransferase 1 Reveals a Key Role of Retinal Pigment Epithelium Integrity in Photoreceptor Outer Segment Morphogenesis. Development 2013, 140, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Naylor, A.; Hopkins, A.; Hudson, N.; Campbell, M. Tight Junctions of the Outer Blood Retina Barrier. Int. J. Mol. Sci. 2020, 21, 211. [Google Scholar] [CrossRef]
- Reynolds, J.D.; Olitsky, S.E. Pediatric Retina. In Pediatric Retina; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–462. [Google Scholar] [CrossRef]
- Burke, J.M. Epithelial Phenotype and the RPE: Is the Answer Blowing in the Wnt? Prog. Retin. Eye Res. 2008, 27, 579–595. [Google Scholar] [CrossRef]
- Caceres, P.S.; Rodriguez-Boulan, E. Retinal Pigment Epithelium Polarity in Health and Blinding Diseases. Curr. Opin. Cell Biol. 2020, 62, 37. [Google Scholar] [CrossRef]
- Boulton, M.; Dayhaw-Barker, P. The Role of the Retinal Pigment Epithelium: Topographical Variation and Ageing Changes. Eye 2001, 15, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Karema-Jokinen, V.; Koskela, A.; Hytti, M.; Hongisto, H.; Viheriälä, T.; Liukkonen, M.; Torsti, T.; Skottman, H.; Kauppinen, A.; Nymark, S.; et al. Crosstalk of Protein Clearance, Inflammasome, and Ca2+ Channels in Retinal Pigment Epithelium Derived from Age-Related Macular Degeneration Patients. J. Biol. Chem. 2023, 299, 104770. [Google Scholar] [CrossRef]
- Wimmers, S.; Karl, M.O.; Strauss, O. Ion Channels in the RPE. Prog. Retin. Eye Res. 2007, 26, 263–301. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, J.Y.; Kong, J.S.; Lee, H.; Won, J.Y.; Cho, D.W. Development of 3D Printed Bruch’s Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 1095. [Google Scholar] [CrossRef]
- Tarau, I.S.; Berlin, A.; Curcio, C.A.; Ach, T. The Cytoskeleton of the Retinal Pigment Epithelium: From Normal Aging to Age-Related Macular Degeneration. Int. J. Mol. Sci. 2019, 20, 3578. [Google Scholar] [CrossRef]
- Bennis, A.; Jacobs, J.G.; Catsburg, L.A.E.; ten Brink, J.B.; Koster, C.; Schlingemann, R.O.; van Meurs, J.; Gorgels, T.G.M.F.; Moerland, P.D.; Heine, V.M.; et al. Stem Cell Derived Retinal Pigment Epithelium: The Role of Pigmentation as Maturation Marker and Gene Expression Profile Comparison with Human Endogenous Retinal Pigment Epithelium. Stem Cell Rev. Rep. 2017, 13, 659–669. [Google Scholar] [CrossRef]
- Bonilha, V.L.; Rayborn, M.E.; Bhattacharya, S.K.; Gu, X.; Crabb, J.S.; Crabb, J.W.; Hollyfield, J.G. The Retinl Pigment Epirhelium Apical Microvilli and Retinal Function. Adv. Exp. Med. Biol. 2006, 572, 519. [Google Scholar] [CrossRef] [PubMed]
- Booij, J.C.; Baas, D.C.; Beisekeeva, J.; Gorgels, T.G.M.F.; Bergen, A.A.B. The Dynamic Nature of Bruch’s Membrane. Prog. Retin. Eye Res. 2010, 29, 1–18. [Google Scholar] [CrossRef]
- Kular, J.K.; Basu, S.; Sharma, R.I. The Extracellular Matrix: Structure, Composition, Age-Related Differences, Tools for Analysis and Applications for Tissue Engineering. J. Tissue Eng. 2014, 5, 2041731414557112. [Google Scholar] [CrossRef]
- Kinstlinger, I.S.; Calderon, G.A.; Royse, M.K.; Means, A.K.; Grigoryan, B.; Miller, J.S. Perfusion and Endothelialization of Engineered Tissues with Patterned Vascular Networks. Nat. Protoc. 2021, 16, 3089–3113. [Google Scholar] [CrossRef]
Name | Working Dilution | Catalog Number | Manufacturer |
---|---|---|---|
Rabbit anti-PAX6 | 1:150 | ab195045 | Abcam |
Mouse anti-BEST1 | 1:150 | ab2182 | Abcam |
Rabbit anti-OTX1/2 | 1:150 | ab21990 | Abcam |
Mouse anti-RPE65 | 1:100 | NB100-355 | Novus |
Rabbit anti-ZO1 | 1:200 | CST-13663S | Cell signaling |
Mouse anti-CD31 | 1:250 | P8590 | Sigma |
Chicken anti-nestin | 1:2000 | ab134017 | Abcam |
Rabbit anti-collagen IV | 1:500 | ab6586 | Abcam |
Rabbit anti-laminin | 1:50 | ab11575 | Abcam |
Mouse anti-collagen I | 1:4000 | MA126771 | Invitrogen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shechter, Y.; Cohen, R.; Namestnikov, M.; Shapira, A.; Barak, A.; Barzelay, A.; Dvir, T. Sequential Fabrication of a Three-Layer Retina-like Structure. Gels 2024, 10, 336. https://doi.org/10.3390/gels10050336
Shechter Y, Cohen R, Namestnikov M, Shapira A, Barak A, Barzelay A, Dvir T. Sequential Fabrication of a Three-Layer Retina-like Structure. Gels. 2024; 10(5):336. https://doi.org/10.3390/gels10050336
Chicago/Turabian StyleShechter, Yahel, Roni Cohen, Michael Namestnikov, Assaf Shapira, Adiel Barak, Aya Barzelay, and Tal Dvir. 2024. "Sequential Fabrication of a Three-Layer Retina-like Structure" Gels 10, no. 5: 336. https://doi.org/10.3390/gels10050336
APA StyleShechter, Y., Cohen, R., Namestnikov, M., Shapira, A., Barak, A., Barzelay, A., & Dvir, T. (2024). Sequential Fabrication of a Three-Layer Retina-like Structure. Gels, 10(5), 336. https://doi.org/10.3390/gels10050336