Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions and Future Perspectives
4. Materials and Methods
4.1. Materials
4.2. Aerogel-Based Thin Film Preparation
4.3. Transmission Electron Microscopy (TEM)
4.4. Scanning Electron Microscopy (SEM)
4.5. Fourier Transform Infrared (FT-IR) Microscopy
4.6. X-ray Diffraction (XRD)
4.7. Matrix-Assisted Laser Desorption/Ionization—High-Resolution Mass Spectrometry 15 T Fourier Transform Ion Cyclotron Resonance (MALDI-FT-ICR-MS)
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Petit, D.; Ren, S. Transparent thermal insulation silica aerogels. Nanoscale Adv. 2020, 2, 5504–5515. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, G.; Liu, W.; Qiu, R.; Wei, H.; Zong, K.; Cai, X. A review of recent progress on the silica aerogel monoliths: Synthesis, reinforcement, and applications. J. Mater. Sci. 2021, 56, 10812–10833. [Google Scholar] [CrossRef]
- Smirnova, I.; Gurikov, P. Aerogel production: Current status, research directions, and future opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Wang, W.; You, Q.; Wu, Z.; Cui, S.; Shen, W. Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength. Gels 2024, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Karamikamkar, S.; Abidli, A.; Aghababaei Tafreshi, O.; Ghaffari-Mosanenzadeh, S.; Buahom, P.; Naguib, H.E.; Park, C.B. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chem. Mater. 2024, 36, 642–656. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Tudorache, D.-I.; Bocioagă, M.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials 2024, 14, 469. [Google Scholar] [CrossRef] [PubMed]
- Bakar, N.H.A.; Yusop, H.M.; Ismail, W.N.W.; Zulkifli, N.F. Sol-Gel Finishing for Protective Fabrics. Biointerface Res. Appl. Chem 2023, 13, 283. [Google Scholar]
- Wu, Z.; Li, Y.; Tang, J.; Lin, D.; Qin, W.; Loy, D.A.; Zhang, Q.; Chen, H.; Li, S. Ultrasound-assisted preparation of chitosan/nano-silica aerogel/tea polyphenol biodegradable films: Physical and functional properties. Ultrason. Sonochemistry 2022, 87, 106052. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Su, B.-L.; Xia, H.; Zhao, S.; Gao, C.; Wang, L.; Ogbeide, O.; Feng, J.; Hasan, T. Printed aerogels: Chemistry, processing, and applications. Chem. Soc. Rev. 2021, 50, 3842–3888. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, Y.; Chen, J.X.M.; Sun, Y.-C.; Aghababaei, O.; Saadatnia, Z.; Naguib, H.E. 3D printing of conductive polymer aerogel thermoelectric generator with tertiary doping. Nano Energy 2023, 117, 108909. [Google Scholar] [CrossRef]
- Carnicer, V.; Cañas, E.; Orts, M.J.; Sánchez, E. Feasibility of incorporating silica aerogel in atmospheric plasma spraying coatings. Ceram. Int. 2021, 47, 26157–26167. [Google Scholar] [CrossRef]
- Frindy, S.; Primo, A.; Ennajih, H.; el kacem Qaiss, A.; Bouhfid, R.; Lahcini, M.; Essassi, E.M.; Garcia, H.; El Kadib, A. Chitosan–graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability. Carbohydr. Polym. 2017, 167, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Zheng, Y.; Huang, Y.; Ni, L.; Zhao, J.; Huang, C.; Chen, X.; Chen, X.; Wu, Z.; Wu, D.; et al. Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan-nano-silicon aerogel composite edible films incorporated with okara powder. Carbohydr. Polym. 2020, 250, 116842. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Y.; Dorsel, P.-K.P.; Wu, C. Facile preparation of nanocellulose/multi-walled carbon nanotube/polyaniline composite aerogel electrodes with high area-specific capacitance for supercapacitors. Int. J. Biol. Macromol. 2023, 238, 124158. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Bao, J.; Hu, Y.; Xu, M.; Yang, Z.; Liu, Y.; Yang, Q.; Xiong, C.; Shi, Z. Ultra-porous cellulose nanofibril aerogel films as excellent triboelectric positive materials via direct freeze-drying of dispersion. Nano Energy 2022, 103, 107832. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, J.; Kim, M.; Do, J.; Lee, D.; Han, H. Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym. J. 2016, 48, 829–834. [Google Scholar] [CrossRef]
- Ghosh, K.; Yue, C.Y. Development of 3D MoO3/graphene aerogel and sandwich-type polyaniline decorated porous MnO2–graphene hybrid film based high performance all-solid-state asymmetric supercapacitors. Electrochim. Acta 2018, 276, 47–63. [Google Scholar] [CrossRef]
- Xu, L.; Wang, W.; Liu, Y.; Liang, D. Nanocellulose-Linked MXene/Polyaniline Aerogel Films for Flexible Supercapacitors. Gels 2022, 8, 798. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhou, F.; Shi, X.; Qin, J.; Zhang, Z.; Bao, X.; Wu, Z.-S. Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries. Energy Storage Mater. 2019, 23, 664–669. [Google Scholar] [CrossRef]
- Kahriz, P.K.; Mahdavi, H.; Ehsani, A.; Heidari, A.A.; Bigdeloo, M. Influence of synthesized functionalized reduced graphene oxide aerogel with 4,4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film. Electrochim. Acta 2020, 354, 136736. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, Y.; Liu, T.; Lin, S.; Du, A. MXene aerogel-based phase change film for synergistic thermal management inspired by antifreeze beetles. Cell Rep. Phys. Sci. 2022, 3, 100815. [Google Scholar] [CrossRef]
- De Berardinis, L.; Plazzotta, S.; Magnan, M.; Manzocco, L. Hydrophilic or hydrophobic coating of whey protein aerogels obtained by supercritical-CO2-drying: Effect on physical properties, moisture adsorption and interaction with water and oil in food systems. Innov. Food Sci. Emerg. Technol. 2024, 91, 103530. [Google Scholar] [CrossRef]
- Long, X.; Tang, P.; Chen, W.; Bi, L.; Wei, X.; Wang, S.; Liao, J. Lead zirconate titanate aerogel composite coatings with lightweight structure, excellent mechanical and integrated electrical properties for underwater acoustic transducers. Mater. Chem. Phys. 2022, 290, 126567. [Google Scholar] [CrossRef]
- Jin, G.; Sun, M.; Gao, Y.; Zhou, X.; Wei, C.; Lyu, L. A CNFs/MWCNTs aerogel film-based humidity sensor with directionally aligned porous structure for substantially enhancing both sensitivity and response speed. Chem. Eng. J. 2023, 473, 145304. [Google Scholar] [CrossRef]
- Prakash, J.; Rao, P.T.; Ghorui, S.; Bahadur, J.; Jain, V.; Dasgupta, K. Tailoring surface properties with O/N doping in CNT aerogel film to obtain sensitive and selective sensor for volatile organic compounds detection. Sens. Actuators B Chem. 2022, 359, 131606. [Google Scholar] [CrossRef]
- Bozoglu, D.; Deligoz, H.; Ulutas, K.; Yakut, S.; Deger, D. Structural and dielectrical characterization of low-k polyurethane composite films with silica aerogel. J. Phys. Chem. Solids 2019, 130, 46–57. [Google Scholar] [CrossRef]
- Choi, H.; Kim, T.; Kim, T.; Moon, S.; Yoo, S.; Parale, V.G.; Dhavale, R.P.; Kang, K.; Sohn, H.; Park, H.-H. Ultralow dielectric cross-linked silica aerogel nanocomposite films for interconnect technology. Appl. Mater. Today 2022, 28, 101536. [Google Scholar] [CrossRef]
- Guo, X.; Bai, S.; Shan, J.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Fabrication and Characterization of MSQ Aerogel Coating on ePTFE Thin Films for Cable Sheaths. Molecules 2019, 24, 1246. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-B.; Park, S.-W.; Yang, J.-K.; Park, H.-H.; Kim, H. Application of SiO2 aerogel film for interlayer dielectric on GaAs with a barrier of Si3N4. Thin Solid Films 2004, 447–448, 580–585. [Google Scholar] [CrossRef]
- Kim, G.S.; Hyun, S.H. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying. Thin Solid Films 2004, 460, 190–200. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, Y.; Bin, X.; Xia, C.; Que, W. 3D Porous Compact 1D/2D Fe2O3/MXene Composite Aerogel Film Electrodes for All-Solid-State Supercapacitors. Small 2022, 18, e2204917. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Chang, H.; Zhang, L.; Wang, S.; Li, S.; Lu, Y.; Li, S. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors. Compos. Part B Eng. 2023, 264, 110888. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for water treatment: A review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Almeida da Silva, T.C.; Marchiori, L.; Oliveira Mattos, B.; Ullah, S.; Barud, H.d.S.; Romano Domeneguetti, R.; Rojas-Mantilla, H.D.; Boldrin Zanoni, M.V.; Rodrigues-Filho, U.P.; Ferreira-Neto, E.P.; et al. Designing Highly Photoactive Hybrid Aerogels for In-Flow Photocatalytic Contaminant Removal Using Silica-Coated Bacterial Nanocellulose Supports. ACS Appl. Mater. Interfaces 2023, 15, 23146–23159. [Google Scholar] [CrossRef] [PubMed]
- Kettunen, M.; Silvennoinen, R.J.; Houbenov, N.; Nykänen, A.; Ruokolainen, J.; Sainio, J.; Pore, V.; Kemell, M.; Ankerfors, M.; Lindström, T. Photoswitchable superabsorbency based on nanocellulose aerogels. Adv. Funct. Mater. 2011, 21, 510–517. [Google Scholar] [CrossRef]
- Juhász, L.; Moldován, K.; Gurikov, P.; Liebner, F.; Fábián, I.; Kalmár, J.; Cserháti, C. False Morphology of Aerogels Caused by Gold Coating for SEM Imaging. Polymers 2021, 13, 588. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Maganty, S.; Meschter, S.J.; Nozaki, S.; Ohshima, T.; Makino, T.; Cho, J. Electron beam irradiation effect on the mechanical properties of nanosilica-filled polyurethane films. Polym. Degrad. Stab. 2017, 141, 45–53. [Google Scholar] [CrossRef]
- Franken, L.E.; Boekema, E.J.; Stuart, M.C.A. Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: Application and Interpretation. Adv. Sci. 2017, 4, 1600476. [Google Scholar] [CrossRef]
- Kempen, P.J.; Thakor, A.S.; Zavaleta, C.; Gambhir, S.S.; Sinclair, R. A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2013, 19, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Kontomaris, S.V.; Stylianou, A.; Chliveros, G.; Malamou, A. Overcoming Challenges and Limitations Regarding the Atomic Force Microscopy Imaging and Mechanical Characterization of Nanofibers. Fibers 2023, 11, 83. [Google Scholar] [CrossRef]
- Chopra, S.; Banshiwal, J.K.; Singh, A.; Bag, D.S. Sophisticated Characterization Techniques for Structure–Property Evaluation of Functional Coatings. In Functional Coatings; John Wiley and sons Inc.: Hoboken, NJ, USA, 2024; pp. 522–583. [Google Scholar]
- Visan, A.I.; Popescu-Pelin, G.; Gherasim, O.; Mihailescu, A.; Socol, M.; Zgura, I.; Chiritoiu, M.; Elena Sima, L.; Antohe, F.; Ivan, L.; et al. Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers 2020, 12, 717. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Kashif Tufail, C. Thin Film Deposition: Solution Based Approach. In Thin Films; Alicia Esther, A., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 10. [Google Scholar]
- Ravariu, C.; Mihaiescu, D.E.; Morosan, A.; Istrati, D.; Purcareanu, B.; Cristescu, R.; Trusca, R.; Vasile, B.S. Solution for green organic thin film transistors: Fe3O4 nano-core with PABA external shell as p-type film. J. Mater. Sci. Mater. Electron. 2020, 31, 3063–3073. [Google Scholar] [CrossRef]
- Ravariu, C.; Mihaiescu, D.; Morosan, A.; Vasile, B.S.; Purcareanu, B. Sulpho-Salicylic Acid Grafted to Ferrite Nanoparticles for n-Type Organic Semiconductors. Nanomaterials 2020, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C.; Mihaiescu, D.; Morosan, A.; Srinivasulu, A. Electrical characterization of a pseudo-MOS transistor with organic thin film produced by nanotechnologies. Rom. J. Inf. Sci. Technol 2021, 24, 28–36. [Google Scholar]
- Niculescu, A.-G.; Mihaiescu, D.E.; Grumezescu, A.M. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int. J. Mol. Sci. 2022, 23, 8293. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Moroșan, A.; Bîrcă, A.C.; Gherasim, O.; Oprea, O.C.; Vasile, B.Ș.; Purcăreanu, B.; Mihaiescu, D.E.; Rădulescu, M.; Grumezescu, A.M. Microwave-Assisted Silanization of Magnetite Nanoparticles Pre-Synthesized by a 3D Microfluidic Platform. Nanomaterials 2023, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
- Bîrcă, A.C.; Gherasim, O.; Niculescu, A.-G.; Grumezescu, A.M.; Neacșu, I.A.; Chircov, C.; Vasile, B.Ș.; Oprea, O.C.; Andronescu, E.; Stan, M.S.; et al. A Microfluidic Approach for Synthesis of Silver Nanoparticles as a Potential Antimicrobial Agent in Alginate–Hyaluronic Acid-Based Wound Dressings. Int. J. Mol. Sci. 2023, 24, 11466. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Chen, R.; Liu, J.; Xu, J.; Jiang, H. N-doped magnetic carbon aerogel for the efficient adsorption of Congo red. J. Taiwan Inst. Chem. Eng. 2021, 120, 161–168. [Google Scholar] [CrossRef]
- Ali, I.; Neskoromnaya, E.A.; Melezhik, A.V.; Babkin, A.V.; Kulnitskiy, B.A.; Burakov, A.E.; Burakova, I.V.; Tkachev, A.G.; Almalki, A.S.A.; Alsubaie, A. Magnetically active nanocomposite aerogels: Preparation, characterization and application for water treatment. J. Porous Mater. 2022, 29, 545–557. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, D.; Lin, H.; Chen, Y. Amphiprotic cellulose mediated graphene oxide magnetic aerogels for water remediation. Chem. Eng. J. 2020, 400, 125890. [Google Scholar] [CrossRef]
- Cheng, Y.; Cai, Y.; Wang, Z.; Lu, X.; Xia, H. Ultralight NiCo@rGO aerogel microspheres with magnetic response for oil/water separation. Chem. Eng. J. 2022, 430, 132894. [Google Scholar] [CrossRef]
- Kang, W.; Cui, Y.; Qin, L.; Yang, Y.; Zhao, Z.; Wang, X.; Liu, X. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 2020, 392, 122499. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, M.; Waterhouse, G.I.N.; Sun, J.; Shi, W.; Ai, S. Efficient removal of cadmium ions from water by adsorption on a magnetic carbon aerogel. Environ. Sci. Pollut. Res. 2021, 28, 5149–5157. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Hong, W.; Srinivasakannan, C.; Liu, X.; Wang, X.; Duan, X. A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep. Purif. Technol. 2022, 281, 119950. [Google Scholar] [CrossRef]
- Balbekova, A.; Bonta, M.; Török, S.; Ofner, J.; Döme, B.; Limbeck, A.; Lendl, B. FTIR-spectroscopic and LA-ICP-MS imaging for combined hyperspectral image analysis of tumor models. Anal. Methods 2017, 9, 5464–5471. [Google Scholar] [CrossRef]
- Van Acker, T.; Buckle, T.; Van Malderen, S.J.M.; van Willigen, D.M.; van Unen, V.; van Leeuwen, F.W.B.; Vanhaecke, F. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal. Chim. Acta 2019, 1074, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, P.C.; Nagornov, K.O.; Kozhinov, A.N.; Kilgour, D.P.A.; Tsybin, Y.O.; Heeren, R.M.A.; Ellis, S.R. Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches. Sci. Rep. 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Sabine Becker, J.; Matusch, A.; Palm, C.; Salber, D.; Morton, K.A.; Susanne Becker, J. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics 2010, 2, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Huang, G.; Su, M.; Huang, T. Environmentally Friendly Method: Development and Application to Carbon Aerogel as Sorbent for Solid-Phase Extraction. ACS Appl. Mater. Interfaces 2015, 7, 22256–22263. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, T.; Wang, Z.; Wang, X.; Zhou, X.; Wang, Q.; Yang, Y. A General Strategy toward Metal Sulfide Nanoparticles Confined in a Sulfur-Doped Ti3C2Tx MXene 3D Porous Aerogel for Efficient Ambient N2 Electroreduction. Small 2021, 17, 2103305. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Mihaiescu, B.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers 2024, 16, 709. [Google Scholar] [CrossRef] [PubMed]
- Law, S.-K.; Fung, Y.-H.; Chan, H.-Y.; Han, J.; Lo, C.-M.; Wong, H.-W. A Mini-Review for an Adsorption of Polycyclic Aromatic Hydrocarbons (PAHs) by Physical Gel. Biointerface Res. Appl. Chem. 2022, 12, 8195–8204. [Google Scholar]
- Halyal, U.A.; Pal, S.; Sharma, V.K.; Tyagi, R.; Yusuf, M. Adsorption and Kinetic Studies of Polyacrylamide (PAA) Hydrogels for Efficient Removal of Methylene Blue (MB) in Aqueous Media. Biointerface Res. Appl. Chem 2023, 13, 570. [Google Scholar]
- Jatoi, A.S.; Hashmi, Z.; Mazari, S.A.; Abro, R.; Sabzoi, N. Recent developments and progress of aerogel assisted environmental remediation: A review. J. Porous Mater. 2021, 28, 1919–1933. [Google Scholar] [CrossRef]
- Chen, Y.X.; Hendrix, Y.; Schollbach, K.; Brouwers, H.J.H. A silica aerogel synthesized from olivine and its application as a photocatalytic support. Constr. Build. Mater. 2020, 248, 118709. [Google Scholar] [CrossRef]
- Sepahvand, S.; Kargarzadeh, H.; Jonoobi, M.; Ashori, A.; Ismaeilimoghadam, S.; Varghese, R.T.; Chirayl, C.J.; Azimi, B.; Danti, S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int. J. Biol. Macromol. 2023, 246, 125721. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Cho, K.M.; Park, K.; Kim, J.Y.; Yun, G.-T.; Toma, F.M.; Gereige, I.; Jung, H.-T. Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2. Adv. Funct. Mater. 2021, 31, 2102142. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.; Tu, Z.; Lu, Z.-H.; Feng, G.; Zhang, R. Graphene Aerogel Supported Ni for CO2 Hydrogenation to Methane. Ind. Eng. Chem. Res. 2021, 60, 12235–12243. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, J.; Zhou, W.; Cheng, K.; Zhang, Q.; Kang, J.; Wang, Y. Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catal. 2020, 10, 302–310. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Munteanu, O.M.; Bîrcă, A.C.; Moroșan, A.; Purcăreanu, B.; Vasile, B.Ș.; Istrati, D.; Mihaiescu, D.E.; Hadibarata, T.; Grumezescu, A.M. New 3D Vortex Microfluidic System Tested for Magnetic Core-Shell Fe3O4-SA Nanoparticle Synthesis. Nanomaterials 2024, 14, 902. [Google Scholar] [CrossRef]
- Chircov, C.; Bîrcă, A.C.; Vasile, B.S.; Oprea, O.-C.; Huang, K.-S.; Grumezescu, A.M. Microfluidic Synthesis of -NH2- and -COOH-Functionalized Magnetite Nanoparticles. Nanomaterials 2022, 12, 3160. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculescu, A.-G.; Mihaiescu, B.; Bîrcă, A.C.; Moroșan, A.; Munteanu, O.M.; Vasile, B.Ș.; Hadibarata, T.; Istrati, D.; Mihaiescu, D.E.; Grumezescu, A.M. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024, 10, 394. https://doi.org/10.3390/gels10060394
Niculescu A-G, Mihaiescu B, Bîrcă AC, Moroșan A, Munteanu OM, Vasile BȘ, Hadibarata T, Istrati D, Mihaiescu DE, Grumezescu AM. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels. 2024; 10(6):394. https://doi.org/10.3390/gels10060394
Chicago/Turabian StyleNiculescu, Adelina-Gabriela, Bogdan Mihaiescu, Alexandra Cătălina Bîrcă, Alina Moroșan, Oana Maria Munteanu (Mihaiescu), Bogdan Ștefan Vasile, Tony Hadibarata, Daniela Istrati, Dan Eduard Mihaiescu, and Alexandru Mihai Grumezescu. 2024. "Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination" Gels 10, no. 6: 394. https://doi.org/10.3390/gels10060394
APA StyleNiculescu, A.-G., Mihaiescu, B., Bîrcă, A. C., Moroșan, A., Munteanu, O. M., Vasile, B. Ș., Hadibarata, T., Istrati, D., Mihaiescu, D. E., & Grumezescu, A. M. (2024). Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels, 10(6), 394. https://doi.org/10.3390/gels10060394