Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mushroom Powder Composition
2.2. Thermogravimetric Analysis
2.3. Zeta-Potential Analysis
2.4. Differential Scanning Calorimetry Analysis
2.5. Dynamic Shear Rheology Analysis
2.6. Texture Profile Analysis
2.7. Tristimulus Color Analysis
2.8. Water Holding Capacity Analysis
2.9. Microstructure Analysis
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.2.1. Mushroom Powder Preparation
4.2.2. Protein and Protein-Mushroom Dispersion and Gel Preparation
4.3. Mushroom Powder Composition
4.4. Thermogravimetric Analysis
4.5. Zeta-Potential Analysis
4.6. Differential Scanning Calorimetry
4.7. Dynamic Shear Rheology Analysis
4.8. Texture Profile Analysis
- Double compression test: The texture profile analysis (TPA) parameters of the samples were determined using a double compression test, which involved a two-cycle compression/decompression program. For these measurements, the pre-test speed, test speed, and post-test speed were set at 2 mm/s, and the final target strain was set at 50%. A 5 s gap separated the two cycles. A cylindrical probe (P/50, 50 mm stainless cylinder) was used to carry out the tests [58]. The hardness, resilience, cohesion, springiness, gumminess, and chewiness of the samples were calculated from the resulting force-distance profiles.
- Single compression test: The Young’s modulus and fracture properties of the samples were assessed using a single compression test. The same probe type was used as for the double compression test. The pre-test speed, test speed, and post-test speed were set to 2, 1, and 10, mm/s, respectively, and the final target strain was set to 90% [57]. The Young’s modulus, fracture stress, and fracture strain were calculated from the resulting stress-strain profiles.
4.9. Tristimulus Color Analysis
4.10. Water Holding Capacity Analysis
4.11. Microstructure Analysis
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Grossmann, L.; Weiss, J. Alternative Protein Sources as Technofunctional Food Ingredients. Annu. Rev. Food Sci. Technol. 2021, 12, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Póltorak, A. Novel Protein Sources for Applications in Meat-Alternative Products-Insight and Challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, D.; Clausen, M.P.; Jaeger, S.R. Understanding barriers to consumption of plant-based foods and beverages: Insights from sensory and consumer science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- IFIC. A Consumer Survey on Plant Alternatives to Animal Meat. 2020. Available online: https://foodinsight.org/wp-content/uploads/2020/01/IFIC-Plant-Alternative-to-Animal-Meat-Survey.pdf (accessed on 1 January 2024).
- Smart, M.A.; Pontes, N. The role of consumer restraint versus indulgence on purchase intentions of hybrid meat analogues. Food Qual. Prefer. 2023, 104, 104738. [Google Scholar] [CrossRef]
- Genet, B.M.L.; Molina, G.E.S.; Waetjen, A.P.; Barone, G.; Albersten, K.; Ahrne, L.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Hybrid Cheeses-Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation 2023, 9, 667. [Google Scholar] [CrossRef]
- Broucke, K.; Van Poucke, C.; Duquenne, B.; De Witte, B.; Baune, M.C.; Lammers, V.; Terjung, N.; Ebert, S.; Gibis, M.; Weiss, J.; et al. Ability of (extruded) pea protein products to partially replace pork meat in emulsified cooked sausages. Innov. Food Sci. Emerg. Technol. 2022, 78, 102992. [Google Scholar] [CrossRef]
- Wagner, J.; Biliaderis, C.G.; Moschakis, T. Whey proteins: Musings on denaturation, aggregate formation and gelation. Crit. Rev. Food Sci. Nutr. 2020, 60, 3793–3806. [Google Scholar] [CrossRef] [PubMed]
- Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Mathai, J.K.; Liu, Y.H.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Nishanthi, M.; Vasiljevic, T.; Chandrapala, J. Properties of whey proteins obtained from different whey streams. Int. Dairy J. 2017, 66, 76–83. [Google Scholar] [CrossRef]
- Cao, Y.P.; Mezzenga, R. Design principles of food gels. Nat. Food 2020, 1, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, J.J.; Meng, X.L.; Zhou, L.; Liu, W.; Liu, C.M.; Prakash, S.; Zhong, J.Z. The gel mechanism and carrier quality of fibrous and granular whey protein self-assembly. Food Hydrocoll. 2023, 136, 108302. [Google Scholar] [CrossRef]
- Han, C.W.; Wang, G.S.; Guo, J.; Wang, J.M.; Yang, X.Q. Oral oil release improves lubrication and sensory properties of meat analogs with protein-stabilized oleogel. Food Hydrocoll. 2023, 142, 108788. [Google Scholar] [CrossRef]
- Wittek, P.; Karbstein, H.P.; Emin, M.A. Blending Proteins in High Moisture Extrusion to Design Meat Analogues: Rheological Properties, Morphology Development and Product Properties. Foods 2021, 10, 1509. [Google Scholar] [CrossRef] [PubMed]
- Singaravadivelan, A.; Sachin, P.B.; Harikumar, S.; Vijayakumar, P.; Vindhya, M.V.; Farhana, F.M.B.; Rameesa, K.K.; Mathew, J. Life cycle assessment of greenhouse gas emission from the dairy production system—Review. Trop. Anim. Health Prod. 2023, 55, 320. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Bhardwaj, K.; Kuca, K.; Sharifi-Rad, J.; Verma, R.; Machado, M.; Kumar, D.; Cruz-Martins, N. Edible mushrooms enrichment in food and feed: A mini review. Int. J. Food Sci. Technol. 2022, 57, 1386–1398. [Google Scholar] [CrossRef]
- Lysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef] [PubMed]
- Salwan, R.; Katoch, S.; Sharma, V. Recent Developments in Shiitake Mushrooms and Their Nutraceutical Importance. In Fungi in Sustainable Food Production; Dai, X., Sharma, M., Chen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 165–180. [Google Scholar]
- Ahmad, I.; Arif, M.; Xu, M.M.; Zhang, J.Y.; Ding, Y.T.; Lyu, F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci. Technol. 2023, 134, 123–135. [Google Scholar] [CrossRef]
- Ravi, B.; Renitta, R.E.; Prabha, M.L.; Issac, R.; Naidu, S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacol. Immunotoxicol. 2013, 35, 101–109. [Google Scholar] [CrossRef]
- Beltran-Garcia, M.J.; Estarron-Espinosa, M.; Ogura, T. Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. J. Agric. Food Chem. 1997, 45, 4049–4052. [Google Scholar] [CrossRef]
- Elhusseiny, S.M.; El-Mahdy, T.S.; Awad, M.F.; Elleboudy, N.S.; Farag, M.M.; Yassein, M.A.; Aboshanab, K.M. Proteome analysis and in vitro antiviral, anticancer and antioxidant capacities of the aqueous extracts of Lentinula edodes and Pleurotus ostreatus edible mushrooms. Molecules 2021, 26, 4623. [Google Scholar] [CrossRef]
- Krishnamoorthy, D.; Sankaran, M. Modulatory effect of Pleurotus ostreatus on oxidant/antioxidant status in 7, 12-dimethylbenz (a) anthracene induced mammary carcinoma in experimental rats—A dose-response study. J. Cancer Res. Ther. 2016, 12, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, S.J.; Park, H.R.; Choi, J.I.; Ju, Y.C.; Nam, K.C.; Kim, S.J.; Lee, S.C. The different antioxidant and anticancer activities depending on the color of oyster mushrooms. J. Med. Plants Res. 2009, 3, 1016–1020. [Google Scholar]
- Abidin MH, Z.; Abdullah, N.; Abidin, N.Z. Therapeutic properties of Pleurotus species (oyster mushrooms) for atherosclerosis: A review. Int. J. Food Prop. 2017, 20, 1251–1261. [Google Scholar] [CrossRef]
- Shang, X.; Enkhtaivan, G.; Chun, S.; Gopal, J.; Keum, Y.S. Transubstantiating commercial mushroom market with ultrasonically ultrasized mushroom powders showcasing higher bioactivity. Int. J. Biol. Macromol. 2016, 92, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Kurt, A.; Gençcelep, H. Enrichment of meat emulsion with mushroom (Agaricus bisporus) powder: Impact on rheological and structural characteristics. J. Food Eng. 2018, 237, 128–136. [Google Scholar] [CrossRef]
- Jo, K.; Lee, J.; Jung, S. Quality Characteristics of Low-salt Chicken Sausage Supplemented with a Winter Mushroom Powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 768–779. [Google Scholar] [CrossRef]
- Bermúdez, R.; Rangel-Vargas, E.; Lorenzo, J.M.; Rodríguez, J.A.; Munekata, P.E.S.; Teixeira, A.; Pateiro, M.; Romero, L.; Santos, E.M. Effect of Partial Meat Replacement by Hibiscus sabdariffa By-Product and Pleurotus djamor Powder on the Quality of Beef Patties. Foods 2023, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.G.; Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.S.; Jung, S. Characteristics of pork emulsion gel manufactured with hot-boned pork and winter mushroom powder without phosphate. Meat Sci. 2023, 197, 109070. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Biswas, S.; McClements, D.J.; Lorenzo, J.M. Application of Enoki Mushroom (Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Tiwari, P.; Kelkar, S.; Kaul, D.; Tiwari, A.; Kapri, M.; Sharma, S. Edible mushrooms: A sustainable novel ingredient for meat analogs. eFood 2023, 4, e122. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, D.; Liu, H.; Sun, B. Textural, sensory and volatile compounds analyses in formulations of sausages analogue elaborated with edible mushrooms and soy protein isolate as meat substitute. Foods 2021, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, D.; Santhapur, R.; McClements, D.J. Preparation and characterization of plant protein-mushroom hybrids: Toward more healthy and sustainable foods. Food Biophys. 2024, submitted.
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Azizi, M.; Kierulf, A.; Lee, M.C.; Abbaspourrad, A. Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chem. 2018, 246, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Ming, J.; Chen, L.; Hong, H.; Li, J.L. Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders. J. Sci. Food Agric. 2015, 95, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Owaid, M.N. Testing Efficiency of Different Agriculture Media in Growth and Production of Four Species of Oyster Mushroom Pleurotus and Evaluation the Bioactivity of Tested Species. Ph.D. Thesis, University of Anbar, Ramadi, Iraq, 2013. [Google Scholar]
- Koo, C.K.W.; Chung, C.; Ogren, T.; Mutilangi, W.; McClements, D.J. Extending protein functionality: Microfluidization of heat denatured whey protein fibrils. J. Food Eng. 2018, 223, 189–196. [Google Scholar] [CrossRef]
- Pihlasalo, S.; Auranen, L.; Hanninen, P.; Harma, H. Method for estimation of protein isoelectric point. Anal. Chem. 2012, 84, 8253–8258. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shim, Y.Y.; Shen, J.; Wang, Y.; Reaney, M.J. Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocoll. 2017, 64, 18–27. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, T.; Li, S.; Wang, Z.; Wen, C.; Wang, H.; Yu, C.; Ji, C. Stability, microstructure, and digestibility of whey protein isolate–Tremella fuciformis polysaccharide complexes. Food Hydrocoll. 2019, 89, 379–385. [Google Scholar] [CrossRef]
- Boye, J.I.; Alli, I. Thermal denaturation of mixtures of α-lactalbumin and β-lactoglobulin: A differential scanning calorimetric study. Food Res. Int. 2000, 33, 673–682. [Google Scholar] [CrossRef]
- Fitzsimons, S.A.; Mulvihill, D.M.; Morris, E.R. Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocoll. 2007, 21, 638–644. [Google Scholar] [CrossRef]
- McClements, D.J. Modulation of globular protein functionality by weakly interacting cosolvents. Crit. Rev. Food Sci. Nutr. 2002, 42, 417–471. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Theoretical prediction of emulsion color. Adv. Colloid Interface Sci. 2002, 97, 63–89. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Grossmann, L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4049–4100. [Google Scholar] [CrossRef] [PubMed]
- Durand, D.; Gimel, J.C.; Nicolai, T. Aggregation, gelation and phase separation of heat denatured globular proteins. Phys. A-Stat. Mech. Appl. 2002, 304, 253–265. [Google Scholar] [CrossRef]
- Stevenson, C.D.; Dykstra, M.J.; Lanier, T.C. Capillary Pressure as Related to Water Holding in Polyacrylamide and Chicken Protein Gels. J. Food Sci. 2013, 78, C145–C151. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Lesschen, J.; van der Goot, A.J.; van der Sman, R.G.M. Enhancing the water holding capacity of model meat analogues through marinade composition. J. Food Eng. 2021, 290, 110283. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 22nd ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2022. [Google Scholar]
- Braaksma, A.; Schaap, D.J. Protein analysis of the common mushroom Agaricus bisporus. Postharvest Biol. Technol. 1996, 7, 119–127. [Google Scholar] [CrossRef]
- Ryu, J.; Xiang, X.; Hu, X.; Rosenfeld, S.E.; Qin, D.; Zhou, H.; McClements, D.J. Assembly of plant-based meat analogs using soft matter physics: A coacervation-shearing-gelation approach. Food Hydrocoll. 2023, 142, 108817. [Google Scholar] [CrossRef]
- Zhou, H.; Vu, G.; Gong, X.; McClements, D.J. Comparison of the cooking behaviors of meat and plant-based meat analogues: Appearance, texture, and fluid holding properties. ACS Food Sci. Technol. 2022, 2, 844–851. [Google Scholar] [CrossRef]
- Mitacek, R.M. The Extraction, Characterization, Modification, and Texturization of Novel Pennycress (Thlaspi arvense) Protein for Food Applications. Doctoral Dissertation, University of Minnesota, Minneapolis, MN, USA, 2023. [Google Scholar]
- Hu, X.; Zhou, H.; McClements, D.J. Impact of dispersion conditions and coacervation on fibril formation in gellan gum-potato protein mixtures. Food Hydrocoll. 2023, 145, 109153. [Google Scholar] [CrossRef]
Group | Young’s Modulus (kPa) | Breaking Stress (kPa) | Breaking Strain (%) |
---|---|---|---|
20% Whey | 958.85 ± 14.47 a | 1035 ± 120 b | 66.87 ± 2.9 b |
15% Whey | 407.78 ± 22.17 b | 447 ± 70 c | 60.54 ± 2.2 c |
10% Whey | 105.63 ± 17.38 c | 135 ± 30 d | 56.26 ± 4.5 c |
15% Whey + 5% OM | 38.57 ± 16.14 d | 1490 ± 210 a | ≥90 a |
15% Whey + 5% SM | 82.03 ± 4.86 c | 1038 ± 83 b | ≥90 a |
10% Whey + 10% OM | 22.61 ± 4.25 d | 222 ± 39 cd | ≥90 a |
10% Whey + 10% SM | 9.75 ± 1.26 d | 172 ± 25 cd | ≥90 a |
Group | Hardness (g) | Adhesiveness | Resilience (%) | Cohesion | Springiness (%) | Gumminess | Chewiness |
---|---|---|---|---|---|---|---|
20% Whey | 14,600 ± 1300 a | −0.03 ± 0.05 a | 15.17 ± 0.81 b | 0.35 ± 0.04 c | 94.5 ± 6.5 a | 49.7 ± 4.2 b | 47.1 ± 6.5 b |
15% Whey | 5400 ± 970 c | −0.19 ± 0.12 a | 14.1 ± 1.3 b | 0.35 ± 0.04 c | 81.2 ± 7.3 ab | 18.7 ± 4.1 cd | 15.3 ± 4.3 cd |
10% Whey | 1330 ± 340 d | −0.24 ± 0.13 a | 13.6 ± 1.8 b | 0.35 ± 0.03 c | 64.7 ± 24.5 abc | 4.7 ± 1.6 d | 3.0 ± 1.2 d |
15% Whey + 5% OM | 14,200 ± 1700 a | −6.09 ± 2.4 b | 22.84 ± 0.48 a | 0.58 ± 0.03 a | 81.2 ± 1.3 ab | 81 ± 11 a | 65.8 ± 9.0 a |
15% Whey + 5% SM | 10,300 ± 1400 b | −5.93 ± 0.91 b | 14.2 ± 1.3 b | 0.47 ± 0.01 b | 58.9 ± 7.3 bc | 47.6 ± 7.4 b | 28.4 ± 7.7 c |
10% Whey + 10% OM | 7840 ± 910 bc | −2.65 ± 0.94 a | 12.4 ± 1.4 b | 0.38 ± 0.01 c | 47.6 ± 3.9 cd | 28.9 ± 3.0 c | 13.8 ± 2.0 cd |
10% Whey + 10% SM | 1850 ± 240 d | −2.16 ±0.43 a | 6.29 ± 0.47 c | 0.33 ± 0.04 c | 18.75 ± 3.63 d | 5.85 ± 0.54 d | 1.08 ± 0.12 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santhapur, R.; Jayakumar, D.; McClements, D.J. Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels 2024, 10, 446. https://doi.org/10.3390/gels10070446
Santhapur R, Jayakumar D, McClements DJ. Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels. 2024; 10(7):446. https://doi.org/10.3390/gels10070446
Chicago/Turabian StyleSanthapur, Ramdattu, Disha Jayakumar, and David Julian McClements. 2024. "Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels" Gels 10, no. 7: 446. https://doi.org/10.3390/gels10070446
APA StyleSanthapur, R., Jayakumar, D., & McClements, D. J. (2024). Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels, 10(7), 446. https://doi.org/10.3390/gels10070446