Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties
Abstract
:1. Introduction
1.1. Wound Healing Bases
1.2. Newly Developed Polymer Complex Base
1.3. In Vivo and In Vitro Methods
2. Results
2.1. In Vitro Tissue Viability Assay
2.2. In Vitro Cell Migration Assay
2.3. In Vivo Evaluation of Wound Healing
2.4. Microbiome Analysis
3. Discussion
3.1. In Vitro Tissue Viability Assay
3.2. In Vitro Cell Migration Assay
3.3. In Vivo Evaluation of Wound Healing
3.4. Microbiome Analysis
4. Conclusions
5. Materials and Methods
5.1. In Vitro Tissue Viability Assay
5.2. In Vitro Cell Migration Assay
5.3. In Vivo Evaluation of Wound Healing
5.4. Microbiome Analysis
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tatarusanu, S.M.; Lupascu, F.G.; Profire, B.S.; Szilagyi, A.; Gardikiotis, I.; Iacob, A.T.; Caluian, I.; Herciu, L.; Giscă, T.C.; Baican, M.C.; et al. Modern Approaches in Wounds Management. Polymers 2023, 15, 3648. [Google Scholar] [CrossRef] [PubMed]
- Riepl, M. A Compendium of Compounding Agents and Formulations, Part 6: Additional Preparations for Refractory Dermal-wound Healing. Int. J. Pharm. Compd. 2022, 26, 480–488. [Google Scholar] [PubMed]
- Riepl, M. Compounding Pearls—Wound Care: Drugs and Formulations for Dermal Healing. Int. J. Pharm. Compd. 2021, 25, 100–103. [Google Scholar] [PubMed]
- Riepl, M. Compounding Pearls—Wound Care: Drugs and Formulations for Dermal Healing, Part 2. Int. J. Pharm. Compd. 2021, 25, 282–287. [Google Scholar] [PubMed]
- Butko, Y.; Tkachova, O.; Tishakova, T.; Gordienko, A.; Bondariev, Y. Wound healing effect of “Prolidoxid” and “Dexpanthenol with ceramides”: A comparative study based on the model of chemical burns with expressed alterative skin processes. Sci. Pharm. Sci. 2021, 2, 26–32. [Google Scholar]
- Riepl, M. Compounding Pearls—Wound Care: Base Selection. Int. J. Pharm. Compd. 2020, 24, 98–102. [Google Scholar] [PubMed]
- Zdoryk, O.A.; Khokhlova, K.O.; Georgiyants, V.A.; Vyshnevska, L.I. Investigation of physical and chemical stability of ointment with herbals. Int. J. Pharm. Compd. 2014, 18, 248–252. [Google Scholar] [PubMed]
- Touitou, E.; Natsheh, H.; Zailer, J. Film Forming Systems for Delivery of Active Molecules into and across the Skin. Pharmaceutics 2023, 15, 397. [Google Scholar] [CrossRef] [PubMed]
- Bachhav, R.S.; Kale, S.B. A Review on Film Forming Gel (FFG). Int. J. Trend Sci. Res. Dev. 2021, 6, 966–975. [Google Scholar]
- Pünnel, L.C.; Lunter, D.J. Film-Forming Systems for Dermal Drug Delivery. Pharmaceutics 2021, 13, 932. [Google Scholar] [CrossRef]
- Kathe, K.; Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. [Google Scholar] [CrossRef]
- ECTOSEAL P2GTM POWDER—PCCA. 2023. Available online: https://www.pccarx.com/Products/ProductCatalog?pid=30-5217 (accessed on 26 January 2024).
- Qaria, M.A.; Xu, C.; Hu, R.; Alsubki, R.A.; Ali, M.Y.; Sivasamy, S.; Attia, K.A.; Zhu, D. Ectoine Globally Hypomethylates DNA in Skin Cells and Suppresses Cancer Proliferation. Mar. Drugs 2023, 21, 621. [Google Scholar] [CrossRef]
- Ng, H.S.; Wan, P.K.; Kondo, A.; Chang, J.S.; Lan, J.C.W. Production and Recovery of Ectoine: A Review of Current State and Future Prospects. Processes 2023, 11, 339. [Google Scholar] [CrossRef]
- Muto, J.; Fukuda, S.; Watanabe, K.; Dai, X.; Tsuda, T.; Kiyoi, T.; Kameda, K.; Kawakami, R.; Mori, H.; Shiraishi, K.; et al. Highly concentrated trehalose induces prohealing senescence-like state in fibroblasts via CDKN1A/p21. Commun. Biol. 2023, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhu, K.S.; Tang, S.M.; Xiang, Y.; Mao, M.Y.; Hong, X.D.; Chen, A.F.; Zhang, X.D.; Lu, H.; Chen, Z.L.; et al. Trehalose promotes functional recovery of keratinocytes under oxidative stress and wound healing via ATG5/ATG7. Burns 2023, 49, 1382–1391. [Google Scholar] [CrossRef]
- Sendra, V.; Berra, A.; Michelini, F.; Guerbi, M.X.; Rodriguez, G.; del Papa, M.S.; Passerini, M.S. Evaluation of the osmoprotective and bioprotective effect of trehalose 3%. Pan-Am. J. Ophthalmol. 2023, 5, 57. [Google Scholar] [CrossRef]
- Boczar, D.; Michalska, K. Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, L.; Ding, L.; Zhao, X.; Ma, H.; Luo, Y.; Ma, S.; Xiong, Y. Fabrication of Cyclodextrin-Based Hydrogels for Wound Healing: Progress, Limitations, and Prospects. Chem. Mater. 2023, 35, 5723–5743. [Google Scholar] [CrossRef]
- Abdollahi, Z.; Zare, E.N.; Salimi, F.; Goudarzi, I.; Tay, F.R.; Makvandi, P. Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo. Int. J. Mol. Sci. 2021, 22, 2531. [Google Scholar] [CrossRef]
- Ispas-Szabo, P.; De Koninck, P.; Calinescu, C.; Mateescu, M.A. Carboxymethyl Starch Excipients for Drug Chronodelivery. AAPS PharmSciTech 2016, 18, 1673–1682. [Google Scholar] [CrossRef]
- Wahbi, W.; Siam, R.; Kegere, J.; El-Mehalmey, W.A.; Mamdouh, W. Novel Inulin Electrospun Composite Nanofibers: Prebiotic and Antibacterial Activities. ACS Omega 2020, 5, 3006–3015. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Pandey, V.; Sharma, R.; Joshi, R.; Mishra, N.; Garud, N.; Haider, T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int. J. Biol. Macromol. 2024, 259, 129131. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.O.; Marinho, E.; Silva, C.; Antunes, J.C.; Felgueiras, H.P. Pullulan hydrogels as drug release platforms in biomedicine. J. Drug Deliv. Sci. Technol. 2023, 89, 105066. [Google Scholar] [CrossRef]
- Ahmad, N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Sarian, M.N.; Zulkefli, N.; Che Zain, M.S.; Maniam, S.; Fakurazi, S. A review with updated perspectives on in vitro and in vivo wound healing models. Turk. J. Biol. 2023, 47, 236–246. [Google Scholar] [CrossRef]
- Adan, A.; Kiraz, Y.; Baran, Y. Cell Proliferation and Cytotoxicity Assays. Curr. Pharm. Biotechnol. 2016, 17, 1213–1221. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for In Vitro Evaluating Antimicrobial activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Alaa Emad Eldeeb Salah, S.; Amer, M.S.; Elkasabgy, N.A. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J. Drug Deliv. Sci. Technol. 2022, 71, 103292. [Google Scholar]
- Masson-Meyers, D.S.; Andrade, T.A.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37. [Google Scholar] [CrossRef]
- Wong, V.W.; Sorkin, M.; Glotzbach, J.P.; Longaker, M.T.; Gurtner, G.C. Surgical Approaches to Create Murine Models of Human Wound Healing. J. Biomed. Biotechnol. 2011, 2011, 969618. [Google Scholar] [CrossRef]
- Nagar, H.K.; Srivastava, A.K.; Srivastava, R.; Kurmi, M.L.; Chandel, H.S.; Ranawat, M.S. Pharmacological Investigation of the Wound Healing Activity of Cestrum nocturnum (L.) Ointment in Wistar Albino Rats. J. Pharm. 2016, 2016, 9249040. [Google Scholar] [CrossRef]
- Peng, X.; Ding, C.; Zhao, Y.; Hao, M.; Liu, W.; Yang, M.; Xiao, F.; Zheng, Y. Poloxamer 407 and Hyaluronic Acid Thermosensitive Hydrogel-Encapsulated Ginsenoside Rg3 to Promote Skin Wound Healing. Front. Bioeng. Biotechnol. 2022, 10, 831007. [Google Scholar] [CrossRef]
- Diniz, I.M.; Chen, C.; Xu, X.; Ansari, S.; Zadeh, H.H.; Marques, M.M.; Shi, S.; Moshaverinia, A. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 153. [Google Scholar] [CrossRef]
- Protocol: MTT Effective Time 50 (ET-50) for Use with EpiDerm Skin Model (EPI-200). MatTek A BICO COMPANY. MatTek In Vitro Life Science Laboratories. 2020. Available online: https://www.mattek.com/wp-content/uploads/EPI-200-MTT-ET-50-Protocol-MK-24-007-0001.pdf (accessed on 24 January 2024).
- Chen, I.C.; Su, C.Y.; Chen, P.Y.; Hoang, T.C.; Tsou, Y.S.; Fang, H.W. Investigation and Characterization of Factors Affecting Rheological Properties of Poloxamer-Based Thermo-Sensitive Hydrogel. Polymers 2022, 14, 5353. [Google Scholar] [CrossRef]
- Sguizzato, M.; Valacchi, G.; Pecorelli, A.; Boldrini, P.; Simelière, F.; Huang, N.; Cortesi, R.; Esposito, E. Gallic acid loaded poloxamer gel as new adjuvant strategy for melanoma: A preliminary study. Colloids Surf. B Biointerfaces 2020, 185, 110613. [Google Scholar] [CrossRef] [PubMed]
- Bekiaridou, A.; Karlafti, E.; Oikonomou, I.M.; Ioannidis, A.; Papavramidis, T.S. Probiotics and Their Effect on Surgical Wound Healing: A Systematic Review and New Insights into the Role of Nanotechnology. Nutrients 2021, 13, 4265. [Google Scholar] [CrossRef]
- Mohtashami, M.; Mohamadi, M.; Azimi-Nezhad, M.; Saeidi, J.; Nia, F.F.; Ghasemi, A. Lactobacillus bulgaricus and Lactobacillus plantarum improve diabetic wound healing through modulating inflammatory factors. Biotechnol. Appl. Biochem. 2020, 68, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Cell Migration Assay | Collagen Coated | 96-Well | Oris. Platypus Technologies, LLC. Available online: https://www.platypustech.com/product/oris-cell-migration-assay-collagen-i-coated-96-wells (accessed on 25 January 2024).
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 2018, 6, e27295. [Google Scholar] [CrossRef] [PubMed]
- Tutorials—QIIME 2 2019.4.0 Documentation. Available online: https://docs.qiime2.org/2019.4/tutorials/ (accessed on 16 February 2024).
Group | Day | Relative Wound Area | ||
---|---|---|---|---|
Mean | SD | p-Value | ||
G1 | D3 | 112.36 | 26.48 | - |
D9 | 75.44 | 24.30 | - | |
D15 | 8.36 | 8.35 | - | |
G2 | D3 | 103.02 | 14.18 | 0.39 |
D9 | 42.93 | 11.97 | 0.004 ** | |
D15 | 2.29 | 4.45 | 0.09 | |
G3 | D3 | 88.45 | 15.89 | 0.06 |
D9 | 49.67 | 22.66 | 0.07 | |
D15 | 0.00 | 0.00 | 0.03 | |
G4 | D3 | 105.66 | 8.16 | 0.50 |
D9 | 51.48 | 15.58 | 0.03 * | |
D15 | 3.79 | 5.48 | 0.22 | |
G5 | D3 | 113.73 | 19.76 | 0.91 |
D9 | 71.54 | 19.59 | 0.73 | |
D15 | 2.99 | 5.54 | 0.15 |
Group | Day | Aerococcus | Sphingomonas | Trabulsiella | Lactobacillus | Staphylococcaceae | Enterococcaceae |
---|---|---|---|---|---|---|---|
G1 | D0 | 35.80 ± 12.26 | 12.30 ± 8.30 | 6.55 ± 13.10 | 4.58 ± 1.69 | 2.11 ± 1.43 | 0.56 ± 0.94 |
D7 | 0.89 ± 1.53 | 0.16 ± 0.23 | 6.61 ± 11.52 | 0.10 ± 0.09 | 60.64 ± 24.80 | 0.29 ± 0.22 | |
D15 | 1.60 ± 3.02 | 24.95 ± 14.17 | <0.01 | 1.50 ± 1.41 | 15.09 ± 10.65 | <0.60 | |
G2 | D0 | 33.58 ± 33.80 | 8.50 ± 7.24 | 3.36 ± 4.36 | 5.80 ± 5.55 | 3.52 ± 5.12 | 0.07 ± 1.25 |
D7 | 9.20 ± 9.72 | 8.99 ± 3.75 | 1.67 ± 2.57 | 1.07 ± 0.60 | 16.28 ± 18.84 | 11.32 ± 20.30 | |
D15 | 1.08 ± 2.15 | 24.95 ± 15.53 | <0.01 | 1.81 ± 1.48 | 7.02 ± 10.35 | <0.60 | |
G3 | D0 | 51.46 ± 23.22 | 8.45 ± 4.20 | 0.18 ± 1.83 | 3.36 ± 1.97 | 2.48 ± 1.54 | 1.03 ± 0.55 |
D7 | 10.26 ± 12.05 | 6.39 ± 5.76 | 0.04 ± 0.41 | 0.87 ± 0.61 | 40.49 ± 19.26 | 14.77 ± 18.72 | |
D15 | 1.26 ± 1.12 | 26.44 ± 18.97 | <0.01 | 11.93 ± 13.42 | 1.24 ± 1.15 | <0.60 | |
G4 | D0 | 22.87 ± 3.33 | 16.52 ± 9.31 | 1.29 ± 2.10 | 4.66 ± 0.98 | 2.97 ± 2.00 | 1.75 ± 2.34 |
D7 | 2.99 ± 3.51 | 4.03 ± 7.28 | 1.02 ± 2.04 | 1.34 ± 1.83 | 57.09 ± 45.31 | 1.08 ± 1.00 | |
D15 | 0.94 ± 0.42 | 26.58 ± 9.69 | <0.01 | 10.12 ± 9.79 | 2.50 ± 1.20 | <0.60 | |
G5 | D0 | 40.32 ± 16.41 | 12.37 ± 8.17 | 8.57 ± 16.09 | 1.29 ± 0.56 | 0.70 ± 0.82 | 0.63 ± 1.37 |
D7 | 5.15 ± 7.88 | 1.61 ± 1.63 | 0.04 ± 0.17 | 0.38 ± 0.30 | 61.56 ± 40.27 | 0.11 ± 0.06 | |
D15 | 3.61 ± 3.95 | 28.16 ± 6.33 | <0.01 | 4.65 ± 2.82 | 10.31 ± 10.37 | <0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banov, D.; Song, G.; Foraida, Z.; Tkachova, O.; Zdoryk, O.; Carvalho, M. Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties. Gels 2024, 10, 447. https://doi.org/10.3390/gels10070447
Banov D, Song G, Foraida Z, Tkachova O, Zdoryk O, Carvalho M. Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties. Gels. 2024; 10(7):447. https://doi.org/10.3390/gels10070447
Chicago/Turabian StyleBanov, Daniel, Guiyun Song, Zahraa Foraida, Oksana Tkachova, Oleksandr Zdoryk, and Maria Carvalho. 2024. "Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties" Gels 10, no. 7: 447. https://doi.org/10.3390/gels10070447
APA StyleBanov, D., Song, G., Foraida, Z., Tkachova, O., Zdoryk, O., & Carvalho, M. (2024). Integrated In Vivo and In Vitro Evaluation of a Powder-to-Hydrogel, Film-Forming Polymer Complex Base with Tissue-Protective and Microbiome-Supportive Properties. Gels, 10(7), 447. https://doi.org/10.3390/gels10070447