A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels
Abstract
:1. Introduction
2. Rheological Characterization Techniques
3. Overview of the Mechanical Properties of Single Amino Acids and Dipeptide-Based Gels
3.1. Single Amino Acids
3.1.1. Uncapped Amino Acids
3.1.2. Fluorenylmethyloxycarbonyl N-Capped Phenylalanine (Fmoc-Phe) and Derivatives
3.1.3. Fluorenylmethyloxycarbonyl N-Capped Amino Acids (Fmoc-AAs)
3.1.4. Other N-Capped Amino Acids
3.2. Dipeptides: Chemical Structure of Dipeptide-Based Hydrogels
3.2.1. Uncapped Dipeptides
Gelator | Method | Media | pH | CGC (mM) | [Gel] (mM) | G′ (Pa) | G″ (Pa) | LVR (%) | γ (%) | Tm (°C) | Fibril (nm) | Highlights | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L-Phe-Phe | pHE | Buffer | 7.3 | 20 | 20 | 22 | 3.7 | 10 | 10 | 46 | 200–1000 | - | - | [148] |
SE + US | HFIP/ANS | 8 | 8 | 8 | 1780 | 102 | - | - | - | ~10 | - | - | [149] | |
Phe-ΔPhe | HC | Buffer | 7 | 6.4 | 6.4 | 209,000 | 19,700 | - | - | - | 15–20 | - | Drug delivery | [151] |
D-Phe-Phe | pHE | Buffer | 7.3 | 20 | 20 | 22.9 | 1.5 | 100 | 100 | 44 | 4.3 | Thermoreversible | - | [148] |
2-F-Phe-Phe | pHE | Buffer | 7.3 | 15 | 15 | 8 | 0.5 | 10 | 10 | 44 | 11.4 | Thermoreversible | - | [148] |
3-F-Phe-Phe | pHE | Buffer | 7.3 | 10 | 10 | 6.1 | 0.3 | 100 | 100 | 47 | 50–500 | Thermoreversible | - | [148] |
4-F-Phe-Phe | pHE | Buffer | 7.3 | 7 | 7 | 20.7 | 1.2 | 100 | 100 | 42 | 26.9 | Thermoreversible | - | [148] |
4-I-Phe-Phe | pHE | Buffer | 7.3 | 4 | 4 | 17.7 | 1.3 | 100 | 100 | 74 | 63 | Thermoreversible | - | [148] |
Phe-Phe-NH2 | SE + US | HFIP/ANS | 8 | 4 | 4 | 30,100 | 103 | - | - | - | ~10 | - | - | [149] |
Leu-ΔPhe | US | Buffer | 7 | 15.2 | 19.1 | 12,000 | 103 | - | - | - | >100 | - | - | [152] |
L-Leu-Phe | HC | PBS | 7.4 | 40 | 40 | 104 | 103 | 10 | 100 | - | - | - | - | [150] |
D-Leu-Phe | HC | PBS | 7.4 | 40 | 40 | 104 | 103 | 10 | 100 | - | 12 | - | - | [150] |
D-Phe-Leu | HC | PBS | 7.4 | 20 | 20 | 103 | 102 | - | 0.1 | - | - | Not stable | - | [150] |
3.2.2. The Case of Fmoc-FF
3.2.3. Fmoc-Capped Dipeptides
3.2.4. Other N-Capped Dipeptides
Gelator | Method | Media | pH | CGC (mM) | [Gel] (mM) | G′ (Pa) | G″ (Pa) | LVR (%) | γ (%) | Tm (°C) | Fibril (nm) | Highlights | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fmoc-AA | pHE | Water | <4 | 1.6–16.9 | - | - | - | - | - | - | 68 ±1 8 | - | - | [160] |
Fmoc-AD | HC | PBS | 7.4 | 142.3 | 10 | - | - | - | - | - | - | - | - | [173] |
Fmoc-AG | pHE | Water | <4 | 4.3-17.9 | - | - | - | - | - | - | 30 ± 6 [d] | - | Cell growth | [160] |
Fmoc-FA | GdL | Water | 3.75 | - | 14.6 | 95,600 | - | - | - | - | - | - | - | [65] |
Fmoc-FG | pHE | Water | <4 | 4.0–17.8 | - | - | - | - | - | - | 25 ± 6 [d] | - | Cell growth | [160] |
Fmoc-FG | GdL | Water | 3.75 | - | 14.6 | 41,000 | - | - | - | - | - | - | - | [65] |
Fmoc-FL | D | PBS | ~8 | - | 20 | 11,500 | >1100 | <2 | ~6 | 100–150 | Fiber and straight rods | Fillers | [178] | |
Fmoc-FV | pHE | Water | 7.4 | - | 20 | 800 | 650 | >100 | - | - | 30 [t] | - | 3D cell culture | [179] |
Fmoc-GG | pHE | Water | <4 | 4.2–16.9 | - | - | - | - | - | - | 33 ± 8 [d] | - | Cell growth | [160] |
Fmoc-ID | HC | PBS | 7.4 | 8.5 | 10 | - | - | - | - | - | - | - | - | [173] |
Fmoc-K(Fmoc)-D | SE | Water/DMSO | 0.03 | 7 | - | - | <100 | - | - | - | Conductive gel | DNA binding | [181] | |
Fmoc-LD | HC | PBS | 7.4 | 10.7 | 10 | 80 | ~15 | <0.3 | >10 | - | - | - | Drug delivery | [173] |
Fmoc-LG | pHE | Water | <4 | 8.5–17.8 | - | - | - | - | - | - | 22 ± 5 [d] | - | Cell growth | [160] |
pHE − HCl | Water | 3.75 | - | 14.6 | 5900 | - | - | - | - | - | - | - | [65] | |
GdL | Water | 3.75 | - | 14.6 | 184,000 | - | - | - | - | - | - | - | [65] | |
Fmoc-LL | D | PBS | ~8 | - | 20 | 1500 | ~300 | <1 | ~10 | - | 20–50 | - | Fillers | [178] |
Fmoc-YA | D | PBS | ~8 | - | 20 | 800 | ~300 | <0.5 | ~5 | - | 20–50 | - | Fillers | [178] |
Fmoc-YD | D | Water | - | - | 10 | ~4500 | ~2000 | <100 | ~50 | - | 18 [t] | Helical fibrils | 3D Bioprinting | [177] |
Fmoc-YK | D | Water | - | - | 10 | 20 | 8 | <2 | ~30 | - | 5 [t] | Helical fibrils | 3D Bioprinting | [177] |
Fmoc-YL | pHE | Water | ~7.3 | - | 10 | ~390 | ~190 | <0.1 | - | - | 40–200 | Stable ν = 0.1–15.8 Hz | [176] | |
D | PBS | ~8 | - | 20 | 6000 | ~1000 | <2 | ~10 | - | - | Shear-thinning | Fillers | [178] | |
Fmoc-YN | Enz/pHE | PBS | 8 | - | 10 | 3010 | 949 | - | - | - | - | - | - | [180] |
Fmoc-YS | Enz/pHE | PBS | 8 | - | 10 | 3400 | 100 | - | - | - | - | - | - | [180] |
4. Perspective on the Structure-Property Relationship
4.1. Influence of the Self-Assembly Pathway
4.2. Influence of the Chemical Structure
5. Conclusions and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Z.; Ai, S.; Yang, Z.; Li, X. Peptide-Based Supramolecular Hydrogels for Local Drug Delivery. Adv. Drug Deliv. Rev. 2021, 174, 482–503. [Google Scholar] [CrossRef]
- Guan, T.; Li, J.; Chen, C.; Liu, Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. Adv. Sci. 2022, 9, e2104165. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, X.; Liang, G. Peptide-Based Supramolecular Hydrogels for Bioimaging Applications. Biomater. Sci. 2021, 9, 315–327. [Google Scholar] [CrossRef]
- Binaymotlagh, R.; Chronopoulou, L.; Haghighi, F.H.; Fratoddi, I.; Palocci, C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022, 15, 5871. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiary, N.; Ghalandari, B.; Ghorbani, F.; Varma, S.N.; Liu, C. Advances in Peptide-Based Hydrogel for Tissue Engineering. Polymers 2023, 15, 1068. [Google Scholar] [CrossRef]
- Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-Assembled Peptide-Based Nanostructures: Smart Nanomaterials toward Targeted Drug Delivery. Nano Today 2016, 11, 41–60. [Google Scholar] [CrossRef]
- Ni, M.; Zhuo, S. Applications of Self-Assembling Ultrashort Peptides in Bionanotechnology. RSC Adv. 2019, 9, 844–852. [Google Scholar] [CrossRef]
- Das, S.; Das, D. Rational Design of Peptide-Based Smart Hydrogels for Therapeutic Applications. Front. Chem. 2021, 9, 770102. [Google Scholar] [CrossRef]
- Pramanik, B. Short Peptide-Based Smart Thixotropic Hydrogels. Gels 2022, 8, 569. [Google Scholar] [CrossRef]
- Draper, E.R.; Adams, D.J. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. Langmuir 2019, 35, 6506–6521. [Google Scholar] [CrossRef]
- Raghavan, S.R.; Douglas, J.F. The Conundrum of Gel Formation by Molecular Nanofibers, Wormlike Micelles, and Filamentous Proteins: Gelation without Cross-Links? Soft Matter 2012, 8, 8539. [Google Scholar] [CrossRef]
- De Leon Rodriguez, L.M.; Hemar, Y.; Cornish, J.; Brimble, M.A. Structure-Mechanical Property Correlations of Hydrogel Forming β-Sheet Peptides. Chem. Soc. Rev. 2016, 45, 4797–4824. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Fuentes-Caparrós, A.M.; Cross, E.R.; Cavalcanti, L.; Adams, D.J. Annealing Supramolecular Gels by a Reaction Relay. Chem. Mater. 2020, 32, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, J.; Zhao, S.; Chen, D.; Zhang, H.; Fang, Y.; Kong, N.; Zhou, Z.; Li, W.; Wang, H. Accelerating the Prediction and Discovery of Peptide Hydrogels with Human-in-the-Loop. Nat. Commun. 2023, 14, 3880. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.K.; Adams, D.J.; Berry, N.G. Will It Gel? Successful Computational Prediction of Peptide Gelators Using Physicochemical Properties and Molecular Fingerprints. Chem. Sci. 2016, 7, 4713–4719. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yuan, C.; Yan, X. Computational Approaches for Understanding and Predicting the Self-Assembled Peptide Hydrogels. Curr. Opin. Colloid Interface Sci. 2022, 62, 101645. [Google Scholar] [CrossRef]
- Ferguson, A.L.; Tovar, J.D. Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control. Langmuir 2022, 38, 15463–15475. [Google Scholar] [CrossRef]
- Frederix, P.W.J.M.; Scott, G.G.; Abul-Haija, Y.M.; Kalafatovic, D.; Pappas, C.G.; Javid, N.; Hunt, N.T.; Ulijn, R.V.; Tuttle, T. Exploring the Sequence Space for (Tri-)Peptide Self-Assembly to Design and Discover New Hydrogels. Nat. Chem. 2015, 7, 30–37. [Google Scholar] [CrossRef]
- Toledano, S.; Williams, R.J.; Jayawarna, V.; Ulijn, R.V. Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. J. Am. Chem. Soc. 2006, 128, 1070–1071. [Google Scholar] [CrossRef]
- Ramachandran, S.; Tseng, Y.; Yu, Y.B. Repeated Rapid Shear-Responsiveness of Peptide Hydrogels with Tunable Shear Modulus. Biomacromolecules 2005, 6, 1316–1321. [Google Scholar] [CrossRef]
- Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M.S.; Pochan, D.J.; Schneider, J.P. Controlling Hydrogelation Kinetics by Peptide Design for Three-Dimensional Encapsulation and Injectable Delivery of Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 7791–7796. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Chen, J.; Xu, W.; Wang, Q.; Wei, X.; Ma, Y.; Chen, F.; Zhang, G. Molecular Dynamics Study of Low Molecular Weight Gel Forming Salt-Triggered Dipeptide. Sci. Rep. 2023, 13, 6328. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.L.; Gazit, E.; Knowles, T.P.J.J. Biomimetic Peptide Self-Assembly for Functional Materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Jonker, A.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Peptide- and Protein-Based Hydrogels. Chem. Mater. 2012, 24, 759–773. [Google Scholar] [CrossRef]
- Panja, S.; Adams, D.J. Stimuli Responsive Dynamic Transformations in Supramolecular Gels. Chem. Soc. Rev. 2021, 50, 5165–5200. [Google Scholar] [CrossRef]
- Raeburn, J.; Zamith Cardoso, A.; Adams, D.J.; Cardoso, A.Z.; Adams, D.J.; Zamith Cardoso, A.; Adams, D.J. The Importance of the Self-Assembly Process to Control Mechanical Properties of Low Molecular Weight Hydrogels. Chem. Soc. Rev. 2013, 42, 5143. [Google Scholar] [CrossRef] [PubMed]
- Ardoña, H.A.M.; Draper, E.R.; Citossi, F.; Wallace, M.; Serpell, L.C.; Adams, D.J.; Tovar, J.D. Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. J. Am. Chem. Soc. 2017, 139, 8685–8692. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Falcone, N.; Kraatz, H.B. Supramolecular Peptide Gels: Influencing Properties by Metal Ion Coordination and Their Wide-Ranging Applications. ACS Omega 2020, 5, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Raymond, D.M.; Nilsson, B.L. Multicomponent Peptide Assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720. [Google Scholar] [CrossRef]
- Chivers, P.R.A.; Smith, D.K. Shaping and Structuring Supramolecular Gels. Nat. Rev. Mater. 2019, 4, 463–478. [Google Scholar] [CrossRef]
- Jervis, P.J.; Amorim, C.; Pereira, T.; Martins, J.A.; Ferreira, P.M.T.T. Exploring the Properties and Potential Biomedical Applications of NSAID-Capped Peptide Hydrogels. Soft Matter 2020, 16, 10001–10012. [Google Scholar] [CrossRef] [PubMed]
- Jervis, P.J.; Amorim, C.; Pereira, T.; Martins, J.A.; Ferreira, P.M.T.T. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. Int. J. Mol. Sci. 2021, 22, 2528. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Trinh, T.H.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.-B.; Ryou, C. Self-Assembling Peptides and Their Application in the Treatment of Diseases. Int. J. Mol. Sci. 2019, 20, 5850. [Google Scholar] [CrossRef] [PubMed]
- Naskar, J.; Roy, S.; Joardar, A.; Das, S.; Banerjee, A. Self-Assembling Dipeptide-Based Nontoxic Vesicles as Carriers for Drugs and Other Biologically Important Molecules. Org. Biomol. Chem. 2011, 9, 6610. [Google Scholar] [CrossRef] [PubMed]
- Parween, S.; Misra, A.; Ramakumar, S.; Chauhan, V.S. Self-Assembled Dipeptide Nanotubes Constituted by Flexible β-Phenylalanine and Conformationally Constrained α,β-Dehydrophenylalanine Residues as Drug Delivery System. J. Mater. Chem. B 2014, 2, 3096. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Mandal, A.B. Micelle Formation of Tyr-Phe Dipeptide and Val-Tyr-Val Tripeptide in Aqueous Solution and Their Influence on the Aggregation of SDS and PEO–PPO–PEO Copolymer Micelles. Colloids Surf. B Biointerfaces 2011, 84, 172–180. [Google Scholar] [CrossRef]
- Tanaka, W.; Shigemitsu, H.; Fujisaku, T.; Kubota, R.; Minami, S.; Urayama, K.; Hamachi, I. Post-Assembly Fabrication of a Functional Multicomponent Supramolecular Hydrogel Based on a Self-Sorting Double Network. J. Am. Chem. Soc. 2019, 141, 4997–5004. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Boyd-Moss, M.; Long, B.; Martel, A.; Parnell, A.; Dennison, A.J.C.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. Facile Control over the Supramolecular Ordering of Self-Assembled Peptide Scaffolds by Simultaneous Assembly with a Polysacharride. Sci. Rep. 2017, 7, 4797. [Google Scholar] [CrossRef]
- Du, E.Y.; Ziaee, F.; Wang, L.; Nordon, R.E.; Thordarson, P. The Correlations between Structure, Rheology, and Cell Growth in Peptide-Based Multicomponent Hydrogels. Polym. J. 2020, 52, 947–957. [Google Scholar] [CrossRef]
- Falcone, N.; Shao, T.; Andoy, N.M.O.; Rashid, R.; Sullan, R.M.A.; Sun, X.; Kraatz, H.B. Multi-Component Peptide Hydrogels-a Systematic Study Incorporating Biomolecules for the Exploration of Diverse, Tuneable Biomaterials. Biomater. Sci. 2020, 8, 5601–5614. [Google Scholar] [CrossRef]
- Gomes, V.; Veloso, S.R.S.; Correa-Duarte, M.A.; Ferreira, P.M.T.; Castanheira, E.M.S. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int. J. Mol. Sci. 2022, 24, 186. [Google Scholar] [CrossRef]
- Gila-Vilchez, C.; Rodriguez-Arco, L.; Mañas-Torres, M.C.; Álvarez de Cienfuegos, L.; Lopez-Lopez, M.T. Self-Assembly in Magnetic Supramolecular Hydrogels. Curr. Opin. Colloid Interface Sci. 2022, 62, 101644. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Vázquez-González, M.; Spuch, C.; Freiría-Martínez, L.; Comís-Tuche, M.; Iglesias-Martínez-Almeida, M.; Rivera-Baltanás, T.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; et al. An Injectable Composite Co-Assembled Dehydropeptide-Based Magnetic/Plasmonic Lipogel for Multimodal Cancer Therapy. Adv. Funct. Mater. 2024, 2402926. [Google Scholar] [CrossRef]
- Zanna, N.; Tomasini, C. Peptide-Based Physical Gels Endowed with Thixotropic Behaviour. Gels 2017, 3, 39. [Google Scholar] [CrossRef]
- Roth-Konforti, M.E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L. UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromol. Rapid Commun. 2018, 39, 1800588. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, H.; Poh, P.S.P.; Machens, H.-G.G.; Schilling, A.F. Hydrogels for Engineering of Perfusable Vascular Networks. Int. J. Mol. Sci. 2015, 16, 15997–16016. [Google Scholar] [CrossRef]
- Amorim, C.; Veloso, S.R.S.; Castanheira, E.M.S.; Hilliou, L.; Pereira, R.B.; Pereira, D.M.; Martins, J.A.; Jervis, P.J.; Ferreira, P.M.T. Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems. Gels 2021, 7, 52. [Google Scholar] [CrossRef]
- Yan, C.; Pochan, D.J. Rheological Properties of Peptide-Based Hydrogels for Biomedical and Other Applications. Chem. Soc. Rev. 2010, 39, 3528. [Google Scholar] [CrossRef] [PubMed]
- Sathaye, S.; Mbi, A.; Sonmez, C.; Chen, Y.; Blair, D.L.; Schneider, J.P.; Pochan, D.J. Rheology of Peptide- and Protein-based Physical Hydrogels: Are Everyday Measurements Just Scratching the Surface? WIREs Nanomed. Nanobiotechnol. 2015, 7, 34–68. [Google Scholar] [CrossRef]
- Adams, D.J. Personal Perspective on Understanding Low Molecular Weight Gels. J. Am. Chem. Soc. 2022, 144, 11047–11053. [Google Scholar] [CrossRef]
- Frith, W.J.; Donald, A.M.; Adams, D.J.; Aufderhorst-Roberts, A. Gels Formed from Amino-Acid Derivatives, Their Novel Rheology as Probed by Bulk and Particle Tracking Rheological Methods. J. Nonnewton. Fluid Mech. 2015, 222, 104–111. [Google Scholar] [CrossRef]
- Aufderhorst-Roberts, A.; Frith, W.J.; Kirkland, M.; Donald, A.M. Microrheology and Microstructure of Fmoc-Derivative Hydrogels. Langmuir 2014, 30, 4483–4492. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; Adams, D.J. How Should Multicomponent Supramolecular Gels Be Characterised? Chem. Soc. Rev. 2018, 47, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Caparrós, A.M.; Dietrich, B.; Thomson, L.; Chauveau, C.; Adams, D.J. Using Cavitation Rheology to Understand Dipeptide-Based Low Molecular Weight Gels. Soft Matter 2019, 15, 6340–6347. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Aviñó, F.; Clegg, P.S. Non-Linear Dilational Rheology of Liquid-Liquid Interfaces Stabilized by Dipeptide Hydrogels. Rheol. Acta 2023, 62, 45–55. [Google Scholar] [CrossRef]
- Binaymotlagh, R.; Chronopoulou, L.; Palocci, C. Peptide-Based Hydrogels: Template Materials for Tissue Engineering. J. Funct. Biomater. 2023, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Mitrovic, J.; Richey, G.; Kim, S.; Guler, M.O. Peptide Hydrogels and Nanostructures Controlling Biological Machinery. Langmuir 2023, 39, 11935–11945. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xing, R.; Bai, S.; Yan, X. Recent Advances of Self-Assembling Peptide-Based Hydrogels for Biomedical Applications. Soft Matter 2019, 15, 1704–1715. [Google Scholar] [CrossRef] [PubMed]
- Haines, L.A.; Rajagopal, K.; Ozbas, B.; Salick, D.A.; Pochan, D.J.; Schneider, J.P. Light-Activated Hydrogel Formation via the Triggered Folding and Self-Assembly of a Designed Peptide. J. Am. Chem. Soc. 2005, 127, 17025–17029. [Google Scholar] [CrossRef]
- Ozbas, B.; Kretsinger, J.; Rajagopal, K.; Schneider, J.P.; Pochan, D.J. Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules 2004, 37, 7331–7337. [Google Scholar] [CrossRef]
- Chen, L.; McDonald, T.O.; Adams, D.J. Salt-Induced Hydrogels from Functionalised-Dipeptides. RSC Adv. 2013, 3, 8714. [Google Scholar] [CrossRef]
- Stendahl, J.C.; Rao, M.S.; Guler, M.O.; Stupp, S.I. Intermolecular Forces in the Self-Assembly of Peptide Amphiphile Nanofibers. Adv. Funct. Mater. 2006, 16, 499–508. [Google Scholar] [CrossRef]
- Cardoso, A.Z.; Alvarez Alvarez, A.E.; Cattoz, B.N.; Griffiths, P.C.; King, S.M.; Frith, W.J.; Adams, D.J. The Influence of the Kinetics of Self-Assembly on the Properties of Dipeptide Hydrogels. Faraday Discuss. 2013, 166, 101. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Z.; Adams, D.J. Controlling Peptidebased Hydrogelation. Mater. Today 2012, 15, 500–507. [Google Scholar] [CrossRef]
- Adams, D.J.; Butler, M.F.; Frith, W.J.; Kirkland, M.; Mullen, L.; Sanderson, P. A New Method for Maintaining Homogeneity during Liquid–Hydrogel Transitions Using Low Molecular Weight Hydrogelators. Soft Matter 2009, 5, 1856. [Google Scholar] [CrossRef]
- Fortunato, A.; Mba, M. A Peptide-Based Hydrogel for Adsorption of Dyes and Pharmaceuticals in Water Remediation. Gels 2022, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Ben Messaoud, G.; Le Griel, P.; Hermida-Merino, D.; Roelants, S.L.K.W.; Soetaert, W.; Stevens, C.V.; Baccile, N. PH-Controlled Self-Assembled Fibrillar Network Hydrogels: Evidence of Kinetic Control of the Mechanical Properties. Chem. Mater. 2019, 31, 4817–4830. [Google Scholar] [CrossRef]
- Vilaça, H.; Hortelão, A.C.L.; Castanheira, E.M.S.; Queiroz, M.-J.R.P.; Hilliou, L.; Hamley, I.W.; Martins, J.A.; Ferreira, P.M.T. Dehydrodipeptide Hydrogelators Containing Naproxen N -Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers. Biomacromolecules 2015, 16, 3562–3573. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Coutinho, P.J.G.; Martins, J.A.; Testa-Anta, M.; Salgueiriño, V.; Correa-Duarte, M.A.; Ferreira, P.M.T.; et al. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. Nanomaterials 2021, 11, 16. [Google Scholar] [CrossRef]
- Thornton, K.; Smith, A.M.; Merry, C.L.R.; Ulijn, R.V. Controlling Stiffness in Nanostructured Hydrogels Produced by Enzymatic Dephosphorylation. Biochem. Soc. Trans. 2009, 37, 660–664. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. In Vitro and In Vivo Enzymatic Formation of Supramolecular Hydrogels Based on Self-Assembled Nanofibers of a Β-Amino Acid Derivative. Small 2007, 3, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Coulter, S.M.; Pentlavalli, S.; Vora, L.K.; An, Y.; Cross, E.R.; Peng, K.; McAulay, K.; Schweins, R.; Donnelly, R.F.; McCarthy, H.O.; et al. Enzyme-Triggered L-α/D-Peptide Hydrogels as a Long-Acting Injectable Platform for Systemic Delivery of HIV/AIDS Drugs. Adv. Healthc. Mater. 2023, 12, 2203198. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, J.-B.; Rochas, C.; Miller, A.F.; Saiani, A. Effect of Enzyme Concentration of the Morphology and Properties of Enzymatically Triggered Peptide Hydrogels. Biomacromolecules 2013, 14, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Maeda, T.; Hotta, A. Effects of Salt Concentrations of the Aqueous Peptide-Amphiphile Solutions on the Sol–Gel Transitions, the Gelation Speed, and the Gel Characteristics. J. Phys. Chem. B 2014, 118, 11537–11545. [Google Scholar] [CrossRef] [PubMed]
- Fichman, G.; Schneider, J.P. Utilizing Frémy’s Salt to Increase the Mechanical Rigidity of Supramolecular Peptide-Based Gel Networks. Front. Bioeng. Biotechnol. 2021, 8, 594258. [Google Scholar] [CrossRef] [PubMed]
- Mañas-Torres, M.C.; Gila-Vilchez, C.; González-Vera, J.A.; Conejero-Lara, F.; Blanco, V.; Cuerva, J.M.; Lopez-Lopez, M.T.; Orte, A.; Álvarez de Cienfuegos, L. In Situ Real-Time Monitoring of the Mechanism of Self-Assembly of Short Peptide Supramolecular Polymers. Mater. Chem. Front. 2021, 5, 5452–5462. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Patel, R.; Leach, J.; Mathomes, R.; Chhabria, V.; Patil-Sen, Y.; Hidalgo-Bastida, A.; Forbes, R.T.; Hayes, J.M.; Elsawy, M.A. Aromatic Stacking Facilitated Self-Assembly of Ultrashort Ionic Complementary Peptide Sequence: β-Sheet Nanofibers with Remarkable Gelation and Interfacial Properties. Biomacromolecules 2020, 21, 2670–2680. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, C.; Draper, E.R.; Schweins, R.; Marcello, M.; Vadukul, D.; Serpell, L.C.; Adams, D.J. Controlling the Network Type in Self-Assembled Dipeptide Hydrogels. Soft Matter 2017, 13, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Zimberlin, J.A.; Sanabria-DeLong, N.; Tew, G.N.; Crosby, A.J. Cavitation Rheology for Soft Materials. Soft Matter 2007, 3, 763. [Google Scholar] [CrossRef]
- MacKintosh, F.C.; Käs, J.; Janmey, P.A. Elasticity of Semiflexible Biopolymer Networks. Phys. Rev. Lett. 1995, 75, 4425–4428. [Google Scholar] [CrossRef]
- Shih, W.-H.; Shih, W.Y.; Kim, S.-I.; Liu, J.; Aksay, I.A. Scaling Behavior of the Elastic Properties of Colloidal Gels. Phys. Rev. A 1990, 42, 4772–4779. [Google Scholar] [CrossRef]
- Wu, H.; Morbidelli, M. A Model Relating Structure of Colloidal Gels to Their Elastic Properties. Langmuir 2001, 17, 1030–1036. [Google Scholar] [CrossRef]
- Morse, D.C. Viscoelasticity of Concentrated Isotropic Solutions of Semiflexible Polymers. 2. Linear Response. Macromolecules 1998, 31, 7044–7067. [Google Scholar] [CrossRef]
- Veerman, C.; Rajagopal, K.; Palla, C.S.; Pochan, D.J.; Schneider, J.P.; Furst, E.M. Gelation Kinetics of β-Hairpin Peptide Hydrogel Networks. Macromolecules 2006, 39, 6608–6614. [Google Scholar] [CrossRef]
- Terech, P.; Sangeetha, N.M.; Maitra, U. Molecular Hydrogels from Bile Acid Analogues with Neutral Side Chains: Network Architectures and Viscoelastic Properties. Junction Zones, Spherulites, and Crystallites: Phenomenological Aspects of the Gel Metastability. J. Phys. Chem. B 2006, 110, 15224–15233. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Tang, C.; Elsawy, M.A.; Smith, A.M.; Miller, A.F.; Saiani, A. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology. Biomacromolecules 2017, 18, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Hashemnejad, S.M.; Kundu, S. Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel. Langmuir 2017, 33, 7769–7779. [Google Scholar] [CrossRef]
- Adams, D.J.; Mullen, L.M.; Berta, M.; Chen, L.; Frith, W.J. Relationship between Molecular Structure, Gelation Behaviour and Gel Properties of Fmoc-Dipeptides. Soft Matter 2010, 6, 1971. [Google Scholar] [CrossRef]
- Fuentes-Caparrós, A.M.; McAulay, K.; Rogers, S.E.; Dalgliesh, R.M.; Adams, D.J. On the Mechanical Properties of N-Functionalised Dipeptide Gels. Molecules 2019, 24, 3855. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Wang, L. Mechanical Reinforcement of Molecular Hydrogel by Co-Assembly of Short Peptide-Based Gelators with Different Aromatic Capping Groups. Chin. J. Chem. 2014, 32, 123–127. [Google Scholar] [CrossRef]
- Boothroyd, S.; Saiani, A.; Miller, A.F. Controlling Network Topology and Mechanical Properties of Co-Assembling Peptide Hydrogels. Biopolymers 2014, 101, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.J.; Giano, M.C.; Jin, A.; Pochan, D.J.; Schneider, J.P. Enhanced Mechanical Rigidity of Hydrogels Formed from Enantiomeric Peptide Assemblies. J. Am. Chem. Soc. 2011, 133, 14975–14977. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Song, M.; Wu, Z.; Zhang, W.; Wang, Z.; Gao, J.; Yang, Z.; Ou, C. A Mixed Component Supramolecular Hydrogel to Improve Mice Cardiac Function and Alleviate Ventricular Remodeling after Acute Myocardial Infarction. Adv. Funct. Mater. 2017, 27, 1701798. [Google Scholar] [CrossRef]
- Horgan, C.C.; Rodriguez, A.L.; Li, R.; Bruggeman, K.F.; Stupka, N.; Raynes, J.K.; Day, L.; White, J.W.; Williams, R.J.; Nisbet, D.R. Characterisation of Minimalist Co-Assembled Fluorenylmethyloxycarbonyl Self-Assembling Peptide Systems for Presentation of Multiple Bioactive Peptides. Acta Biomater. 2016, 38, 11–22. [Google Scholar] [CrossRef]
- Liyanage, W.; Nilsson, B.L. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives. Langmuir 2016, 32, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Halperin-Sternfeld, M.; Ghosh, M.; Sevostianov, R.; Grigoriants, I.; Adler-Abramovich, L. Molecular Co-Assembly as a Strategy for Synergistic Improvement of the Mechanical Properties of Hydrogels. Chem. Commun. 2017, 53, 9586–9589. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Bai, B.; Zhang, T.; Zhang, C.; Zhang, C.; Zhang, P.; Wang, H.; Li, M. Gelation Behaviour and Gel Properties of Two-Component Organogels Containing a Photoresponsive Gelator. New J. Chem. 2017, 41, 8614–8619. [Google Scholar] [CrossRef]
- Xing, P.; Chu, X.; Li, S.; Xin, F.; Ma, M.; Hao, A. Switchable and Orthogonal Self-Assemblies of Anisotropic Fibers. New J. Chem. 2013, 37, 3949. [Google Scholar] [CrossRef]
- Draper, E.R.; Eden, E.G.B.; McDonald, T.O.; Adams, D.J. Spatially Resolved Multicomponent Gels. Nat. Chem. 2015, 7, 848–852. [Google Scholar] [CrossRef]
- Morris, K.L.; Chen, L.; Raeburn, J.; Sellick, O.R.; Cotanda, P.; Paul, A.; Griffiths, P.C.; King, S.M.; O’Reilly, R.K.; Serpell, L.C.; et al. Chemically Programmed Self-Sorting of Gelator Networks. Nat. Commun. 2013, 4, 1480. [Google Scholar] [CrossRef]
- Cornwell, D.J.; Daubney, O.J.; Smith, D.K. Photopatterned Multidomain Gels: Multi-Component Self-Assembled Hydrogels Based on Partially Self-Sorting 1,3:2,4-Dibenzylidene- d -Sorbitol Derivatives. Stoch. Process. Their Appl. 2016, 126, 337–359. [Google Scholar] [CrossRef]
- Singh, V.; Rai, R.K.; Arora, A.; Sinha, N.; Thakur, A.K. Therapeutic Implication of L-Phenylalanine Aggregation Mechanism and Its Modulation by D-Phenylalanine in Phenylketonuria. Sci. Rep. 2014, 4, 3875. [Google Scholar] [CrossRef]
- Hsu, W.-P.; Koo, K.-K.; Myerson, A.S. The Gel-Crystallization of 1-Phenylalanine and Aspartame from Aqueous Solutions. Chem. Eng. Commun. 2002, 189, 1079–1090. [Google Scholar] [CrossRef]
- Ramalhete, S.M.; Nartowski, K.P.; Sarathchandra, N.; Foster, J.S.; Round, A.N.; Angulo, J.; Lloyd, G.O.; Khimyak, Y.Z. Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules Using NMR Spectroscopy. Chem. Eur. J. 2017, 23, 8014–8024. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Xue, B.; Rehak, P.; Jacoby, G.; Ji, W.; Shimon, L.J.W.; Beck, R.; Král, P.; Cao, Y.; Gazit, E. Self-Assembly of Aromatic Amino Acid Enantiomers into Supramolecular Materials of High Rigidity. ACS Nano 2020, 14, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Babar, D.G.; Sarkar, S. Self-Assembled Nanotubes from Single Fluorescent Amino Acid. Appl. Nanosci. 2017, 7, 101–107. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, S.K.; Grover, A.; Sharma, R.K.; Wangoo, N. Understanding the Self-Ordering of Amino Acids into Supramolecular Architectures: Co-Assembly-Based Modulation of Phenylalanine Nanofibrils. Mater. Chem. Front. 2021, 5, 1971–1981. [Google Scholar] [CrossRef]
- Ryan, D.M.; Anderson, S.B.; Senguen, F.T.; Youngman, R.E.; Nilsson, B.L. Self-Assembly and Hydrogelation Promoted by F5-Phenylalanine. Soft Matter 2010, 6, 475–479. [Google Scholar] [CrossRef]
- Ryan, D.M.; Doran, T.M.; Nilsson, B.L. Complementary π–π Interactions Induce Multicomponent Coassembly into Functional Fibrils. Langmuir 2011, 27, 11145–11156. [Google Scholar] [CrossRef]
- Ryan, D.M.; Doran, T.M.; Nilsson, B.L. Stabilizing Self-Assembled Fmoc–F5–Phe Hydrogels by Co-Assembly with PEG-Functionalized Monomers. Chem. Commun. 2011, 47, 475–477. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, E.; Ulijn, R.V.; Bentley, W.E.; Payne, G.F. Reversible Electroaddressing of Self-assembling Amino-Acid Conjugates. Adv. Funct. Mater. 2011, 21, 1575–1580. [Google Scholar] [CrossRef]
- Xing, P.; Chu, X.; Li, S.; Ma, M.; Hao, A. Hybrid Gels Assembled from Fmoc–Amino Acid and Graphene Oxide with Controllable Properties. ChemPhysChem 2014, 15, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Banerjee, A. Functionalized Single Walled Carbon Nanotube Containing Amino Acid Based Hydrogel: A Hybrid Nanomaterial. RSC Adv. 2012, 2, 2105. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, A. Amino Acid Based Smart Hydrogel: Formation, Characterization and Fluorescence Properties of Silver Nanoclusters within the Hydrogel Matrix. Soft Matter 2011, 7, 5300. [Google Scholar] [CrossRef]
- Draper, E.R.; Morris, K.L.; Little, M.A.; Raeburn, J.; Colquhoun, C.; Cross, E.R.; McDonald, T.O.; Serpell, L.C.; Adams, D.J. Hydrogels Formed from Fmoc Amino Acids. CrystEngComm 2015, 17, 8047–8057. [Google Scholar] [CrossRef]
- Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Exceptionally Small Supramolecular Hydrogelators Based on Aromatic–Aromatic Interactions. Beilstein J. Org. Chem. 2011, 7, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.L.; Liyanage, W.; Nilsson, B.L. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Langmuir 2019, 35, 14939–14948. [Google Scholar] [CrossRef]
- Raymond, D.M.; Abraham, B.L.; Fujita, T.; Watrous, M.J.; Toriki, E.S.; Takano, T.; Nilsson, B.L. Low-Molecular-Weight Supramolecular Hydrogels for Sustained and Localized in Vivo Drug Delivery. ACS Appl. Bio Mater. 2019, 2, 2116–2124. [Google Scholar] [CrossRef]
- Quigley, E.; Johnson, J.; Liyanage, W.; Nilsson, B.L. Impact of Gelation Method on Thixotropic Properties of Phenylalanine-Derived Supramolecular Hydrogels. Soft Matter 2020, 16, 10158–10168. [Google Scholar] [CrossRef]
- Xie, Y.-Y.; Zhang, Y.-W.; Qin, X.-T.; Liu, L.-P.; Wahid, F.; Zhong, C.; Jia, S.-R. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. Colloids Surf. B Biointerfaces 2020, 193, 111099. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, B. A Simple Visual Assay Based on Small Molecule Hydrogels for Detecting Inhibitors of Enzymes. Chem. Commun. 2004, 21, 2424. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Misra, S.; Das, A.; Roy, S.; Datta, P.; Bhattacharjee, G.; Satpati, B.; Nanda, J. Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine. ACS Appl. Bio Mater. 2019, 2, 4881–4891. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud-Chéreau, C.; Dinesh, B.; Schurhammer, R.; Collin, D.; Bianco, A.; Ménard-Moyon, C.; Guilbaud-che, C.; Bianco, A. Protected Amino Acid–Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release. ACS Appl. Mater. Interfaces 2019, 11, 13147–13157. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yuan, C.; Jiao, T.; Xing, R.; Yang, M.; Adams, D.J. Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly. Small 2020, 16, 1907309. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.M.; Augustine, G.; Ayyadurai, N.; Shanmugam, G. Biocytin-Based PH-Stimuli Responsive Supramolecular Multivariant Hydrogelator for Potential Applications. ACS Appl. Bio Mater. 2018, 1, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.A.; Reddy, S.M.M.; Shanmugam, G.; Deshpande, A.P. Fibrillar Network Dynamics during Oscillatory Rheology of Supramolecular Gels. Langmuir 2020, 36, 13342–13355. [Google Scholar] [CrossRef] [PubMed]
- Arokianathan, J.F.; Ramya, K.A.; Janeena, A.; Deshpande, A.P.; Ayyadurai, N.; Leemarose, A.; Shanmugam, G. Non-Proteinogenic Amino Acid Based Supramolecular Hydrogel Material for Enhanced Cell Proliferation. Colloids Surf. B Biointerfaces 2020, 185, 110581. [Google Scholar] [CrossRef] [PubMed]
- Nanda, J.; Biswas, A.; Banerjee, A. Single Amino Acid Based Thixotropic Hydrogel Formation and PH-Dependent Morphological Change of Gel Nanofibers. Soft Matter 2013, 9, 4198. [Google Scholar] [CrossRef]
- Martí-Centelles, R.; Escuder, B. Morphology Diversity of L-Phenylalanine-Based Short Peptide Supramolecular Aggregates and Hydrogels. ChemNanoMat 2018, 4, 796–800. [Google Scholar] [CrossRef]
- Garcia, A.M.; Lavendomme, R.; Kralj, S.; Kurbasic, M.; Bellotto, O.; Cringoli, M.C.; Semeraro, S.; Bandiera, A.; De Zorzi, R.; Marchesan, S. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chem. Eur. J. 2020, 26, 1880–1886. [Google Scholar] [CrossRef]
- Xing, P.; Chen, H.; Xiang, H.; Zhao, Y. Selective Coassembly of Aromatic Amino Acids to Fabricate Hydrogels with Light Irradiation-Induced Emission for Fluorescent Imprint. Adv. Mater. 2018, 30, 1705633. [Google Scholar] [CrossRef] [PubMed]
- Falcone, N.; Shao, T.; Rashid, R.; Kraatz, H.-B. Enzyme Entrapment in Amphiphilic Myristyl-Phenylalanine Hydrogels. Molecules 2019, 24, 2884. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.M.; Anderson, S.B.; Nilsson, B.L. The Influence of Side-Chain Halogenation on the Self-Assembly and Hydrogelation of Fmoc-Phenylalanine Derivatives. Soft Matter 2010, 6, 3220. [Google Scholar] [CrossRef]
- Ryan, D.M.; Doran, T.M.; Anderson, S.B.; Nilsson, B.L. Effect of C -Terminal Modification on the Self-Assembly and Hydrogelation of Fluorinated Fmoc-Phe Derivatives. Langmuir 2011, 27, 4029–4039. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J.K.; Xu, B. Enzymatic Formation of Supramolecular Hydrogels. Adv. Mater. 2004, 16, 1440–1444. [Google Scholar] [CrossRef]
- Schnepp, Z.A.C.; Gonzalez-McQuire, R.; Mann, S. Hybrid Biocomposites Based on Calcium Phosphate Mineralization of Self-Assembled Supramolecular Hydrogels. Adv. Mater. 2006, 18, 1869–1872. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, G.; Xu, B. Enzymatic Hydrogelation of Small Molecules. Acc. Chem. Res. 2008, 41, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.J.; Kumar, R.K.; Barron, N.J.; Mann, S. Cerium Oxide Nanoparticle-Mediated Self-Assembly of Hybrid Supramolecular Hydrogels. Chem. Commun. 2012, 48, 7934. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, S.; Wulf, V.; Bisker, G. Single-Walled Carbon Nanotubes as near-Infrared Fluorescent Probes for Bio-Inspired Supramolecular Self-Assembled Hydrogels. J. Colloid Interface Sci. 2024, 670, 439–448. [Google Scholar] [CrossRef]
- Koshti, B.; Swanson, H.W.A.; Wilson, B.; Kshtriya, V.; Naskar, S.; Narode, H.; Lau, K.H.A.; Tuttle, T.; Gour, N. Solvent-Controlled Self-Assembly of Fmoc Protected Aliphatic Amino Acids. Phys. Chem. Chem. Phys. 2023, 25, 11522–11529. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, H.; Zhang, Y.; Wang, L.; Xu, B. Small Molecule Hydrogels Based on a Class of Antiinflammatory Agents. Chem. Commun. 2004, 2, 208. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.M.; Shanmugam, G.; Duraipandy, N.; Kiran, M.S.; Mandal, A.B. An Additional Fluorenylmethoxycarbonyl (Fmoc) Moiety in Di-Fmoc-Functionalized L-Lysine Induces PH-Controlled Ambidextrous Gelation with Significant Advantages. Soft Matter 2015, 11, 8126–8140. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, J.P.; Martin, A.D.; Mason, A.F.; Fife, C.M.; Sagnella, S.M.; Kavallaris, M.; Thordarson, P. Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Three-Dimensional Cell Culture of Tumor Spheroids. Chempluschem 2017, 82, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Truong, W.T.; Su, Y.; Gloria, D.; Braet, F.; Thordarson, P. Dissolution and Degradation of Fmoc-Diphenylalanine Self-Assembled Gels Results in Necrosis at High Concentrations in Vitro. Biomater. Sci. 2015, 3, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.; Wu, F.; Cheng, H.; Huang, Y.; Hsieh, Y.; Tseng, D.T.; Yeh, M.; Hung, S.; Lin, H. Functional Supramolecular Polymers: A Fluorescent Microfibrous Network in a Supramolecular Hydrogel for High-Contrast Live Cell-Material Imaging in 3D Environments. Adv. Healthc. Mater. 2016, 5, 2406–2412. [Google Scholar] [CrossRef] [PubMed]
- Koshti, B.; Kshtriya, V.; Naskar, S.; Narode, H.; Gour, N. Controlled Aggregation Properties of Single Amino Acids Modified with Protecting Groups. New J. Chem. 2022, 46, 4746–4755. [Google Scholar] [CrossRef]
- Torres-Gómez, N.; Nava, O.; Argueta-Figueroa, L.; García-Contreras, R.; Baeza-Barrera, A.; Vilchis-Nestor, A.R. Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. J. Nanomater. 2019, 2019, 7921273. [Google Scholar] [CrossRef]
- Kralj, S.; Bellotto, O.; Parisi, E.; Garcia, A.M.; Iglesias, D.; Semeraro, S.; Deganutti, C.; D’Andrea, P.; Vargiu, A.V.; Geremia, S.; et al. Heterochirality and Halogenation Control Phe-Phe Hierarchical Assembly. ACS Nano 2020, 14, 16951–16961. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.P.; Singh, N.; Sasselli, I.R.; Escuder, B.; Ulijn, R.V. Metastable Hydrogels from Aromatic Dipeptides. Chem. Commun. 2016, 52, 13889–13892. [Google Scholar] [CrossRef]
- Bellotto, O.; Kralj, S.; De Zorzi, R.; Geremia, S.; Marchesan, S. Supramolecular Hydrogels from Unprotected Dipeptides: A Comparative Study on Stereoisomers and Structural Isomers. Soft Matter 2020, 16, 10151–10157. [Google Scholar] [CrossRef]
- Panda, J.J.; Mishra, A.; Basu, A.; Chauhan, V.S. Stimuli Responsive Self-Assembled Hydrogel of a Low Molecular Weight Free Dipeptide with Potential for Tunable Drug Delivery. Biomacromolecules 2008, 9, 2244–2250. [Google Scholar] [CrossRef]
- Thota, C.K.; Yadav, N.; Chauhan, V.S. A Novel Highly Stable and Injectable Hydrogel Based on a Conformationally Restricted Ultrashort Peptide. Sci. Rep. 2016, 6, 31167. [Google Scholar] [CrossRef] [PubMed]
- Reches, M.; Gazit, E. Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes. Science 2003, 300, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Görbitz, C.H. Nanotube Formation by Hydrophobic Dipeptides. Chem. Eur. J. 2001, 7, 5153–5159. [Google Scholar] [CrossRef] [PubMed]
- Reches, M.; Gazit, E. Designed Aromatic Homo-Dipeptides: Formation of Ordered Nanostructures and Potential Nanotechnological Applications. Phys. Biol. 2006, 3, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Diaferia, C.; Avitabile, C.; Leone, M.; Gallo, E.; Saviano, M.; Accardo, A.; Romanelli, A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chem. Eur. J. 2021, 27, 14307–14316. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fei, J.; Li, Q.; Li, J. Covalently Assembled Dipeptide Nanospheres as Intrinsic Photosensitizers for Efficient Photodynamic Therapy in Vitro. Chem. Eur. J. 2016, 22, 6696. [Google Scholar] [CrossRef]
- Diaferia, C.; Gianolio, E.; Sibillano, T.; Mercurio, F.A.; Leone, M.; Giannini, C.; Balasco, N.; Vitagliano, L.; Morelli, G.; Accardo, A. Cross-Beta Nanostructures Based on Dinaphthylalanine Gd-Conjugates Loaded with Doxorubicin. Sci. Rep. 2017, 7, 307. [Google Scholar] [CrossRef]
- Reches, M.; Gazit, E. Self-assembly of Peptide Nanotubes and Amyloid-like Structures by Charged-termini-capped Diphenylalanine Peptide Analogues. Isr. J. Chem. 2005, 45, 363–371. [Google Scholar] [CrossRef]
- Jayawarna, V.; Ali, M.; Jowitt, T.A.; Miller, A.F.; Saiani, A.; Gough, J.E.; Ulijn, R.V. Nanostructured Hydrogels for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl–Dipeptides. Adv. Mater. 2006, 18, 611–614. [Google Scholar] [CrossRef]
- Tang, C.; Smith, A.M.; Collins, R.F.; Ulijn, R.V.; Saiani, A. Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent p K a Shifts. Langmuir 2009, 25, 9447–9453. [Google Scholar] [CrossRef] [PubMed]
- Rosa, E.; Diaferia, C.; Gallo, E.; Morelli, G.; Accardo, A. Stable Formulations of Peptide-Based Nanogels. Molecules 2020, 25, 3455. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Boháčová, K.; Fuentes-Caparrós, A.M.; Schweins, R.; Draper, E.R.; Adams, D.J.; Pujals, S.; Albertazzi, L. PAINT-ing Fluorenylmethoxycarbonyl (Fmoc)-Diphenylalanine Hydrogels. Chem. Eur. J. 2020, 26, 9869–9873. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Datta, H.K.; Roy, R.; Dastidar, P. Designing a Vehicle-Free Anti-Bacterial Topical Hydrogel from Fmoc-Diphenylalanine. Chem. Commun. 2023, 59, 9400–9403. [Google Scholar] [CrossRef] [PubMed]
- Nadernezhad, A.; Forster, L.; Netti, F.; Adler-Abramovich, L.; Teßmar, J.; Groll, J. Rheological Analysis of the Interplay between the Molecular Weight and Concentration of Hyaluronic Acid in Formulations of Supramolecular HA/FmocFF Hybrid Hydrogels. Polym. J. 2020, 52, 1007–1012. [Google Scholar] [CrossRef]
- Helen, W.; de Leonardis, P.; Ulijn, R.V.; Gough, J.; Tirelli, N. Mechanosensitive Peptidegelation: Mode of Agitation Controls Mechanical Properties and Nano-Scale Morphology. Soft Matter 2011, 7, 1732–1740. [Google Scholar] [CrossRef]
- Smith, A.M.; Williams, R.J.; Tang, C.; Coppo, P.; Collins, R.F.; Turner, M.L.; Saiani, A.; Ulijn, R.V. Fmoc-Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked Β-Sheets. Adv. Mater. 2008, 20, 37–41. [Google Scholar] [CrossRef]
- Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Adv. Mater. 2006, 18, 1365–1370. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Smaldone, G.; Rosa, E.; Pecoraro, G.; Morelli, G.; Accardo, A. Fmoc-FF Hydrogels and Nanogels for Improved and Selective Delivery of Dexamethasone in Leukemic Cells and Diagnostic Applications. Sci. Rep. 2024, 14, 9940. [Google Scholar] [CrossRef]
- Hirst, A.R.; Roy, S.; Arora, M.; Das, A.K.; Hodson, N.; Murray, P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; et al. Biocatalytic Induction of Supramolecular Order. Nat. Chem. 2010, 2, 1089–1094. [Google Scholar] [CrossRef]
- Johnson, T.; Bahrampourian, R.; Patel, A.; Mequanint, K. Fabrication of Highly Porous Tissue-Engineering Scaffolds Using Selective Spherical Porogens. Biomed. Mater. Eng. 2010, 20, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Orbach, R.; Adler-Abramovich, L.; Zigerson, S.; Mironi-Harpaz, I.; Seliktar, D.; Gazit, E. Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels. Biomacromolecules 2009, 10, 2646–2651. [Google Scholar] [CrossRef] [PubMed]
- Vegners, R.; Shestakova, I.; Kalvinsh, I.; Ezzell, R.M.; Janmey, P.A. Use of a Gel-forming Dipeptide Derivative as a Carrier for Antigen Presentation. J. Pept. Sci. 1995, 1, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Pappas, C.; Debnath, S.; Frederix, P.W.J.M.; Leckie, J.; Fleming, S.; Ulijn, R.V. Stable Emulsions Formed by Self-Assembly of Interfacial Networks of Dipeptide Derivatives. ACS Nano 2014, 8, 7005–7013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, H.; Yang, Z.; Xu, B. Supramolecular Hydrogels Respond to Ligand−Receptor Interaction. J. Am. Chem. Soc. 2003, 125, 13680–13681. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.; Debnath, S.; Frederix, P.W.J.M.; Hunt, N.T.; Ulijn, R.V. Insights into the Coassembly of Hydrogelators and Surfactants Based on Aromatic Peptide Amphiphiles. Biomacromolecules 2014, 15, 1171–1184. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Wang, M.; Dong, Q.; Li, J.; Wang, A.; Li, X.; Ren, P.; Bai, S. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. ACS Appl. Mater. Interfaces 2019, 11, 46419–46426. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Li, J.; Zhao, L.; Wang, A.; Wang, M.; Li, J.; Jian, H.; Li, X.; Yan, X.; Bai, S. Dipeptide Self-Assembled Hydrogels with Shear-Thinning and Instantaneous Self-Healing Properties Determined by Peptide Sequences. ACS Appl. Mater. Interfaces 2020, 12, 21433–21440. [Google Scholar] [CrossRef]
- Najafi, H.; Tamaddon, A.M.; Abolmaali, S.; Borandeh, S.; Azarpira, N. Structural, Mechanical, and Biological Characterization of Hierarchical Nanofibrous Fmoc-Phenylalanine-Valine Hydrogels for 3D Culture of Differentiated and Mesenchymal Stem Cells. Soft Matter 2021, 17, 57–67. [Google Scholar] [CrossRef]
- Hughes, M.; Birchall, L.S.; Zuberi, K.; Aitken, L.A.; Debnath, S.; Javid, N.; Ulijn, R.V. Differential Supramolecular Organisation of Fmoc-Dipeptides with Hydrophilic Terminal Amino Acid Residues by Biocatalytic Self-Assembly. Soft Matter 2012, 8, 11565. [Google Scholar] [CrossRef]
- Chakraborty, P.; Tang, Y.; Yamamoto, T.; Yao, Y.; Guterman, T.; Zilberzwige-Tal, S.; Adadi, N.; Ji, W.; Dvir, T.; Ramamoorthy, A.; et al. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator. Adv. Mater. 2020, 32, 1906043. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.; Lei, J.; Zhan, C.; Shimon, L.J.W.; Adler-Abramovich, L.; Wei, G.; Gazit, E. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano 2018, 12, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Jervis, P.J.; Silva, J.F.G.; Hilliou, L.; Moura, C.; Pereira, D.M.; Coutinho, P.J.G.; Martins, J.A.; Castanheira, E.M.S.; Ferreira, P.M.T. Supramolecular Ultra-Short Carboxybenzyl-Protected Dehydropeptide-Based Hydrogels for Drug Delivery. Mater. Sci. Eng. C 2021, 122, 111869. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-Y.; Hsu, S.-M.; Cheng, H.; Hsu, L.-H.; Lin, H.-C. The Effect of Fluorine on Supramolecular Hydrogelation of 4-Fluorobenzyl-Capped Diphenylalanine. New J. Chem. 2015, 39, 4240–4243. [Google Scholar] [CrossRef]
- Dadhwal, S.; Fairhall, J.M.; Goswami, S.K.; Hook, S.; Gamble, A.B. Alkene–Azide 1,3-Dipolar Cycloaddition as a Trigger for Ultrashort Peptide Hydrogel Dissolution. Chem. Asian J. 2019, 14, 1143–1150. [Google Scholar] [CrossRef]
- Dadhwal, S.; Fairhall, J.M.; Hook, S.; Gamble, A.B. Tetrafluoroaryl Azide as an N-Terminal Capping Group for Click-to-Dissolve Diphenylalanine Hydrogels. RSC Adv. 2020, 10, 9234–9244. [Google Scholar] [CrossRef]
- Sitsanidis, E.D.; Kasapidou, P.M.; Hiscock, J.R.; Gubala, V.; Castel, H.; Popoola, P.I.A.; Hall, A.J.; Edwards, A.A. Probing the Self-Assembly and Anti-Glioblastoma Efficacy of a Cinnamoyl-Capped Dipeptide Hydrogelator. Org. Biomol. Chem. 2022, 20, 7458–7466. [Google Scholar] [CrossRef]
- Martin, A.D.; Robinson, A.B.; Mason, A.F.; Wojciechowski, J.P.; Thordarson, P. Exceptionally Strong Hydrogels through Self-Assembly of an Indole-Capped Dipeptide. Chem. Commun. 2014, 50, 15541–15544. [Google Scholar] [CrossRef]
- Martin, A.D.; Wojciechowski, J.P.; Warren, H.; in het Panhuis, M.; Thordarson, P. Effect of Heterocyclic Capping Groups on the Self-Assembly of a Dipeptide Hydrogel. Soft Matter 2016, 12, 2700–2707. [Google Scholar] [CrossRef]
- Martin, A.D.; Robinson, A.B.; Thordarson, P. Biocompatible Small Peptide Super-Hydrogelators Bearing Carbazole Functionalities. J. Mater. Chem. B 2015, 3, 2277–2280. [Google Scholar] [CrossRef]
- Aldilla, V.R.; Nizalapur, S.; Martin, A.; Marjo, C.E.; Rich, A.; Yee, E.; Suwannakot, P.; Black, D.S.; Thordarson, P.; Kumar, N. Design, Synthesis, and Characterisation of Glyoxylamide-Based Short Peptides as Self-Assembled Gels. New J. Chem. 2017, 41, 13462–13471. [Google Scholar] [CrossRef]
- Li, X.; Kuang, Y.; Lin, H.; Gao, Y.; Shi, J.; Xu, B. Supramolecular Nanofibers and Hydrogels of Nucleopeptides. Angew. Chem. Int. Ed. 2011, 50, 9365–9369. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; McDonald, T.O.; Adams, D.J. Photodimerisation of a Coumarin-Dipeptide Gelator. Chem. Commun. 2015, 51, 12827–12830. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, Z.; Xu, Y.; Shi, J.; Lin, H.; Zhang, Y. Supramolecular Hydrogels Based on Short Peptides Linked with Conformational Switch. Org. Biomol. Chem. 2011, 9, 2149. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Tanida, T.; Yoshii, T.; Hamachi, I. Rational Molecular Design of Stimulus-Responsive Supramolecular Hydrogels Based on Dipeptides. Adv. Mater. 2011, 23, 2819–2822. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liang, G.; Ma, M.; Gao, Y.; Xu, B. Conjugates of Naphthalene and Dipeptides Produce Molecular Hydrogelators with High Efficiency of Hydrogelation and Superhelical Nanofibers. J. Mater. Chem. 2007, 17, 850–854. [Google Scholar] [CrossRef]
- Awhida, S.; Draper, E.R.; McDonald, T.O.; Adams, D.J. Probing Gelation Ability for a Library of Dipeptide Gelators. J. Colloid Interface Sci. 2015, 455, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, R.; Qi, W.; Wu, Z.; Su, R.; He, Z. Kinetically Controlled Self-Assembly of Redox-Active Ferrocene–Diphenylalanine: From Nanospheres to Nanofibers. Nanotechnology 2013, 24, 465603. [Google Scholar] [CrossRef] [PubMed]
- Hilliou, L. Structure–Elastic Properties Relationships in Gelling Carrageenans. Polymers 2021, 13, 4120. [Google Scholar] [CrossRef]
- Lalitha Sridhar, S.; Vernerey, F.J. Mechanics of Transiently Cross-Linked Nematic Networks. J. Mech. Phys. Solids 2020, 141, 104021. [Google Scholar] [CrossRef]
- Nolan, M.C.; Fuentes Caparrós, A.M.; Dietrich, B.; Barrow, M.; Cross, E.R.; Bleuel, M.; King, S.M.; Adams, D.J. Optimising Low Molecular Weight Hydrogels for Automated 3D Printing. Soft Matter 2017, 13, 8426–8432. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Raeburn, J.; Sutton, S.; Spiller, D.G.; Williams, J.; Sharp, J.S.; Griffiths, P.C.; Heenan, R.K.; King, S.M.; Paul, A.; et al. Tuneable Mechanical Properties in Low Molecular Weight Gels. Soft Matter 2011, 7, 9721. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Tiryaki, E.; Spuch, C.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; Coutinho, P.J.G.; Ferreira, P.M.T.; Salgueiriño, V.; Correa-Duarte, M.A.; et al. Tuning the Drug Multimodal Release through a Co-Assembly Strategy Based on Magnetic Gels. Nanoscale 2022, 14, 5488–5500. [Google Scholar] [CrossRef] [PubMed]
- Veloso, S.R.S.; Martins, J.A.; Hilliou, L.; Amorim, C.O.; Amaral, V.S.; Almeida, B.G.; Jervis, P.J.; Moreira, R.; Pereira, D.M.; Coutinho, P.J.G.; et al. Dehydropeptide-Based Plasmonic Magnetogels: A Supramolecular Composite Nanosystem for Multimodal Cancer Therapy. J. Mater. Chem. B 2020, 8, 45–64. [Google Scholar] [CrossRef]
- Vilaça, H.; Carvalho, A.; Castro, T.; Castanheira, E.M.S.; Hilliou, L.; Hamley, I.; Melle-Franco, M.; Ferreira, P.M.T.; Martins, J.A. Unveiling the Role of Capping Groups in Naphthalene N-Capped Dehydrodipeptide Hydrogels. Gels 2023, 9, 464. [Google Scholar] [CrossRef]
Gelator | Method | Media | pH | CGC (mM) | [Gel] (mM) | G′ (Pa) | G″ (Pa) | LVR (%) | γ (%) | Tm (°C) | Fibril (nm) | Highlights | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D-Phe | HC | PBS | - | 184 | 300 | - | - | - | - | - | - | - | - | [102] |
L-Phe | HC | PBS | - | 99 | 300 | - | - | - | - | - | - | - | - | [102] |
HC | Water | 6.45 | - | 303 | ~200,000 | ~45,000 | - | - | 323.6–326.6 | 437 | - | - | [104] | |
Fmoc-Phe | HC | PB | 7.4 | 2.58 | - | ~103 | ~102 | - | - | 38 | 4.54–7.24 | Tuneable Tm | - | [113,114] |
GdL | Water | 6.1 | 9.68 | 25.8 | ~104 | ~102 | 1 | 10 | - | - | - | - | [115] | |
GdL | Water | 6.6 | 7.74 | 25.8 | 50,199 | ~2000 | 0.1 | 0.2 | 55 | - | Stringed nanoparticles | - | [116] | |
SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 39 | 5 | - | - | - | 295 | - | - | [95,117] | |
Fmoc-Phe-DAP | NaCl + HC | Water | - | 20 | 33.7 | 383 | 59 | 1 | 1 | - | 500–1000 | Thixotropic fibrils and nanotubes | Drug delivery | [119] |
Fmoc-4-NO2-Phe | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 410 | 66 | - | - | - | 12 | - | - | [95] |
Fmoc-4-CN-Phe | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 140 | 17 | - | - | - | 25 | - | - | [95] |
Fmoc-4-F-Phe | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 102 | 9 | - | - | - | 26 | - | - | [95] |
Fmoc-4-NH2-Phe | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 527 | 61 | - | - | - | 11 | - | - | [95] |
Fmoc-4-CH3-Phe | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 280 | 53 | - | - | - | 21 | - | - | [95] |
Fmoc-3-F-Phe | GdL | Water | - | - | 7.5 | 3918 | 296 | - | - | - | 126 | - | - | [117] |
GdL | Water | - | - | 5–15 | 102–103 | 101–102 | - | - | - | 11–19 | Thixotropic | - | [118] | |
SE | Water/DMSO (98:2 v/v%) | - | - | 5 | 103–104 | ~104 | - | - | - | 22 | Thixotropic | - | [118] | |
Fmoc-3F-Phe-DAP | NaCl + HC | Water | - | 20 | 33.7 | 21,311 | 3973 | 0.1 | 1 | - | 20–30 | Thixotropic fibrils and tapes | Drug delivery | [119] |
Fmoc-F5-Phe | GdL | Water | - | - | 7.5 | 4786 | 449 | - | - | - | 13 | - | - | [117] |
GdL | Water | - | - | 5–15 | 102–103 | 101–102 | - | - | - | 24–16 | Thixotropic | - | [118] | |
SE | Water/DMSO (98:2 v/v%) | - | - | 5 | 103 | 102 | - | - | - | 15 | Thixotropic | - | [118] | |
Fmoc-F5-Phe-DAP | NaCl + HC | Water | - | 20 | 33.7 | 10,776 | 2273 | 1 | 1 | - | 10–20 | Thixotropic Twisted fibers and tapes | Drug delivery | [119] |
Fmoc-Tyr | SE | Water/DMSO (98:2 v/v%) | - | - | 4.9 | 506 | 59 | - | - | - | 13 | - | - | [95] |
GdL | Water | 5.2 | <0.1 | 21.7 | 104–105 | ~104 | 1 | 1 | 80 | - | Thermoreversible | - | [115] | |
HC | PB | 7.4 | 0.47 | 20 | ~3000 | ~800 | 1 | 1–10 | - | 20 | Flexible entangled fibers | Antimicrobial activity | [120] | |
Fmoc-Tyr(PO4) | HC | Water | 2.5 | - | 40 | ~1000 | ~100 | - | - | - | 20–25 | Bundles (50–100 nm) | - | [121] |
Enzyme | Water | 6 | - | 40 | ~5000 | ~2000 | - | - | - | 20–25 | Thermoreversible | - | [121] | |
Fmoc-Tyr(3NO2) | HC | PB | 5 | 2 | 15.6 | ~7000 | ~800 | - | - | - | - | No recovery | Antimicrobial activity | [122] |
HC | PB | 7 | 5.6 | 15.6 | ~1000 | ~500 | - | - | - | - | Thixotropic | Antimicrobial activity | [122] | |
HC | PB | 8 | 11.2 | 15.6 | ~1000 | ~300 | - | - | - | - | Thixotropic | Antimicrobial activity | [122] | |
Fmoc-Tyr /Fmoc-Tyr(Bzl) | SE | Water/DMSO (98:2 v/v%) | - | - | - | ~900 | ~300 | - | - | - | 10–50 & 50–80 | - | Photothermia Drug delivery | [123] |
Fmoc-Phe/Fmoc-Tyr(Bzl) | SE | Water/DMSO (98:2 v/v%) | - | - | - | ~900 | ~200 | - | - | - | 10–100 | - | Photothermia Drug delivery | [123] |
Fmoc-Trp | GdL | Water | 5.2 | 1.9 | 19 | ~104 | ~103 | 1 | 10 | 75 | - | - | - | [115] |
HC | PB | 7.4 | 0.03 | - | 100 | 10 | 0.1 | 1 | - | ~20 | - | Antibacterial | [120] | |
Fmoc-Met | GdL | Water | 5.2 | <0.13 | 27 | ~103 | ~102 | 1 | 10 | - | - | Syneresis | - | [115] |
HC | PB | 7.4 | 0.12 | - | 1000 | 100 | 0.1 | 1 | - | ~20 | - | Antibacterial | [120] | |
Fmoc-Gly | GdL | Water | 5.2 | 26.9 | 33.6 | ~102 | ~101 | 0.1 | 100 | - | - | - | - | [115] |
Fmoc-Ile | GdL | Water | 5.2 | 19.8 | 28.3 | ~102 | ~101 | 1 | 100 | - | - | - | - | [115] |
Fmoc-His | Metal | Tris-HNO3 | 9.1 | - | 10.6 | ~2000 | ~100 | 0.01 | 0.1 | - | ~20 | - | Antimicrobial activity | [124] |
Fmoc-Pro | Metal | Tris-HNO3 | 9.1 | - | 11.9 | ~300 | ~10 | 0.01 | 0.1 | - | ~20 | - | Antimicrobial activity | [124] |
Fmoc-Ala | Metal | Tris-HNO3 | 9.1 | - | 12.8 | ~1000 | ~100 | 0.01 | 0.1 | - | ~20 | - | Antimicrobial activity | [124] |
Fmoc-Leu | Metal | Tris-HNO3 | 9.1 | - | 11.3 | ~2000 | ~400 | 0.01 | 0.1 | - | ~20 | - | Antimicrobial activity | [124] |
Fmoc-Lys-Bct | US | PB | 7.4 | 5 | - | ~6000 | ~100 | - | - | 60 | - | Thixotropic | Antimicrobial activity | [125] |
Fmoc-Lys(Fmoc) | SE | Water/DMSO (99:1 v/v%) | 6 | 5 | - | ~5000 | ~300 | 1 | 1–10 | - | - | Thixotropic | - | [126] |
SE | Water/DMSO (99:1 v/v%) | 7.4 | 5 | - | ~500 | ~20 | 1 | 10 | - | - | Thixotropic | - | [126] | |
Fmoc-Dap(Fmoc) | SE | Water/DMSO (97:3 v/v%) | 4.9 | 5.5 | - | 100 | 10 | 10 | 10 | - | 150–250 | Thixotropic | Drug delivery | [127] |
SE | Water/DMSO (97:3 v/v%) | 7.4 | 18.2 | - | 10 | 1 | 1 | 10 | - | 250–300 | Thixotropic | Drug delivery | [127] | |
SE | Water/DMSO (97:3 v/v%) | 9.1 | 23.7 | - | 1 | 1 | 0.1 | 10 | - | 250–600 | Thixotropic | Drug delivery | [127] | |
1-NapAc-Phe | GdL | Water | - | - | 7.5 | 941 | 82 | - | - | - | 11 | - | - | [117] |
1-NapAc-3F-Phe | GdL | Water | - | - | 7.5 | 1548 | 118 | - | - | - | 20 | - | - | [117] |
1-NapAc-F5-Phe | GdL | Water | - | - | 7.5 | 2522 | 336 | - | - | - | 13 | - | - | [117] |
2-NapAc-Phe | GdL | Water | 5.7 | 15 | 30 | 4849 | ~100 | 0.1 | 0.26 | 45 | - | - | - | [116] |
2-Nap-Phe | GdL | Water | 5.9 | 19 | 27 | 7820 | ~300 | 0.1 | 0.56 | 48 | - | - | - | [116] |
Pyr-Phe | HC | PB | 7.4 | 0.85 | 118.3 | ~200 | ~60 | - | - | 66.4 | 30–55 | Thixotropic Helical fibers | Drug delivery | [128] |
Cin-Phe | GdL | Water | 4.6 | 33.9 | 33.9 | 2519 | ~100 | 1 | 0.85 | 41 | - | - | - | [116] |
Lauroyl-Phe | HC | Water | - | 43.2 | - | ~2000 | ~100 | 0.1 | 0.1–10 | - | - | Flat 2D sheets | - | [129] |
Bz(4-NO2)-Phe | HC | PBS | 6 | 20 | 20 | 2000 | 200 | 40 | 100 | ~40 | - | 5 | Antimicrobial | [130] |
BP-Phe | SE | CH4/H2O | - | 2 | 5 | 102–103 | 101–102 | 1 | 10–100 | - | - | 50 | Imprinting | [131] |
Myr-L-Phe | HC | PB | 7 | 6.7 | - | 102 | 102 | - | - | 37 | 56 | Thixotropic | Enzyme entrapment | [132] |
Myr-D-Phe | HC | PB | 7 | 6.7 | - | 102 | 10 | - | - | 37 | 58 | Thixotropic | Enzyme entrapment | [132] |
Gelator | Method | Media | pH | CGC (mM) | [Gel] (mM) | G′ (Pa) | G″ (Pa) | LVR (%) | γ (%) | Tm (°C) | Fibril (nm) | Highlights | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z-FF | SE | Water/HFIP | - | <11.2 | 22.4 | >100,000 | <10,000 | - | - | - | - | Thixotropic | - | [182] |
SE | Water/AA | - | - | 11.2 | <100,000 | ~1000 | - | - | - | - | - | - | [182] | |
D | Water | - | 3.1 | - | 2000 | ~150 | <10 | <30 | - | - | - | - | [129] | |
HC | Water | - | - | - | 300 | ~30 | <10 | >100 | - | - | - | - | [129] | |
CBz-FF | pHE | PBS | 7.2 | 0.7 | 22.4 | 500 | 50 | - | - | - | 1.7 | - | - | [190] |
C16-FF | D | Water | - | 1.8 | - | ~300 | ~70 | <1 | 10 | - | 20 [d] | Helical fibers | - | [129] |
HC | Water | - | - | - | ~300 | ~150 | <1 | - | - | - | - | [129] | ||
D | Water/salt | 11.7 | - | 9.1 | 2361 | 334 | >20 | ~80 | - | - | - | [61] | ||
C14-FF | D/Ca2+ | Water/salt | 11.7 | - | 9.6 | 3400 | 732 | <10 | ~20 | - | - | - | - | [61] |
Bz4F-FF | HC | Water | 7.89 | 33.5 | 44.8 | 5700 | ~1000 | >100- | - | - | 8 [d] | Tm dependence | Cell growth | [184] |
Az-FF | SE | Water/DMSO | 3.4 | 10.2 | 10.2 | 200 | ~30 | - | - | - | - | - | Drug delivery | [185] |
AzF4-FF | SE | Water/DMSO | 7.5 | 1.8 | 8.9 | 1500 | ~200 | - | - | - | - | - | Drug delivery | [185] |
Cin-FF | HC | PBS | 7.4 | 4.5 | 4.5 | 226 | - | - | - | ~45 | Ribbon | Helical fibers | Cell growth | [187] |
In-FF | pHE GdL | Water | - | 8.5 | 21.2 | 300,000 | ~5000 | - | - | - | 100–400 [t] | - | - | [188] |
pHE GdL | Water | 4–5 | 6.4 | 12.8 | 100,000 | 10000 | <1 | >70 | - | - | Fiber dd | - | [189] | |
NMeI-FF | pHE GdL | Water | 4–5 | 12.4 | 12.4 | 200,000 | 20000 | <1 | ~9 | - | - | Fiber dd | - | [189] |
Bim-FF | pHE GdL | Water | 4–5 | 4.1 | 12.3 | 30,000 | 2000 | <3 | ~4 | - | - | Fiber dd | - | [189] |
B-FF | pHE GdL | Water | 4–5 | 2.1 | 12.7 | 50,000 | 4000 | <10 | ~70 | - | - | Fiber dd | - | [189] |
5H-GL-FF | pHE GdL | Water | - | 2 | 4 | ~1000 | - | - | - | - | - | - | - | [191] |
Pyr-YL | pHE | Water | ~7.3 | - | 10 | ~190 | ~45 | 0.1–1 | - | - | 40–200 | Stable ν 0.1–5.0 | - | [176] |
ThNap-FF | D/Ca2+ | Water/salt | 11.7 | - | 10 | 54,944 | 8786 | <1 | >10 | - | - | - | - | [61] |
SE | Water:DMSO (80:20 v/v) | ~4.3 | - | 4 | ~10,000 | ~1000 | >10 | - | - | - | Annealing | Molding | [13] | |
a-FF | pHE | Water | 5 | 20.5 | 40.9 | 8090 | - | - | 1 | - | 16 [w] | - | - | [192] |
g-FF | pHE | Water | 5 | 19.9 | 39.7 | 12,613 | - | - | 0.8 | - | 15 [w] | - | - | [192] |
t-FF | pHE | Water | 5 | 20.9 | 41.8 | 6345 | - | - | 1.2 | - | 9 [w] | - | - | [192] |
c-FF | pHE | Water | 5 | 21.6 | 43.2 | 26 | - | - | 0.6 | - | 10 [w] | - | - | [192] |
Cou-FF | pHE GdL | Water | - | - | 9.7 | 82,000 | 10,000 | - | 1 | - | 42 [d] | - | - | [193] |
Fc-FF | D | Water/MeOH (90:10 v/v) | - | - | 5.7 | ~1000 | ~40 | - | - | - | 40–90 [d] | - | -Redox | [198] |
BPmoc-FF | D | MES buffer | - | 1.0 | - | - | - | - | - | 43 | 10–30 [d] | Bundled tape-like | Stim. Resp | [195] |
NPmoc-FF | D | MES buffer | - | >0.35 | - | - | - | - | - | - | - | - | Stim. Resp | [195] |
Bhcmoc-FF | D | MES buffer | - | >0.40 | - | - | - | - | - | - | - | - | Stim. Resp | [195] |
Nvoc-FF | SE | Water | 3.8 | - | 9 | 40,000 | - | <10 | - | - | - | - | Stim. Resp | [45] |
Nap-GG | D | Water | ~2 | 3.2 | 15.8 | ~500 | ~40 | - | - | 46 | 30 [w] | - | - | [196] |
Nap-Ga | D | Water | ~2 | 2.1 | 15.1 | ~5000 | ~450 | - | - | 51 | 30, 60 [p] | Left helical | - | [196] |
Nap-GA | D | Water | ~2 | 2.1 | 15.1 | ~5000 | ~450 | - | - | 52 | 30, 60 [p] | Right helical | - | [196] |
Nap-GS | D | Water | ~2 | 2.3 | 14.4 | ~5000 | ~450 | - | - | 50 | 50 [w] | - | - | [196] |
NapBr-VF | pHE GdL SE | Water Water/DMSO (95/5) | 10–12 | - | 9.5 9.5 | 27,250 13,710 | 2610 1870 | - | - | - | - | - | - | [197] |
NaAc-VF | pHE GdL SE | Water Water/DMSO (95/5) | 10–12 | - | 11.5 11.5 | 3610 455 | 495 510 | - | - | - | - | - | - | [197] |
Fen-VF | pHE GdL SE | Water Water/DMSO (95/5) | 10–12 | - | 10 10 | 24,250 2460 | 2530 270 | - | - | - | - | - | - | [197] |
Pyr-VV | pHE GdL SE | Water Water/DMSO (95/5) | 10–12 | - | 10.1 10.1 | 25,010 14,250 | 4760 2640 | - | - | - | - | - | - | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veloso, S.R.S.; Rosa, M.; Diaferia, C.; Fernandes, C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024, 10, 507. https://doi.org/10.3390/gels10080507
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels. 2024; 10(8):507. https://doi.org/10.3390/gels10080507
Chicago/Turabian StyleVeloso, Sérgio R. S., Mariangela Rosa, Carlo Diaferia, and Célio Fernandes. 2024. "A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels" Gels 10, no. 8: 507. https://doi.org/10.3390/gels10080507
APA StyleVeloso, S. R. S., Rosa, M., Diaferia, C., & Fernandes, C. (2024). A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels, 10(8), 507. https://doi.org/10.3390/gels10080507