Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring
Abstract
:1. Introduction
2. Results and Discussion
2.1. PMMA Microspheres and PMMA Photonic Crystals
2.2. Flexible NIPAM–AM Hydrogel with Graphene
2.3. The Photoelectric Dual-Mode Sensor
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. The Preparation of PMMA Microspheres
4.3. Preparation of PMMA Photonic Crystals
4.4. Preparation of Fish Collagen
4.5. Preparation of NIPAM-AM Hydrogel with Graphene
4.6. Preparation of Photoelectric Dual-Mode Sensor
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Tippets, C.A.; Donev, E.U.; Lopez, R. Structural colors: From natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 758–775. [Google Scholar] [CrossRef] [PubMed]
- Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D.L.; Buehler, M.J.; Ling, S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem. Rev. 2019, 119, 12279–12336. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.G.; Stoddard, M.C. Synchronization of speed, sound and iridescent color in a hummingbird aerial courtship dive. Nat. Commun. 2018, 9, 5260. [Google Scholar] [CrossRef] [PubMed]
- Asher, S.A.; Peteu, S.F.; Reese, C.E.; Lin, M.; Finegold, D. Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal. Bioanal. Chem. 2002, 373, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Naydenova, I.; Fernando, D.C.V.; Blyth, J.; Lowe, C.R. Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chem. Rev. 2014, 114, 10654–10696. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Y.; Shang, L.; Wang, J.; Xie, Z.; Gu, Z. Microfluidic Synthesis of Barcode Particles for Multiplex Assays. Small 2015, 11, 151–174. [Google Scholar] [CrossRef]
- Aravindakshan, N.; Eftekhari, E.; Tan, S.H.; Li, X.; St John, J.; Nguyen, N.T.; Zhao, H.; Zhao, D.; Li, Q. Ensembles of Photonic Beads: Optical Properties and Enhanced Light—Matter Interactions. Adv. Opt. Mater. 2020, 8, 1901537. [Google Scholar] [CrossRef]
- Ding, Q.; Kang, Y.; Li, W.; Sun, G.; Liu, H.; Li, M.; Ye, Z.; Zhou, M.; Zhou, J.; Yang, S. Bioinspired Brochosomes as Broadband and Omnidirectional Surface-Enhanced Raman Scattering Substrates. J. Phys. Chem. Lett. 2019, 10, 6484–6491. [Google Scholar] [CrossRef]
- Wang, J.; Sultan, U.; Goerlitzer, E.S.A.; Mbah, C.F.; Engel, M.; Vogel, N. Structural Color of Colloidal Clusters as a Tool to Investigate Structure and Dynamics. Adv. Funct. Mater. 2019, 30, 1907730. [Google Scholar] [CrossRef]
- Zheng, W.; Meng, Z.; Murtaza, G.; Zhang, N.; Wu, L.; Qiu, L. Designing and Tailoring Optical Properties: Theory and Simulation of Photonic Band Gaps in Photonic Materials. Photonics 2024, 11, 109. [Google Scholar] [CrossRef]
- Zheng, W.; Tan, Z.; Fan, J.; Meng, Z.; Zhang, M.; Huang, B.; Jia, X.; Ma, F.; Zhu, W.; Wang, S.; et al. A mechanochromic optical sensor based on Bragg reflection for real-time monitoring of large-range sharp pressure fluctuations in aqueous fluids. J. Mater. Chem. C 2023, 11, 15419–15425. [Google Scholar] [CrossRef]
- Gao, L.; Kou, D.; Lin, R.; Ma, W.; Zhang, S. Visual Recognition of Volatile Organic Compounds by Photonic Nose Integrated with Multiple Metal-Organic Frameworks. Small 2024, 20, 2308641. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tian, Z.; Ma, D.; Qi, C.; Yang, D.; Huang, S. Smart colloidal photonic crystal sensors. Adv. Colloid Interface Sci. 2024, 324, 103089. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Fu, X.; Murtaza, G.; Zhang, N.; Meng, Z.; Wu, L.; Qiu, L. A PDMS-encapsulated cylindrical non-closed-packed photonic crystals composite with Bragg-enhanced Fresnel reflectance for optical gain and spectral selection. J. Colloid Interface Sci. 2024, 666, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Park, S.Y. Sweat-Based Noninvasive Skin-Patchable Urea Biosensors with Photonic Interpenetrating Polymer Network Films Integrated into PDMS Chips. ACS Sens. 2020, 5, 3988–3998. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Cao, X.; Wang, Y.; Yao, B.; Zhao, Y.; Cheng, J.; Wu, S.; Zhang, S.; He, X. Photonic Vitrimer Elastomer with Self-Healing, High Toughness, Mechanochromism, and Excellent Durability based on Dynamic Covalent Bond. Adv. Funct. Mater. 2021, 31, 2009017. [Google Scholar] [CrossRef]
- Tan, H.; Lyu, Q.; Xie, Z.; Li, M.; Wang, K.; Wang, K.; Xiong, B.; Zhang, L.; Zhu, J. Metallosupramolecular Photonic Elastomers with Self-Healing Capability and Angle-Independent Color. Adv. Mater. 2019, 31, e1805496. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Hisano, K.; Zhu, M.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible Multifunctional Sensors for Wearable and Robotic Applications. Adv. Mater. Technol. 2019, 4, 1800626. [Google Scholar] [CrossRef]
- Han, P.; He, X.; Zhang, Y.; Zhou, H.; Liu, M.; Wu, N.; Jiang, J.; Wei, Y.; Yao, X.; Zhou, J.; et al. Cascade-Microphase-Separation-Induced Hierarchical Photonic Structures in Supramolecular Organogel for Deformation-Insensitive Structural Colors. Adv. Opt. Mater. 2019, 7, 1801749. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Wang, W.; Ju, X.-J.; Liu, Z.; Pan, D.-W.; Xie, R.; Chu, L.-Y. A thermo-responsive hydrogel for body temperature-induced spontaneous information decryption and self-encryption. Chem. Commun. 2024, 60, 7156–7159. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Santhamoorthy, M.; Phan, T.T.; Kim, S.-C. pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels 2024, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xue, R.; Zhang, Q.; Yang, S.; Liu, P.; Chen, L.; Wang, K.; Zhang, X.; Wei, Y. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 81, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Şarkaya, K.; Yildirim, M.; Alli, A. One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. J. Appl. Polym. Sci. 2021, 138, 50527. [Google Scholar] [CrossRef]
- Tang, X.; Sun, A.; Chu, C.; Wang, C.; Liu, Z.; Guo, J.; Xu, G. Highly sensitive multiresponsive photonic hydrogels based on a crosslinked Acrylamide-N-isopropylacrylamide (AM-NIPAM) co-polymer containing Fe3O4@C crystalline colloidal arrays. Sens. Actuators B-Chem. 2016, 236, 399–407. [Google Scholar] [CrossRef]
- Chu, C.; Wu, H.; Sun, A.; Tang, X.; Yan, Y.; Shao, G.; Li, Z.; Guo, J.; Xu, G. Highly Stable Multiresponsive Photonic Hydrogels Based on a Crosslinked Acrylamide-N-Isopropylacrylamide co-Polymer. Integr. Ferroelectr. 2019, 200, 49–58. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, W.; Lo, C.-Y.; Zhao, Y.; He, X.; Zhang, G.; Wu, S.; Ju, B.; Zhang, S. Interactively Full-Color Changeable Electronic Fiber Sensor with High Stretchability and Rapid Response. Adv. Funct. Mater. 2020, 30, 2000356. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Shi, Z.; Tan, D.; Yang, X.; Xiong, L.; Li, G.; Lei, Y.; Xue, L. Fast Self-Assembly of Photonic Crystal Hydrogel for Wearable Strain and Temperature Sensor. Small Methods 2022, 6, 2200461. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Zhang, Y.; Cai, Z.; Liu, R.; Xu, X.; Li, R.; Wang, J.-J.; Yang, D.a. Three-dimensional/two-dimensional photonic crystal hydrogels for biosensing. J. Mater. Chem. C 2021, 9, 5840–5857. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, B.; Yang, D.; Ma, D.; Huang, S. Precisely sensing hydrofluoric acid by photonic crystal hydrogels. J. Colloid Interface Sci. 2023, 634, 314–322. [Google Scholar] [CrossRef]
- Chen, G.; Ma, F.; Li, J.; Yang, P.; Wang, Y.; Li, Z.; Meng, Y. Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. Int. J. Biol. Macromol. 2024, 268, 131735. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; You, X.; Deng, T.; Li, M.; Liu, Y.; Xu, M.; Nie, Y.; Xu, S.-M.; Shen, B. Cartilage-Inspired, High-Strength, and Heat-Tolerant Lubricating Hydrogels by Macrophase Separation. Biomacromolecules 2024, 25, 3554–3565. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Pallier, A.; Sun, J.; Rudiuk, S.; Baigl, D.; Piel, M.; Marie, E.; Tribet, C. Non-monotonous variation of the LCST of light-responsive, amphiphilic poly(NIPAM) derivatives. Soft Matter 2012, 8, 8446–8455. [Google Scholar] [CrossRef]
- Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh Conductive Graphene Paper Based on Ball-Milling Exfoliated Graphene. Adv. Funct. Mater. 2017, 27, 1700240. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, G.; Xia, Y.; Li, P.; Shi, S.; Wang, B.; Gao, W.; Liu, Y.; Xu, Z.; Gao, C. Highly conductive graphene fiber textile for electromagnetic interference shielding. Carbon 2024, 222, 118996. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.H.; Kim, K.N.; Oh, H.; Myung, S.; Kim, D.H. Highly conductive, conformable ionic laser-induced graphene electrodes for flexible iontronic devices. Sci. Rep. 2024, 14, 4599. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Murtaza, G.; Zhang, N.; Wu, L.; Meng, Z.; Qiu, L. Bioderived Composite Hydrogel Sensor: Combining Superstretchability, Moisture Retention, and Temperature Resistance for Strain and Temperature Visualization. ACS Appl. Polym. Mater. 2024, 6, 3446–3455. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, N.; Murtaza, G.; Meng, Z.; Wu, L.; Qiu, L. Naked-Eye Visual Thermometer Based on Glycerol─Nonclose-Packed Photonic Crystals for Real-Time Temperature Sensing and Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 13041–13051. [Google Scholar] [CrossRef]
- Li, C.; Xue, Q.; Ji, Z.; Li, Y.; Zhang, H.; Li, D. Construction of photonic crystals with thermally adjustable pseudo-gaps. Soft Matter 2020, 16, 3063–3068. [Google Scholar] [CrossRef]
- Shen, H.; Lin, Q.; Tang, H.; Tian, Y.; Zhang, X. Fabrication of Temperature- and Alcohol-Responsive Photonic Crystal Hydrogel and Its Application for Sustained Drug Release. Langmuir 2022, 38, 3785–3794. [Google Scholar] [CrossRef]
- Ke, A.; Li, C.; Dong, B.; Zhang, X. Biomimetic photonic crystal double-network hydrogel for visual and electrical dual signal bluetooth-enabled wearable sensor. J. Mater. Chem. C 2024, 12, 7260–7269. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Wang, J.; Mondele Mbola, N.; Meng, Z.; Wang, X.; Xue, M. A biocompatible, self-adhesive, and stretchable photonic crystal sensor for underwater motion detection. J. Mater. Chem. C 2022, 10, 9025–9034. [Google Scholar] [CrossRef]
- Yan, D.; Lu, W.; Qiu, L.; Meng, Z.; Qiao, Y. Thermal and stress tension dual-responsive photonic crystal nanocomposite hydrogels. RSC Adv. 2019, 9, 21202–21205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; He, Y.; He, Y.; Hou, C. Mechanochromic photonic fibers composed of strain responsive colloidal crystals and spandex yarns. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 671, 131689. [Google Scholar] [CrossRef]
- Rusen, E.; Diacon, A.; Mocanu, A. Photonic crystals obtained by soap-free emulsion terpolymerization. Open Chem. 2014, 12, 126–130. [Google Scholar] [CrossRef]
Cite | Δλ/nm | Electrical Signal | Stretchability | Water Retention Characteristics | Freeze Characteristics | Cycling Times |
---|---|---|---|---|---|---|
[37] | T: 45 nm S: 150 nm | × | 1846.29% | √ | √ | T: 10 S: 10 |
[38] | T: 202 nm S: 154 nm | × | 74.29% | √ | √ | T: 20 S: 30 |
[15] | T: × S: 195 nm | × | × | √ | √ | T: × S: 60 |
[39] | T: 10 nm S: × | × | × | × | × | T: 20 S: × |
[40] | T: 56 nm S: × | × | × | × | × | T: × S: × |
[41] | T: × S: 271 nm | √ | 50% | × | × | T: × S: 3000 |
[42] | T: × S: 198 nm | √ | 1050% | × | × | T: × S: 104 |
[43] | T: × S: × | × | × | × | × | T: 7 S: × |
[44] | T: × S: 127 nm | × | 60% | × | × | T: × S: × |
This work | T: 48 nm S: 131 nm | √ | 253% | √ | √ | T: 20 S: 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Wang, Z.; Zhang, M.; Niu, Y.; Wu, Y.; Guo, P.; Zhang, N.; Meng, Z.; Murtaza, G.; Qiu, L. Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring. Gels 2024, 10, 506. https://doi.org/10.3390/gels10080506
Zheng W, Wang Z, Zhang M, Niu Y, Wu Y, Guo P, Zhang N, Meng Z, Murtaza G, Qiu L. Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring. Gels. 2024; 10(8):506. https://doi.org/10.3390/gels10080506
Chicago/Turabian StyleZheng, Wenxiang, Zhibin Wang, Mengnan Zhang, Yanxin Niu, Yuchuan Wu, Pengxin Guo, Niu Zhang, Zihui Meng, Ghulam Murtaza, and Lili Qiu. 2024. "Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring" Gels 10, no. 8: 506. https://doi.org/10.3390/gels10080506
APA StyleZheng, W., Wang, Z., Zhang, M., Niu, Y., Wu, Y., Guo, P., Zhang, N., Meng, Z., Murtaza, G., & Qiu, L. (2024). Bio-Inspired Photoelectric Dual-Mode Sensor Based on Photonic Crystals for Human Motion Sensing and Monitoring. Gels, 10(8), 506. https://doi.org/10.3390/gels10080506