Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogel Swelling Kinetics and Equilibrium
2.2. Finite Element Modeling
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Hydrogels
4.3. Determination of Hydrogel Swelling
4.4. Finite Element Simulations
4.4.1. Kinematics
4.4.2. Cationic Behavior
4.4.3. Material Model
4.4.4. Finite Element Model
4.4.5. Parameter Estimation Procedure
Author Contributions
Funding
Conflicts of Interest
References
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 2012, 37, 1678–1719. [Google Scholar] [CrossRef]
- Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart hydrogels in tissue engineering and regenerative medicine. Materials 2019, 12, 3323. [Google Scholar] [CrossRef] [Green Version]
- Tierney, S.; Falch, B.M.H.; Hjelme, D.R.; Stokke, B.T. Determination of glucose levels ssing a functionalized hydrogel–optical fiber biosensor: Toward Continuous monitoring of blood glucose in vivo. Anal. Chem. 2009, 81, 3630–3636. [Google Scholar] [PubMed]
- Liu, J. Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 2011, 7, 6757–6767. [Google Scholar] [CrossRef] [Green Version]
- Beebe, D.J.; Moore, J.S.; Bauer, J.M.; Yu, Q.; Liu, R.H.; Devadoss, C.; Jo, B.H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 2000, 404, 588–590. [Google Scholar] [CrossRef]
- Chan, G.; Mooney, D.J. New materials for tissue engineering: Towards greater control over the biological response. Trends Biotechnol. 2008, 26, 382–392. [Google Scholar] [CrossRef]
- Bysell, H.; Malmsten, M. Visualizing the interaction between poly-L-lysine and poly(acrylic acid) microgels using microscopy techniques: Effect of electrostatics and peptide size. Langmuir 2006, 22, 5476–5484. [Google Scholar] [CrossRef]
- Li, J.; Mo, L.; Lu, C.H.; Fu, T.; Yang, H.H.; Tan, W. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 2016, 45, 1410–1431. [Google Scholar] [CrossRef] [Green Version]
- Tierney, S.; Stokke, B.T. Development of an oligonucleotide functionalized hydrogel integrated on a high resolution interferometric readout platform as a label-free macromolecule sensing device. Biomacromolecules 2009, 10, 1619–1626. [Google Scholar] [CrossRef]
- Hooper, H.H.; Baker, J.P.; Blanch, H.W.; Prausnitz, J.M. Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules 1990, 23, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.P.; Hong, L.H.; Blanch, H.W.; Prausnitz, J.M. Effect of Initial Total Monomer Concentration on the Swelling Behavior of Cationic Acrylamide-Based Hydrogels. Macromolecules 1994, 27, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Am Ende, M.T.; Hariharan, D.; Peppas, N.A. Factors influencing drug and protein transport and release from ionic hydrogels. React. Polym. 1995, 25, 127–137. [Google Scholar] [CrossRef]
- Caglar, A.; Kazıcı, H.Ç.; Alpaslan, D.; Yılmaz, Y.; Kivrak, H.; Aktas, N. 3-Acrylamidopropyl- trimethylammoniumchloride cationic hydrogel modified graphite electrode and its superior sensitivity to hydrogen peroxide. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 736–745. [Google Scholar] [CrossRef]
- Tierney, S.; Volden, S.; Torger, B. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform. Biosens. Bioelectron. 2009, 24, 2034–2039. [Google Scholar] [CrossRef]
- Marcombe, R.; Cai, S.; Hong, W.; Zhao, X.; Lapusta, Y.; Suo, Z. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 2010, 6, 784–793. [Google Scholar] [CrossRef]
- Prot, V.; Sveinsson, H.M.; Gawel, K.; Gao, M.; Skallerud, B.; Stokke, B.T. Swelling of a hemi-ellipsoidal ionic hydrogel for determination of material properties of deposited thin polymer films: An inverse finite element approach. Soft Matter 2013, 9, 5815–5827. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.K.; Huang, R. Swell-induced surface instability of confined hydrogel layers on substrates. J. Mech. Phys. Solids 2010, 58, 1582–1598. [Google Scholar] [CrossRef] [Green Version]
- Drozdov, A.D.; Papadimitriou, A.A.; Liely, J.H.M.; Sanporean, C.G. Constitutive equations for the kinetics of swelling of hydrogels. Mech. Mater. 2016, 102, 61–73. [Google Scholar] [CrossRef]
- Hong, W.; Zhao, X.; Zhou, J.; Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 2008, 56, 1779–1793. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Suo, Z.; Jiang, H. A finite element method for transient analysis of concurrent large deformation and mass transport in gels. J. Appl. Phys. 2009, 105, 93522. [Google Scholar] [CrossRef]
- Toh, W.; Liu, Z.; Ng, T.Y.; Hong, W. Inhomogeneous Large Deformation Kinetics of Polymeric Gels. Int. J. Appl. Mech. 2013, 05, 1350001. [Google Scholar] [CrossRef]
- Chester, S.A.; Anand, L. A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels. J. Mech. Phys. Solids 2011, 59, 1978–2006. [Google Scholar] [CrossRef]
- Bouklas, N.; Landis, C.M.; Huang, R. A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J. Mech. Phys. Solids 2015, 79, 21–43. [Google Scholar] [CrossRef]
- Ilseng, A.; Prot, V.; Skallerud, B.H.; Stokke, B.T. Buckling initiation in layered hydrogels during transient swelling. J. Mech. Phys. Solids 2019, 128, 219–238. [Google Scholar] [CrossRef]
- Katchalsky, A.; Michaeli, I. Polyelectrolyte gels in salt solutions. J. Polym. Sci. 1955, 15, 69–86. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ishizuki, K.; Kawauchi, S.; Satoh, M.; Komiyama, J. Ion-specific swelling and deswelling behaviors of ampholytic polymer gels. Macromolecules 1996, 29, 8391–8397. [Google Scholar] [CrossRef]
- Wada, S.; Satoh, M.; Komiyama, J. Swelling behavior of ampholytic gels prepared by γ-irradiation. Macromol. Rapid Commun. 1997, 18, 917–920. [Google Scholar] [CrossRef]
- Silberberg-Bouhnik, M.; Ramon, O.; Ladyzhinski, I.; Mizrahi, S.; Cohen, Y. Osmotic deswelling of weakly charged poly(acrylic acid) solutions and gels. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 2269–2279. [Google Scholar] [CrossRef]
- Rička, J.; Tanaka, T. Swelling of Ionic Gels: Quantitative Performance of the Donnan Theory. Macromolecules 1984, 17, 2916–2921. [Google Scholar] [CrossRef]
- Schröder, U.P.; Oppermann, W. Properties of polyelectrolyte gels. In Physical Properties of Polymeric Gels; John Wiley & Sons: Chichester, UK, 1996; pp. 19–38. [Google Scholar]
- Livney, Y.D.; Portnaya, I.; Faupin, B.; Ramon, O.; Cohen, Y.; Cogan, U.; Mizrahi, S. Interactions between inorganic salts and polyacrylamide in aqueous solutions and gels. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 508–519. [Google Scholar] [CrossRef]
- Muta, H.; Miwa, M.; Satoh, M. Ion-specific swelling of hydrophilic polymer gels. Polymer 2001, 42, 6313–6316. [Google Scholar] [CrossRef]
- Duignan, T.T.; Parsons, D.F.; Ninham, B.W. Collins’s rule, Hofmeister effects and ionic dispersion interactions. Chem. Phys. Lett. 2014, 608, 55–59. [Google Scholar] [CrossRef]
- Moghaddam, S.Z.; Thormann, E. The Hofmeister series: Specific ion effects in aqueous polymer solutions. J. Colloid Interface Sci. 2019, 555, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.D. Charge density-dependent strength of hydration and biological structure. Biophys. J. 1997, 72, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Collins, K.D. Ions from the Hofmeister series and osmolytes: Effects on proteins in solution and in the crystallization process. Methods 2004, 34, 300–311. [Google Scholar] [CrossRef]
- Porter, T.L.; Stewart, R.; Reed, J.; Morton, K. Models of hydrogel swelling with applications to hydration sensing. Sensors 2007, 7, 1980–1991. [Google Scholar] [CrossRef] [Green Version]
- Tierney, S.; Hjelme, D.R.; Stokke, B.T. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers. Anal. Chem. 2008, 80, 5086–5093. [Google Scholar] [CrossRef]
- Gao, M.; Gawel, K.; Stokke, B.T. Toehold of dsDNA exchange affects the hydrogel swelling kinetics of a polymer-dsDNA hybrid hydrogel. Soft Matter 2011, 7, 1741–1746. [Google Scholar] [CrossRef]
- Jonasova, E.P.; Bjorkoy, A.; Stokke, B.T. Toehold Length of Target ssDNA Affects Its Reaction-Diffusion Behavior in DNA-Responsive DNA-co-Acrylamide Hydrogels. Biomacromolecules 2020, 21, 1687–1699. [Google Scholar] [CrossRef]
- Gao, M.; Gawel, K.; Stokke, B.T. Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur. Polym. J. 2014, 53, 65–74. [Google Scholar] [CrossRef]
- Tanaka, T.; Fillmore, D.J. Kinetics of swelling of gels. J. Chem. Phys. 1979, 70, 1214–1218. [Google Scholar] [CrossRef]
- Suarez, I.J.; Fernandez-Nieves, A.; Marquez, M. Swelling Kinetics of Poly( N-isopropylacrylamide) Minigels. J. Phys. Chem. B 2006, 110, 25729–25733. [Google Scholar] [PubMed]
- Yu, Y.; Landis, C.M.; Huang, R. Salt-Induced Swelling and Volume Phase Transition of Polyelectrolyte Gels. J. Appl. Mech. Trans. ASME 2017, 84. [Google Scholar] [CrossRef]
- von Hippel, P.H.; Peticolas, V.; Schack, L.; Karlson, L. Model Studies on the Effects of Neutral Salts on the Conformational Stability of Biological Macromolecules. I. Ion Binding to Polyacrylamide and Polystyrene Columns. Biochemistry 1973, 12, 1256–1264. [Google Scholar] [CrossRef]
- Collins, K.D. Sticky ions in biological systems. Proc. Natl. Acad. Sci. USA 1995, 92, 5553–5557. [Google Scholar]
- Collins, K.D.; Washabaugh, M.W. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 1985, 18, 323–422. [Google Scholar] [PubMed]
- von Hippel, P.H.; Chleich, T. The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In Structure and Stability Of Biological Macromolecules; Marcel Dekker Inc.: New York, NY, USA, 1969; pp. 417–574. [Google Scholar]
- Smith, D.E.; Dang, L.X. Computer simulations of NaCl association in polarizable water. J. Chem. Phys. 1994, 100, 3757–3766. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.; Cremer, P. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Treloar, L.R.G. The Physics of Rubber Elasticity; Clarendon Press, Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Zhong, M.J.; Wang, R.; Kawamoto, K.; Olsen, B.D.; Johnson, J.A. Quantifying the impact of molecular defects on polymer network elasticity. Science 2016, 353, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Shibayama, M. Universality and specificity of polymer gels viewed by scattering methods. Bull. Chem. Soc. Jpn. 2006, 79, 1799–1819. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, F.; Hellwig, J.; von Klitzing, R.; Seiffert, S. Macroscopic and Microscopic Elasticity of Heterogeneous Polymer Gels. ACS Macro Lett. 2015, 4, 698–703. [Google Scholar] [CrossRef]
- Gu, Y.W.; Zhao, J.L.; Johnson, J.A. Polymer Networks: From Plastics and Gels to Porous Frameworks. Angew. Chem. Int. Ed. 2019, 59, 5022–5049. [Google Scholar] [CrossRef]
- Magalhaes, A.S.G.; Almeida Neto, M.P.; Bezerra, M.N.; Ricardo, N.M.P.S.; Feitosa, J.P.A. Application of FTIR in the determination of acrylate content in poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim. Nova 2012, 35, 1464–1467. [Google Scholar] [CrossRef]
- François, J.; Sarazin, D.; Schwartz, T.; Weill, G. Polyacrylamide in water: Molecular weight dependence of 〈R2〉 and [η] and the problem of the excluded volume exponent. Polymer 1979, 20, 969–975. [Google Scholar] [CrossRef]
- Rumble, J.R. (Ed.) CRC Handbook of Chemistry and Physics, 101th ed.; Internet Version 2020; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2020. [Google Scholar]
- Gao, M.; Toita, S.; Sawada, S.I.; Akiyoshi, K.; Stokke, B.T. Cyclodextrin triggered dimensional changes of polysaccharide nanogel integrated hydrogels at nanometer resolution. Soft Matter 2013, 9, 5178–5185. [Google Scholar] [CrossRef] [Green Version]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA; London, UK, 1953. [Google Scholar]
- Kang, M.K.; Huang, R. A Variational Approach and Finite Element Implementation for Swelling of Polymeric Hydrogels Under Geometric Constraints. J. Appl. Mech. 2010, 77, 61004. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.; Zhao, X.; Suo, Z. Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 2010, 58, 558–577. [Google Scholar] [CrossRef]
- Abaqus 6.14-4; Dassault Systèmes: Vélizy-Villacoublay, France, 2014.
f | ||||||
---|---|---|---|---|---|---|
AAm NaCl | 0.209 | 0 mol% | 0.202 | −0.079 | 0.174 | −0.053 |
AAm--ATMA NaCl | 0.051 | 3 mol% | 0.202 | −0.079 | 0.174 | −0.053 |
AAm NaBr | 0.195 | 0 mol% | 0.273 | −0.113 | 0.261 | −0.081 |
AAm--ATMA NaBr | 0.032 | 3 mol% | 0.273 | −0.113 | 0.261 | −0.081 |
f | ||||||
---|---|---|---|---|---|---|
AAm NaCl | 0.01 | 0mol% | 0.327 | −0.017 | 0.396 | −0.068 |
AAm--ATMA NaCl | 0.01 | 1.07 mol% | 0.327 | −0.017 | 0.396 | −0.068 |
AAm NaBr | 0.01 | 0 mol% | 0.370 | −0.025 | 0.355 | −0.093 |
AAm--ATMA NaBr | 0.01 | 1.17 mol% | 0.370 | −0.025 | 0.355 | −0.093 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žuržul, N.; Ilseng, A.; Prot, V.E.; Sveinsson, H.M.; Skallerud, B.H.; Stokke, B.T. Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling. Gels 2020, 6, 31. https://doi.org/10.3390/gels6030031
Žuržul N, Ilseng A, Prot VE, Sveinsson HM, Skallerud BH, Stokke BT. Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling. Gels. 2020; 6(3):31. https://doi.org/10.3390/gels6030031
Chicago/Turabian StyleŽuržul, Nataša, Arne Ilseng, Victorien E. Prot, Hrafn M. Sveinsson, Bjørn H. Skallerud, and Bjørn T. Stokke. 2020. "Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling" Gels 6, no. 3: 31. https://doi.org/10.3390/gels6030031
APA StyleŽuržul, N., Ilseng, A., Prot, V. E., Sveinsson, H. M., Skallerud, B. H., & Stokke, B. T. (2020). Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling. Gels, 6(3), 31. https://doi.org/10.3390/gels6030031