Synthesis and 3D Printing of Conducting Alginate–Polypyrrole Ionomers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of PPy–Alg Composite Synthesis
2.2. Characterization of Composite Materials
2.3. Extrusion Printing
3. Conclusions
4. Materials and Methods
4.1. General
4.2. Synthesis of 2% Alginate Control
4.3. PPy/Alginate Composites (PPy–Alg), General Method
4.4. Calcium Cross-Linking
4.5. Elemental Analysis
4.6. SEM Analysis
4.7. Electrical Measurements
4.8. Fabrication of Scaffolds
4.9. Cellular Adhesion and Growth
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heeger, A.J.; Sariciftci, N.S.; Namdas, E.B. Semiconducting and Metallic Polymers, 1st ed.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Ostroverkhova, O. Handbook of Organic Materials for Optical and (Opto) Electronic Devices, 1st ed.; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Goding, J.A.; Gilmour, A.D.; Aregueta-Robles, U.A.; Hasan, E.A.; Green, R.A. Living Bioelectronics: Strategies for Developing an Effective Long-Term Implant with Functional Neural Connections. Adv. Func. Mater. 2018, 28, 1702969. [Google Scholar] [CrossRef]
- Wallace, G.G.; Moulton, S.E.; Kapsa, R.M.I.; Higgins, M. Organic Bionics; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Liu, K.; Liu, B. Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules 2018, 19, 1783–1803. [Google Scholar]
- Zhu, B.; Hackett, A.J.; Tracas-Sejdic, J. Biosensing applications based on conducting polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Oh, W.-K.; Kwon, O.K.; Jang, J. Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing. Polym. Rev. 2013, 53, 407–442. [Google Scholar] [CrossRef]
- Tandon, B.; Magaz, A.; Balint, R.; Blaker, J.J.; Cartmell, S.H. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. 2018, 129, 148–168. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Ma, P.X. Conducting polymers for tissue engineering. Biomacromolecules 2018, 19, 1764–1782. [Google Scholar] [CrossRef]
- Ning, C.; Zhou, Z.; Tan, G.; Zhu, U.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018, 81, 144–162. [Google Scholar] [CrossRef]
- Alegret, N.; Dominguez-Alfaro, A.; Mecerreyes, D. 3D Scaffolds based on conductive polymers for biomedical applications. Biomacromolecules 2019, 20, 73–89. [Google Scholar] [CrossRef]
- Liu, B.; Bazan, G.C. Conjugated Polyelectrolytes: Fundamentals and Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Prabhakar, R.; Kumar, D. Effect of preparation conditions on the conductivity of polyaniline impregnated polyacrylate conducting hydrogel. J. Nanosci. Nanotechnol. 2017, 17, 5008–5014. [Google Scholar] [CrossRef]
- Gribkova, O.L.; Nekrasov, A.A.; Ivanov, V.F.; Zolotorevsky, V.I.; Vannikov, A.V. Templating effect of polymeric sulfonic acids on electropolymerization of aniline. Electrochim. Acta 2014, 122, 150–158. [Google Scholar] [CrossRef]
- Higgins, T.M.; Moulton, S.E.; Gilmore, K.J.; Wallace, G.G.; Panhuis, M.I.H. Gellan gum doped polypyrrole neural prosthetic electrode coatings. Soft Matter 2010, 7, 4690–4695. [Google Scholar] [CrossRef] [Green Version]
- Molino, P.J.; Zhang, B.; Wallace, G.G.; Hanks, T.W. Surface modification of polypyrrole/biopolymer composites for controlled protein and cellular adhesion. Biofouling 2013, 29, 1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Jang, L.K.; Kim, S.; Yang, J.; Yang, K.; Cho, S.-W.; Lee, J.Y. Polypyrrole/Alginate hybrid hydrogels: Electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol. Biosci. 2016, 16, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Ketabata, F.; Karkhaneha, A.F.; Aghdamb, R.M.; Tafti, S.H.A. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J. Biomater. Sci. Polym. 2017, 28, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Q.; Teng, Q. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications. Int. J. Nanomed. 2016, 11, 131–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero, T. Biomimetic conducting polymers: Synthesis, materials, properties, functions, and devices. Polym. Rev. 2013, 53, 311–351. [Google Scholar] [CrossRef]
- Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633. [Google Scholar] [CrossRef]
- Tiwari, S.; Patil, R.; Bahadur, P. Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Chen, X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol. J. 2017, 12, 1600671. [Google Scholar] [CrossRef]
- Cheng, J.; Jun, Y.; Qin, J.; Lee, S.-H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017, 114, 121–143. [Google Scholar] [CrossRef]
- Li, H.; Tan, C.; Li, L. Review of 3D printable hydrogels and constructs. Mater. Des. 2018, 159, 20–38. [Google Scholar] [CrossRef]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, F.E.; Kelly, D.J. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted Tissues. Sci. Rep. 2017, 7, 17042. [Google Scholar] [CrossRef] [Green Version]
- DiTullio, B.T.; Wright, C.J.; Hays, P.; Molino, P.J.; Hanks, T.W. Surface modification of polyaniline nanorods with thiol-terminated poly(ethylene oxide). Colloid Polym. Sci. 2018, 294, 637–645. [Google Scholar] [CrossRef]
- Wright, C.J.; Zhang, B.; Kuester, M.; Molino, P.J.; Hanks, T.W. Characterization of alginate-polypyrrole composites for tissue engineering scaffolds. In Proceedings of the 10th World Biomaterials Congress, Montréal, QC, Canada, 17–22 May 2016. [Google Scholar] [CrossRef]
- Zhang, B.; Nagle, A.; Wallace, G.G.; Hanks, T.W.; Molino, P.J. Functionalised inherently conducting polymers as low biofouling materials. Biofouling 2015, 31, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Pina, C.D.; Falletta, E.; Rossi, M. Conductive materials by metal catalyzed polymerization. Catal. Today 2011, 160, 11–27. [Google Scholar] [CrossRef]
- Li, X.; Xu, A.; Xie, H.; Yu, W.; Xie, W.; Ma, X. Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr. Polym. 2010, 79, 660–664. [Google Scholar] [CrossRef]
- Ghosh, D.; Pramanik, A.; Sikdar, N.; Pramanik, P. Synthesis of low molecular weight alginic acid nanoparticles through persulfate treatment as effective drug delivery system to manage drug resistant bacteria. Biotechnol. Bioproc. E 2011, 16, 383. [Google Scholar] [CrossRef]
- Lee, D.W.; Choi, W.S.; Byun, M.W.; Park, H.J.; Yu, Y.-M.; Lee, C.M. Effect of γ-Irradiation on Degradation of Alginate. J. Agric. Food Chem. 2003, 51, 4819–4823. [Google Scholar] [CrossRef]
- Xu, X.-R.; Li, S.; Liu, J.-L.; Yu, Y.-Y.; Li, H.-B. Activation of persulfate and its environmental application. Int. J. Environ. Bioenerg. 2012, 1, 60–81. [Google Scholar]
- Kuo, C.K.; Ma, P.X. Ionically crosslinked alginate hydrogels as scafolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, 511–521. [Google Scholar] [CrossRef]
- Zhang, Y.; Batys, P.; O’Neal, J.T.; Li, F.; Sammalkorpi, M.; Lutkenhaus, J.L. Molecular origin of the glass transition in polyelectrolyte assemblies. ACS Cent. Sci. 2018, 4, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.; Gately, R.D.; O’Brien, P.; Gorkin, R., III; Panhuis, M. Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. J. Polym. Sci. B Polym. Phys. 2014, 52, 864. [Google Scholar] [CrossRef] [Green Version]
Composite | Conductivity (mS/cm) | Error (mS/cm) |
---|---|---|
Alginate | 5.25 | 0.45 |
A | 6.33 | 0.27 |
B | 4.41 | 0.18 |
C | 4.07 | 0.20 |
Dimension | Actual | Theoretical |
---|---|---|
Pore width (mm) | 0.41 ± 0.04 | 1 |
Filament width (mm) | 0.58 ± 0.06 | 0.1 |
Filament spacing (mm) | 1.04 ± 0.03 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, C.J.; Molino, B.Z.; Chung, J.H.Y.; Pannell, J.T.; Kuester, M.; Molino, P.J.; Hanks, T.W. Synthesis and 3D Printing of Conducting Alginate–Polypyrrole Ionomers. Gels 2020, 6, 13. https://doi.org/10.3390/gels6020013
Wright CJ, Molino BZ, Chung JHY, Pannell JT, Kuester M, Molino PJ, Hanks TW. Synthesis and 3D Printing of Conducting Alginate–Polypyrrole Ionomers. Gels. 2020; 6(2):13. https://doi.org/10.3390/gels6020013
Chicago/Turabian StyleWright, Cassandra J., Binbin Zhang Molino, Johnson H. Y. Chung, Jonathan T. Pannell, Melissa Kuester, Paul J. Molino, and Timothy W. Hanks. 2020. "Synthesis and 3D Printing of Conducting Alginate–Polypyrrole Ionomers" Gels 6, no. 2: 13. https://doi.org/10.3390/gels6020013
APA StyleWright, C. J., Molino, B. Z., Chung, J. H. Y., Pannell, J. T., Kuester, M., Molino, P. J., & Hanks, T. W. (2020). Synthesis and 3D Printing of Conducting Alginate–Polypyrrole Ionomers. Gels, 6(2), 13. https://doi.org/10.3390/gels6020013