Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. FTIR Analysis
2.1.2. XPS Analysis
- (a)
- anionic exchange between Cl− ions on quaternary ammonium groups and anionic uranyl species [64] (at pH 1–2),
- (b)
- ion-exchange with Ca2+ bound to carboxylate groups, protons on the hydroxyl and amine groups and cationic UO22+ (especially at pH < pHPZC corresponding to particle deprotonation), and/or
- (c)
- complexation of metal species with free nitrogen or oxygen donors from PEI, hydroxyl moieties created from opened epoxy groups, and polysaccharide moieties, respectively.
2.1.3. Determination of pHPZC
- (a)
- carboxylic groups (mannuronic and guluronic acid with pKa values of 3.38 and 3.65, respectively, [65]),
- (b)
- amine groups (primary, secondary, and tertiary (1/2/1) with pKa values of 4.5, 6.7, and 11.6, respectively, [66]), and
- (c)
- quaternary ammonium groups (with pKa in the range 11–12).
- (d)
- hydroxyl groups
2.2. Uranium Sorption
2.2.1. pH Effect
2.2.2. Sorption Mechanism
2.2.3. Uptake Kinetics
2.2.4. Sorption Isotherms
2.2.5. Uranium Desorption and Sorbent Recycling
2.3. Application to Uranium-Bearing Ores: Treatment of Acid Leachates
2.3.1. Acid Leaching of Ore and Pre-Treatment
2.3.2. Metal Sorption from Leachates and Uranium Recovery
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Sorbent Synthesis
4.3. Material Characterization
4.4. Sorption Studies
4.4.1. Sorption and Desorption Tests
4.4.2. Modeling
4.5. Processing of Uranium-Bearing Ore and Uranium Recovery
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orabi, A.H.; El-Sheikh, E.M.; Saleh, W.H.; El-Saied, F.A.; El-Gendy, H.S.; Ismaiel, D.A. Recovery of uranium and copper from mineralized dolostone, Gabal Allouga, Southwestern Sinai, Egypt. J. Radiat. Res. Appl. Sci. 2019, 12, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Chung, K.W.; Lee, H.I.; Yoon, H.-S.; Kumar, J.R. Leaching behavior of uranium and vanadium using strong sulfuric acid from Korean black shale ore. J. Radioanal. Nucl. Chem. 2014, 299, 81–87. [Google Scholar] [CrossRef]
- Aal, M.M.A. Preparation of a uranium leach liquor from a refractory ore using nitric acid solution. Int. J. Environ. Anal. Chem. 2019, 1–24. [Google Scholar] [CrossRef]
- Szolucha, M.M.; Chmielewski, A.G. A comparison of uranium recovery from low-grade ore by bioleaching and acid leaching. Physicochem. Probl. Miner. Process. 2017, 53, 136–149. [Google Scholar]
- Xu, L.; Yang, H.; Liu, Y.; Zhou, Y. Uranium leaching using citric acid and oxalic acid. J. Radioanal. Nucl. Chem. 2019, 321, 815–822. [Google Scholar] [CrossRef]
- Hamza, M.F.; El-Aassy, I.E.; Guibal, E. Integrated treatment of tailing material for the selective recovery of uranium, rare earth elements and heavy metals. Miner. Eng. 2019, 133, 138–148. [Google Scholar] [CrossRef]
- Avelar, E.C.; Alvarenga, C.L.G.; Resende, G.P.S.; Morais, C.A.; Mansur, M.B. Modeling of the solvent extraction equilibrium of uranium(VI) sulfate with Alamine 336. Braz. J. Chem. Eng. 2017, 34, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Kiegiel, K.; Abramowska, A.; Bieluszka, P.; Zakrzewska-Koltuniewicz, G.; Wolkowicz, S. Solvent extraction of uranium from leach solutions obtained in processing of Polish low-grade ores. J. Radioanal. Nucl. Chem. 2017, 311, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Pranolo, Y.; Cheng, C.Y. Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner. Eng. 2016, 89, 77–83. [Google Scholar] [CrossRef]
- Merdivan, M.; Duz, M.Z.; Hamamci, C. Sorption behaviour of uranium(VI) with N,N-dibutyl-N ’-benzoylthiourea Impregnated in Amberlite XAD-16. Talanta 2001, 55, 639–645. [Google Scholar] [CrossRef]
- Rahmani-Sani, A.; Hosseini-Bandegharaei, A.; Hosseini, S.H.; Kharghani, K.; Zarei, H.; Rastegar, A. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J. Hazard. Mater. 2015, 286, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Pathak, S.K.; Kumar, M.; Mahtele, A.K.; Tripathi, S.C.; Bajaj, P.N. Study of uranium sorption using D2EHPA-impregnated polymeric beads. J. Appl. Polym. Sci. 2013, 130, 3355–3364. [Google Scholar] [CrossRef]
- Erkaya, I.A.; Arica, M.Y.; Akbulut, A.; Bayramoglu, G. Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: Kinetic, equilibrium and thermodynamic studies. J. Radioanal. Nucl. Chem. 2014, 299, 1993–2003. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, X.-J.; Wang, T.-S. Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. J. Hazard. Mater. 2013, 262, 297–303. [Google Scholar] [CrossRef]
- Prodromou, M.; Pashalidis, I. Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. J. Radioanal. Nucl. Chem. 2013, 298, 1587–1595. [Google Scholar] [CrossRef]
- Safonov, A.; Tregubova, V.; Ilin, V.; Boldyrev, K.; Zinicovscaia, I.; Frontasyeva, M.; Khijniak, T. Comparative study of lanthanum, vanadium, and uranium bioremoval using different types of microorganisms. Water Air Soil Pollut. 2018, 229, 82. [Google Scholar] [CrossRef]
- Ang, K.L.; Li, D.; Nikoloski, A.N. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 2. Chelating resins. Miner. Eng. 2018, 123, 8–15. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, Y.; Kong, X.; Zhou, L.; Guo, H. Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J. Radioanal. Nucl. Chem. 2013, 298, 1137–1147. [Google Scholar] [CrossRef]
- Kabay, N.; Demircioglu, M.; Yayli, S.; Gunay, E.; Yuksel, M.; Saglam, M.; Streat, M. Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind. Eng. Chem. Res. 1998, 37, 1983–1990. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Z.; Wang, Y.; Zhou, L. Synthesis of new type dipropyl imide chelating resin and its potential for uranium(VI) adsorption. J. Radioanal. Nucl. Chem. 2018, 318, 1219–1227. [Google Scholar] [CrossRef]
- Amphlett, J.T.M.; Ogden, M.D.; Foster, R.I.; Syna, N.; Soldenhoff, K.H.; Sharrad, C.A. The effect of contaminants on the application of polyamine functionalised ion exchange resins for uranium extraction from sulfate based mining process waters. Chem. Eng. J. 2018, 354, 633–640. [Google Scholar] [CrossRef]
- Amphlett, J.T.M.; Sharrad, C.A.; Foster, R.I.; Ogden, M.D. Ethylenediamine-funtionalized ion exchange resin for uranium recovery from acidic mixed sulphate-chloride media: Initial column loading studies. J. South Afr. Inst. Min. Metall. 2018, 118, 1251–1257. [Google Scholar] [CrossRef]
- Dlamini, T.C.; Tshivhase, V.M.; Maleka, P.; Penabei, S.; Mashaba, M. The effect of uranium speciation on the removal of gross alpha activity from acid mine drainage using anion exchange resin. J. Radioanal. Nucl. Chem. 2019, 319, 357–363. [Google Scholar] [CrossRef]
- Foster, R.I.; Amphlett, J.T.M.; Kim, K.-W.; Kerry, T.; Lee, K.; Sharrad, C.A. SOHIO process legacy waste treatment: Uranium recovery using ion exchange. J. Ind. Eng. Chem. 2020, 81, 144–152. [Google Scholar] [CrossRef]
- Karan, R.; Rajan, K.C.; Sreenivas, T. Studies on lowering of uranium from mine water by static bed ion exchange process. Sep. Sci. Technol. 2019, 54, 1607–1619. [Google Scholar] [CrossRef]
- Wen, Z.; Huang, K.; Niu, Y.; Yao, Y.; Wang, S.; Cao, Z.; Zhong, H. Kinetic study of ultrasonic-assisted uranium adsorption by anion exchange resin. Colloids Surf. A 2020, 585, 124021. [Google Scholar] [CrossRef]
- El-Magied, M.O.A.; Dhmees, A.S.; Abd El-Hamid, A.A.M.; Eldesouky, E.M. Uranium extraction by sulfonated mesoporous silica derived from blast furnace slag. J. Nucl. Mater. 2018, 509, 295–304. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Y.; Ma, L.; Gao, D.; Jing, J.; Yu, J.; Sun, H.; Gong, H.; Zhang, Y. Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl. Surf. Sci. 2017, 402, 53–60. [Google Scholar]
- Kouraim, M.N.; Hagag, M.S.; Ali, A.H. Sorption of uranium from radioactive wastes by silicate-neutralised polyacrylic. Int. J. Environ. Anal. Chem. 2019, 1–16. [Google Scholar] [CrossRef]
- Liao, R.; Shi, Z.; Hou, Y.; Zhang, K.; Zhang, J.; Wang, X.; Cheng, K.; Yang, L. Uranium sorption onto mullite: Characteristics of isotherms, kinetics and thermodynamics. J. Earth Syst. Sci. 2019, 128, 176. [Google Scholar]
- Xiao, J.; Jing, Y.; Wang, X.Q.; Yao, Y.; Jia, Y.Z. Preconcentration of uranium(VI) from aqueous solution by amidoxime-functionalized microspheres silica material: Kinetics, isotherm and mechanism study. Chemistryselect 2018, 3, 12346–12356. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.L.; Ren, X.M.; Wang, X.X.; Wang, H.Y.; Wang, X.K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234. [Google Scholar] [CrossRef]
- Yang, P.P.; Liu, Q.; Liu, J.Y.; Chen, R.R.; Li, R.M.; Bai, X.F.; Wang, J. Highly efficient immobilization of uranium(VI) from aqueous solution by phosphonate-functionalized dendritic fibrous nanosilica (DFNS). J. Hazard. Mater. 2019, 363, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, G.; Weng, H.; Shen, W.; Huang, Z.; Lin, M. Efficient and selective separation of U(VI) and Th(IV) from rare earths using functionalized hierarchically mesoporous silica. J. Mater. Sci. 2018, 53, 3398–3416. [Google Scholar] [CrossRef]
- Guibal, E.; Roulph, C.; Lecloirec, P. Uranium biosorption by a filamentous fungus Mucor miehei: pH effect on mechanisms and performances of uptake. Water Res. 1992, 26, 1139–1145. [Google Scholar] [CrossRef]
- Singer, D.M.; Guo, H.; Davis, J.A. U(VI) and Sr(II) batch sorption and diffusion kinetics into mesoporous silica (MCM-41). Chem. Geol. 2014, 390, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Vincent, T.; Faur, C.; Guibal, E. Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int. J. Mol. Sci. 2016, 17, 1453. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Vincent, T.; Faur, C.; Guibal, E. A comparison of palladium sorption using polyethylenimine impregnated alginate-based and carrageenan-based algal beads. Appl. Sci.-Basel 2018, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Vincent, T.; Faur, C.; Rodriguez-Castellon, E.; Guibal, E. A new method for incorporating polyethyleneimine (PEI) in algal beads: High stability as sorbent for palladium recovery and supported catalyst for nitrophenol hydrogenation. Mater. Chem. Phys. 2019, 221, 144–155. [Google Scholar] [CrossRef]
- Wei, Y.; Salih, K.A.M.; Lu, S.; Hamza, M.F.; Fujita, T.; Vincent, T.; Guibal, E. Amidoxime functionalization of algal/polyethyleneimine beads for the sorption of Sr(II) from aqueous solutions. Molecules 2019, 24, 3893. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.F.; Wei, Y.; Guibal, E. Quaternization of algal/PEI beads (a new sorbent): Characterization and application to scandium recovery from aqueous solutions. Chem. Eng. J. 2020, in press. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, K.; Mo, Y.; Yang, B.; Vincent, T.; Faur, C.; Guibal, E. Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. J. Hazard. Mater. 2019, 121637. [Google Scholar] [CrossRef] [PubMed]
- Manos, M.J.; Kanatzidis, M.G. Layered metal sulfides capture uranium from seawater. JACS 2012, 134, 16441–16446. [Google Scholar] [CrossRef]
- Shao, D.D.; Hou, G.S.; Li, J.X.; Wen, T.; Ren, X.M.; Wang, X.K. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem. Eng. J. 2014, 255, 604–612. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Mira, H.I.; Abdel-Rahman, A.A.H.; Guibal, E. Synthesis and adsorption characteristics of grafted hydrazinyl amine magnetite-chitosan for Ni(II) and Pb(II) recovery. Chem. Eng. J. 2019, 362, 310–324. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Lopez, B.; Vieira, R.S.; Rabelo, R.B.; Beppu, M.M.; Casado, J.; Rodriguez-Castellon, E. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS. Mater. Chem. Phys. 2017, 185, 152–161. [Google Scholar] [CrossRef]
- Sun, Y.B.; Wang, X.X.; Ding, C.C.; Cheng, W.C.; Chen, C.L.; Hayat, T.; Alsaedi, A.; Hu, J.; Wang, X.K. Direct synthesis of bacteria-derived carbonaceous nanofibers as a highly efficient material for radionuclides elimination. ACS Sustain. Chem. Eng. 2016, 4, 4608–4616. [Google Scholar] [CrossRef]
- Yuan, S.J.; Xu, F.J.; Kang, E.T.; Pehkonen, S.O. Modification of surface-oxidized copper alloy by coupling of viologens for inhibiting microbiologically influenced corrosion. J. Electrochem. Soc. 2007, 154, C645–C657. [Google Scholar] [CrossRef]
- Mishra, S.; Dwivedi, J.; Kumar, A.; Sankararamakrishnana, N. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium. RSC Adv. 2015, 5, 33023–33036. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Chen, L.; Hamza, M.F.; He, C.; Wang, X.; Wei, Y.; Guibal, E. Amidoxime functionalization of a poly(acrylonitrile)/silica composite for the sorption of Ga(III)—Application to the treatment of Bayer liquor. Chem. Eng. J. 2019, 368, 459–473. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Liu, Q.; Li, Z.; Li, R.; Zhang, H.; Liu, L.; Emelchenko, G.A.; Wang, J. A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci. Rep. 2016, 6, 19367. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.M.; Khan, W.; Ahamed, M.; Alhazaa, A.N. Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals. Sci. Rep. 2017, 7, 12560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, E.O.; Rossi, A.L.; Archanjo, B.S.; Ospina, R.O.; Mello, A.; Rossi, A.M. Crystalline nano-coatings of fluorine-substituted hydroxyapatite produced by magnetron sputtering with high plasma confinement. Surf. Coat. Technol. 2015, 264, 163–174. [Google Scholar] [CrossRef]
- Ortega-Liebana, M.C.; Chung, N.X.; Limpens, R.; Gomez, L.; Hueso, J.L.; Santamaria, J.; Gregorkiewicz, T. Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon 2017, 117, 437–446. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, L.; Guan, R.; Xiao, M.; Han, D.; Wang, S.; Meng, Y. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries. Appl. Surf. Sci. 2018, 441, 914–922. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Si, R.; Liao, C.S.; Yan, C.H. Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals. J. Phys. Chem. B 2003, 107, 10159–10167. [Google Scholar] [CrossRef]
- Chen, S.P.; Hong, J.X.; Yang, H.X.; Yang, J.Z. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 2013, 126, 253–258. [Google Scholar] [CrossRef]
- Van den Berghe, S.; Miserque, F.; Gouder, T.; Gaudreau, B.; Verwerft, M. X-ray photoelectron spectroscopy on uranium oxides: A comparison between bulk and thin layers. J. Nucl. Mater. 2001, 294, 168–174. [Google Scholar] [CrossRef]
- Fantauzzi, M.; Elsener, B.; Atzei, D.; Rigoldi, A.; Rossi, A. Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 2015, 5, 75953–75963. [Google Scholar] [CrossRef]
- Hamza, M.F. Grafting of quaternary ammonium groups for uranium(VI) recovery: Application on natural acidic leaching liquor. J. Radioanal. Nucl. Chem. 2019, 322, 519–532. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.B.; Li, Y.N. Study of influencing factors and the mechanism of preparing triazinedithiol polymeric nanofilms on aluminum surfaces. Int. J. Mol. Sci. 2010, 11, 4715–4725. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.F.; Pan, X.; Nie, Z.Y.; Yang, Y.; Liu, L.Z.; Yang, H.Y.; Xia, J.L. Combined DFT and XPS investigation of cysteine adsorption on the pyrite (100) surface. Minerals 2018, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Song, W.C.; Liu, M.C.; Hu, R.; Tan, X.L.; Li, J.X. Water-soluble polyacrylamide coated-Fe3O4 magnetic composites for high-efficient enrichment of U(VI) from radioactive wastewater. Chem. Eng. J. 2014, 246, 268–276. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, C.S.; Yuan, G.Y.; Li, F.Z.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. Adsorption behavior of U(VI) on doped polyaniline: The effects of carbonate and its complexes. Radiochim. Acta 2018, 106, 437–452. [Google Scholar] [CrossRef]
- Haug, A. Dissociation of alginic acid. Acta Chem. Scand. 1961, 15, 950–952. [Google Scholar] [CrossRef]
- Demadis, K.D.; Paspalaki, M.; Theodorou, J. Controlled release of bis(phosphonate) pharmaceuticals from cationic biodegradable polymeric matrices. Ind. Eng. Chem. Res. 2011, 50, 5873–5876. [Google Scholar] [CrossRef]
- Marcus, Y. Ion Properties; Marcel Dekker, Inc.: New York, NY, USA, 1997; p. 259. [Google Scholar]
- Liu, S.; Yang, Y.; Liu, T.; Wu, W. Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized polystyrene-co-maleic anhydride) resin. J. Colloid Interface Sci. 2017, 497, 385–392. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Arica, M.Y. MCM-41 silica particles grafted with polyacrylonitrile: Modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater. 2016, 226, 117–124. [Google Scholar] [CrossRef]
- He, D.X.; Tan, N.; Luo, X.M.; Yang, X.C.; Ji, K.; Han, J.W.; Chen, C.; Liu, Y.Q. Preparation, uranium (VI) absorption and reuseability of marine fungus mycelium modified by the bis-amidoxime-based groups. Radiochim. Acta 2020, 108, 37–49. [Google Scholar] [CrossRef]
- Yang, J.B.; Volesky, B. Biosorption of uranium on Sargassum biomass. Water Res. 1999, 33, 3357–3363. [Google Scholar] [CrossRef]
- Aytas, S.; Turkozu, D.A.; Gok, C. Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 2011, 280, 354–362. [Google Scholar] [CrossRef]
- Zou, W.H.; Zhao, L.; Zhu, L. Efficient uranium(VI) biosorption on grapefruit peel: Kinetic study and thermodynamic parameters. J. Radioanal. Nucl. Chem. 2012, 292, 1303–1315. [Google Scholar] [CrossRef]
- Kausar, A.; Bhatti, H.N.; MacKinnon, G. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids Surf. B 2013, 111, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, X.Q.; Dong, F.Q.; Liu, N.; Zhang, D.; Liu, M.X.; Yang, J.; Zhang, W. Biosorption and biomineralization of uranium(VI) from aqueous solutions by Landoltia punctata. Spectrosc. Spectral Anal. 2015, 35, 2613–2619. [Google Scholar]
- Mishra, V.; Sureshkumar, M.K.; Gupta, N.; Kaushik, C.P. Study on sorption characteristics of uranium onto biochar derived from eucalyptus wood. Water Air Soil Pollut. 2017, 228, 309. [Google Scholar] [CrossRef]
- Nuhanovic, M.; Grebo, M.; Draganovic, S.; Memic, M.; Smjecanin, N. Uranium(VI) biosorption by sugar beet pulp: Equilibrium, kinetic and thermodynamic studies. J. Radioanal. Nucl. Chem. 2019, 322, 2065–2078. [Google Scholar] [CrossRef]
- Venkatesan, K.A.; Shyamala, K.V.; Antony, M.P.; Srinivasan, T.G.; Rao, P.R.V. Batch and dynamic extraction of uranium(VI) from nitric acid medium by commercial phosphinic acid resin, Tulsion CH-96. J. Radioanal. Nucl. Chem. 2008, 275, 563–570. [Google Scholar] [CrossRef]
- Semnani, F.; Asadi, Z.; Samadfam, M.; Sepehrian, H. Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: Effects of pH, contact time, temperature and presence of phosphate. Ann. Nucl. Energy 2012, 48, 21–24. [Google Scholar] [CrossRef]
- Xu, J.; Chen, M.; Zhang, C.; Yi, Z. Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J. Radioanal. Nucl. Chem. 2013, 298, 1375–1383. [Google Scholar] [CrossRef]
- Solgy, M.; Taghizadeh, M.; Ghoddocynejad, D. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study. Ann. Nucl. Energy 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Kou, Y.; Zhang, L.; Liu, B.; Zhu, L.; Duan, T. Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution. J. Radioanal. Nucl. Chem. 2020, 323, 641–649. [Google Scholar] [CrossRef]
- Su, M.H.; Tsang, D.C.W.; Ren, X.Y.; Shi, Q.P.; Tang, J.F.; Zhang, H.G.; Kong, L.J.; Hou, L.A.; Song, G.; Chen, D.Y. Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: Evaluation on characteristics, mechanisms and performance. Environ. Pollut. 2019, 254, 112891. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.-Q.; Liu, Q.-Y.; Luo, F.; Wang, Y.-L. A zinc MOF with carboxylate oxygen-functionalized pore channels for uranium(VI) sorption. Eur. J. Inorg. Chem. 2019, 2019, 735–739. [Google Scholar] [CrossRef]
- Mazario, E.; Stemper, J.; Helal, A.S.; Mayoral, A.; Decorse, P.; Losno, R.; Lion, C.; Ammar, S.; Le Gall, T.; Hemadi, M. New iron oxide nanoparticles catechol-grafted with bis(amidoxime)s for uranium(VI) depletion of aqueous solution. J. Nanosci. Nanotechnol. 2019, 19, 4911–4919. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, N.K.; Pandi, T.A.; Matis, K.A. Chromium(VI) removal from aqueous solutions by Mg-Al-CO3 hydrotalcite: Sorption-desorption kinetic and equilibrium studies. Ind. Eng. Chem. Res. 2004, 43, 2209–2215. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Marczenko, Z. Separation and Spectrophotometric Determination of Elements, 2nd ed.; Ellis Horwood: Chichester, UK, 1986; p. 678. [Google Scholar]
- Abu Khoziem, H.A. Mineralogical Characteristics and Leachability of Some Valuable Metals from Abu Zienema Poly-mineralized Carbonaceous Shale, Southwestern Sinai, Egypt. PhD. Thesis, Ain Shams University, Cairo, Egypt, 2017. [Google Scholar]
- Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Newton, MA, USA, 1994; p. 243. [Google Scholar]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ Version 3.0; KTH, Department of Land and Water Recources: Stockholm, Sweden, 2013; Available online: https://vminteq.lwr.kth.se/ (accessed on 2 February 2020).
Model | Parameter | Fitted Value First Series | Fitted Value Second Series |
---|---|---|---|
Experimental | qeq (mmol U g−1) | 0.343 | 0.349 |
PFORE | qeq,1 (mmol U g−1) | 0.358 | 0.365 |
k1 × 102 (min−1) | 9.19 | 9.61 | |
R2 | 0.992 | 0.989 | |
PSORE | qeq,2 (mmol U g−1) | 0.451 | 0.455 |
k2 × 102 (L mmol−1 min−1) | 20.2 | 21.3 | |
R2 | 0.980 | 0.976 | |
RIDE | De × 108 (m2 min−1) | 2.59 | 3.28 |
R2 | 0.969 | 0.967 |
Model | Parameter | APEI | Q-APEI |
---|---|---|---|
Experimental | qm (mmol U g−1) | 0.127 | 0.855 |
Langmuir | qm,L (mmol U g−1) | 0.150 | 0.938 |
bL (L mmol−1) | 3.16 | 5.06 | |
R2 | 0.988 | 0.976 | |
Freundlich | kF | 0.106 | 0.754 |
nF | 2.67 | 2.99 | |
R2 | 0.915 | 0.969 | |
Sips | qm,S (mmol U g−1) | 0.140 | 1.297 |
bS (L mmol−1) | 4.77 | 1.47 | |
nS | 0.834 | 1.65 | |
R2 | 0.986 | 0.984 |
Sorbent | pH | teq (min) | qm,L (mmol U g−1) | bL (L mmol−1) | Ref. |
---|---|---|---|---|---|
Sargassum | 4 | 180 | 2.40 | 0.170 | [71] |
Algal/yeast/SiO2 | 4 | 180 | 0.210 | 7.14 | [72] |
Grapefruit peel | 5 | 90 | 0.592 | 7.45 | [73] |
Rice husk | 4 | 320 | 0.190 | 23.6 | [74] |
Landoltia punctata | 4-5 | 1440 | 0.305 | 2.36 | [75] |
Eucalytus wood biochar | 5.5 | 20 | 0.114 | 5.95 | [76] |
Sugar beet pulp | 8 | 120 | 0.086 | 6.43 | [77] |
Amidoximated marine mycelium | 5 | 120 | 1.56 | 0.378 | [70] |
Tulsion CH-96 | 3–4 M HNO3 | 600 | 0.294 | 1.48 | [78] |
Amberlite CG-400 | 3.5 | 360 | 0.472 | 21.9 | [79] |
Phosphorus PStyr/DVB | 5 | 240 | 0.378 | 8.33 | [18] |
DETA-magnetic chitosan | 3.5 | 120 | 0.274 | 295 | [80] |
Carminic acid impregnated resin | 5 | 120 | 0.798 | 29.2 | [11] |
D2EHPA-impregnated polymer beads | 4 | 180 | 0.079 | 5.24 | [12] |
Amberlite IRA-402 | 3 | 90 | 0.895 | 11.9 | [81] |
Picolylamine funct. resin | 5.3 | 120 | 2.31 | 164 | [68] |
Amidoximated MCM-41 SiO2 | 5 | 40 | 1.86 | 8.5 | [69] |
Amidoximated MCM-41 SiO2 | 5 | 90 | 1.62 | 225 | [31] |
Phosphonate/MoS2 | 5.5 | 360 | 0.949 | 9.52 | [82] |
Porous hydroxyapatite | 3.0 | 30 | 0.468 | 1113 | [83] |
Carboxylated-Zn-MOF | 4 | 60 | 0.544 | 11.2 | [84] |
Amidoxime funct. catechol iron oxide NPs | 6.5 | 180 | 0.256 | 9.52 | [85] |
APEI | 4 | - | 0.150 | 3.16 | This work |
Q-APEI | 4 | 40 | 0.938 | 5.06 | This work |
Sorbent | Model | PFORE | PSORE | |||
---|---|---|---|---|---|---|
Parameter | kD1 (min−1) | R2 | β2 | kD2 (min−1) | R2 | |
Q-APEI 1st Series | 0.077 | 0.957 | 0.950 | 0.136 | 0.967 | |
Q-APEI 2nd series | 0.086 | 0.917 | 0.950 | 0.157 | 0.914 |
Cycle | Sorption Efficiency (%) | Desorption Efficiency (%) | ||
---|---|---|---|---|
Average | S.D. | Average | S.D. | |
1 | 98.5 | 0.2 | 100.1 | 0.2 |
2 | 98.0 | 0.1 | 99.9 | 0.9 |
3 | 98.0 | 0.1 | 98.9 | 0.2 |
4 | 97.9 | 0.0 | 99.4 | 1.0 |
5 | 97.8 | 0.2 | 98.4 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, M.F.; Mubark, A.E.; Wei, Y.; Vincent, T.; Guibal, E. Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate. Gels 2020, 6, 12. https://doi.org/10.3390/gels6020012
Hamza MF, Mubark AE, Wei Y, Vincent T, Guibal E. Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate. Gels. 2020; 6(2):12. https://doi.org/10.3390/gels6020012
Chicago/Turabian StyleHamza, Mohammed F., Amal E. Mubark, Yuezou Wei, Thierry Vincent, and Eric Guibal. 2020. "Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate" Gels 6, no. 2: 12. https://doi.org/10.3390/gels6020012
APA StyleHamza, M. F., Mubark, A. E., Wei, Y., Vincent, T., & Guibal, E. (2020). Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate. Gels, 6(2), 12. https://doi.org/10.3390/gels6020012