Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Composition of Elaborated Pâtés
2.2. Textural and Colour Measurements
2.3. Sensorial Tests
2.3.1. Acceptance Results
2.3.2. Preference Results
3. Conclusions
4. Materials and Methods
4.1. Raw Materials and Oleogels Production
4.2. Pâté Elaboration
4.3. Physicochemical Composition of Elaborated Pâtés
4.3.1. Fatty Acid Composition
4.3.2. Textural and Colour Analysis
4.4. Consumer Sensorial Evaluation
4.5. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Stanton, R. Popular diets and over-the-counter dietary aids and their effectiveness in managing obesity. In Managing and Preventing Obesity; Woodhead Publishing: Cambridge, UK, 2015; pp. 257–274. ISBN 978-1-78242-099-6. [Google Scholar]
- Bogue, J.; Sorenson, D. 22-Case study of consumer-oriented food product development: Reduced-calorie foods. In Consumer-Led Food Product Development; MacFie, H., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2007; pp. 524–550. ISBN 978-1-84569-072-4. [Google Scholar]
- Da Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastião, E.E.; Vargas, C.; Franzen, F.D.L.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Heck, R.T.; Vendruscolo, R.G.; Etchepare, M.D.A.; Cichoski, A.J.; Menezes, C.R.D.; Barin, J.S.; Lorenzo, J.M.; Wagner, R.; Campagnol, P.C.B. Is it possible to produce a low-fat burger with a healthy n-6/n-3 PUFA ratio without affecting the technological and sensory properties? Meat Sci. 2017, 130, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ramella, M.; Pateiro, M.; Barba, F.J.; Franco, D.; Campagnol, P.C.B.; Munekata, P.E.S.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Microencapsulation of healthier oils to enhance the physicochemical and nutritional properties of deer pâté. LWT 2020, 125, 109223. [Google Scholar] [CrossRef]
- Domínguez, R.; Agregán, R.; Gonçalves, A.; Lorenzo, J.M.M. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas y Aceites 2016, 67, e133. [Google Scholar]
- Munekata, P.E.S.; Domínguez, R.; Campagnol, P.C.B.; Franco, D.; Trindade, M.A.; Lorenzo, J.M. Effect of natural antioxidants on physicochemical properties and lipid stability of pork liver pâté manufactured with healthy oils during refrigerated storage. J. Food Sci. Technol. 2017, 54, 4324–4334. [Google Scholar] [CrossRef]
- Terrasa, A.M.; Dello Staffolo, M.; Tomás, M.C. Nutritional improvement and physicochemical evaluation of liver pâté formulations. LWT-Food Sci. Technol. 2016, 66, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Agregán, R.; Franco, D.; Carballo, J.; Tomasevic, I.; Barba, F.J.; Gómez, B.; Muchenje, V.; Lorenzo, J.M. Shelf life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Res. Int. 2018, 112, 400–411. [Google Scholar] [CrossRef]
- Xiong, G.; Han, M.; Kang, Z.; Zhao, Y.; Xu, X.; Zhu, Y. Evaluation of protein structural changes and water mobility in chicken liver paste batters prepared with plant oil substituting pork back-fat combined with pre-emulsification. Food Chem. 2016, 196, 388–395. [Google Scholar] [CrossRef]
- Alves, L.A.A.S.; Lorenzo, J.M.; Gonçalves, C.A.A.; Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Sci. 2016, 121, 73–78. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R. Healthy Spanish salchichón enriched with encapsulated n − 3 long chain fatty acids in konjac glucomannan matrix. Food Res. Int. 2016, 89, 289–295. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Agregán, R.; Lorenzo, J.M. Effect of the partial replacement of pork backfat by microencapsulated fish oil or mixed fish and olive oil on the quality of frankfurter type sausage. J. Food Sci. Technol. 2017, 54, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagiri, S.S.; Samateh, M.; John, G. CHAPTER 2 Biobased Molecular Structuring Agents. In Edible Oil Structuring: Concepts Methods and Applications; The Royal Society of Chemistry: London, UK, 2018; pp. 23–52. ISBN 978-1-78262-829-3. [Google Scholar]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Evolutionary aspects of the dietary Omega-6:Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar]
- Simopoulos, A.P.; Leaf, A.; Salem, N.S. Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids. J. Am. Coll. Nutr. 1999, 18, 487–489. [Google Scholar] [CrossRef]
- Husted, K.S.; Bouzinova, E.V. The importance of n-6/n-3 fatty acids ratio in the major depressive disorder. Medicina 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M. Influence of fat content on physico-chemical and oxidative stability of foal liver pâté. Meat Sci. 2013, 95, 330–335. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Rodriguez-Salas, L.; Jimenez-Colmenero, F. A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pate. Meat Sci. 2011, 88, 241–248. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Campagnol, P.C.B.; Lorenzo, J.M. Influence of partial pork backfat replacement by fish oil on nutritional and technological properties of liver pâté. Eur. J. Lipid Sci. Technol. 2017, 119, 178. [Google Scholar] [CrossRef]
- Barbut, S.; Marangoni, A.G.; Thode, U.; Tiensa, B.E. Using Canola Oil Organogels as Fat Replacement in Liver Pâté. J. Food Sci. 2019, 84, 2646–2651. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Herrero, A.M.; Herranz, B.; Álvarez, M.D.; Jiménez-Colmenero, F.; Cofrades, S. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocoll. 2019, 87, 960–969. [Google Scholar] [CrossRef]
- Giakoumis, E.G. Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew. Energy 2018, 126, 403–419. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F.; Salcedo-Sandoval, L.; Bou, R.; Cofrades, S.; Herrero, A.M.; Ruiz-Capillas, C. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci. Technol. 2015, 44, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.J.; Cerqueira, M.A.; Cunha, R.L.; Vicente, A.A. Fortified beeswax oleogels: Effect of β-carotene on the gel structure and oxidative stability. Food Funct. 2017, 8, 4241–4250. [Google Scholar] [CrossRef]
- Martins, A.J.; Cerqueira, M.A.; Fasolin, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Res. Int. 2016, 84, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Qiu, F.; Zhao, H.; Tang, H.; Li, X.; Shi, D. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J. Funct. Foods 2018, 40, 417–425. [Google Scholar] [CrossRef]
- Franco, D.; Martins, A.J.; López-Pedrouso, M.; Cerqueira, M.A.; Purriños, L.; Pastrana, L.M.; Vicente, A.A.; Zapata, C.; Lorenzo, J.M. Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. J. Sci. Food Agric. 2020, 100, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; Martins, A.J.; López-Pedrouso, M.; Purriños, L.; Cerqueira, M.A.; Vicente, A.A.; Pastrana, L.M.; Zapata, C.; Lorenzo, J.M. Strategy towards replacing pork backfat with a linseed oleogel in frankfurter sausages and its evaluation on physicochemical, nutritional, and sensory characteristics. Foods 2019, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.A.L.D.; Munekata, P.E.S.; Pateiro, M.; Campagnol, P.C.B.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT 2020, 122, 109052. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Pateiro, M.; Franco, D.; Campagnol, P.C.B.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Physicochemical Composition and Nutritional Properties of Deer Burger Enhanced with Healthier Oils. Foods 2020, 9, 571. [Google Scholar] [CrossRef]
- Corrigendum to Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2007, 12, 16.
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, 1st ed.; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar]
- USDA. 2015-2020 Dietary Guidelines for Americans; U. S. Department of Helath and Human Services and U. S. Department of Agriculture: Washington, DC, USA, 2015.
- FAO. Fat and fatty acid requirements for adults. In Fats and Fatty Acids in Human Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 55–62. ISBN 9789251067338. [Google Scholar]
- Martin, D.; Ruiz, J.; Kivikari, R.; Puolanne, E. Partial replacement of pork fat by conjugated linoleic acid and/or olive oil in liver pâtés: Effect on physicochemical characteristics and oxidative stability. Meat Sci. 2008, 80, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Öğütcü, M.; Yilmaz, E. Characterization of Hazelnut Oil Oleogels Prepared with Sunflower and Carnauba Waxes. Int. J. Food Prop. 2015, 18, 1741–1755. [Google Scholar] [CrossRef]
- ISO 1442. International Standards Meat and Meat Products—Determination of Moisture Content; International Organization for Standarization: Geneva, Switzerland, 1997. [Google Scholar]
- ISO 937. International Standards meat and Meat Products—Determination of Nitrogen Content; International Organization for Standarization: Geneva, Switzerland, 1978. [Google Scholar]
- ISO 936. International Standards Meat and Meat Products—Determination of Ash Content; International Organization for Standarization: Geneva, Switzerland, 1998. [Google Scholar]
- AOCS. AOCS Official Procedure Am5-04. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; American Oil Chemists Society: Urbana, IL, USA, 2005. [Google Scholar]
- Domínguez, R.; Barba, F.J.; Centeno, J.A.; Putnik, P.; Alpas, H.; Lorenzo, J.M. Simple and rapid method for the simultaneous determination of cholesterol and retinol in meat using normal-phase HPLC technique. Food Anal. Methods 2018, 11, 319–326. [Google Scholar] [CrossRef]
- Bourne, M.C.; Kenny, J.F.; Barnard, J. Computer-Assisted Readout Of Data From Texture Profile Analysis Curves. J. Texture Stud. 1978, 9, 481–494. [Google Scholar] [CrossRef]
Parameter | P-CO | P-30 | P-60 |
---|---|---|---|
pH | 6.45 ± 0.03 a | 6.38 ± 0.2 a,b | 6.29 ± 0.01 b |
Protein (%) | 13.12 ± 0.72 a | 10.75 ± 0.36 b | 11.12 ± 0.71 b |
Moisture (%) | 50.79 ± 1.53 a | 51.39 ± 1.06 a,b | 52.83 ± 1.53 b |
Fat (%) | 27.16 ± 4.41 a | 26.34 ± 2.43 a | 20.55 ± 1.86 b |
Ash (%) | 3.00 ± 0.10 a | 2.70 ± 0.12 b | 2.77 ± 0.05 b |
Fatty Acids | P-CO | P-30 | P-60 |
---|---|---|---|
C10:0 | 0.058 ± 0.004 c | 0.040 ± 0.002 b | 0.021 ± 0.001 a |
C12:0 | 0.067 ± 0.001 c | 0.049 ± 0.002 b | 0.025 ± 0.000 a |
C14:0 | 1.19 ± 0.002 c | 0.878 ± 0.002 b | 0.428 ± 0.001 a |
C15:0 | 0.085 ± 0.001 c | 0.055 ± 0.000 b | 0.044 ± 0.000 a |
C16:0 | 21.97 ± 0.079 c | 17.14 ± 0.059 b | 11.15 ± 0.078 a |
C17:0 | 0.472 ± 0.002 c | 0.312 ± 0.002 b | 0.286 ± 0.004 a |
C18:0 | 11.34 ± 0.112 c | 8.79 ± 0.047 b | 7.04 ± 0.074 a |
C20:0 | 0.193 ± 0.003 a | 0.215 ± 0.001 b | 0.220 ± 0.003 c |
C22:0 | n.d. a | 0.063 ± 0.001 b | 0.116 ± 0.009 c |
C24:0 | n.d. a | 0.127 ± 0.004 b | 0.217 ± 0.015 c |
C16:1n-7 | 2.12 ± 0.009 c | 1.61 ± 0.018 b | 0.688 ± 0.005 a |
C17:1n-7 | 0.347 ± 0.002 c | 0.205 ± 0.002 b | 0.148 ± 0.003 a |
11t-C18:1 | 0.268 ± 0.001 c | 0.203 ± 0.002 b | 0.116 ± 0.002 a |
C18:1n-7 | 2.98 ± 0.009 c | 2.32 ± 0.011 b | 1.59 ± 0.009 a |
C18:1n-9 | 38.04 ± 0.097 c | 31.92 ± 0.083 b | 26.19 ± 0.094 a |
C20:1n-9 | 0.947 ± 0.004 c | 0.657 ± 0.003 b | 0.039 ± 0.016 a |
9t,11t-C18:2 | 0.024 ± 0.001 c | 0.022 ± 0.002 b | 0.014 ± 0.000 a |
C18:2n-6 | 16.77 ± 0.048 b | 17.16 ± 0.022 c | 16.58 ± 0.007 a |
C20:2n-6 | 0.693 ± 0.002 c | 0.499 ± 0.002 b | 0.265 ± 0.002 a |
C18:3n-3 | 1.15 ± 0.193 a | 16.63 ± 0.181 b | 33.67 ± 0.269 c |
C18:3n-6 | 0.056 ± 0.001 a | 0.106 ± 0.001 b | 0.162 ± 0.002 c |
9c,11t-C18:2 (CLA) | 0.107 ± 0.001 a | 0.147 ± 0.001 b | 0.210 ± 0.003 c |
C20:3n-6 | 0.155 ± 0.002 c | 0.129 ± 0.003 b | 0.107 ± 0.005 a |
C20:4n-6 | 0.130 ± 0.013 c | 0.096 ± 0.009 b | 0.069 ± 0.016 a |
C22:5n-3 | 0.728 ± 0.001 c | 0.536 ± 0.002 b | 0.492 ± 0.002 a |
Sample | L* | a* | b* | R | G | B | Actual Colour |
---|---|---|---|---|---|---|---|
P-CO | 63.81 ± 4.04 a | 5.23 ± 0.55 a | 20.88 ± 2.06 a | 174 | 151 | 118 | |
P-30 | 63.33 ± 5.25 a | 4.48 ± 0.54 b | 23.82 ± 1.09 b | 172 | 150 | 111 | |
P-60 | 59.77 ± 2.75 a | 5.66 ± 0.39 a | 28.29 ± 2.79 c | 166 | 140 | 94 |
Parameters | P-CO | P-30 | P-60 |
---|---|---|---|
Visual Aspect | 15 a | 27 a,b | 36 b |
Smell | 19 a | 26 a,b | 33 b |
Texture | 18 a | 23 a,b | 37 b |
Flavour | 19 a | 22 a | 37 b |
Global valuation | 15 a | 25 a,b | 38 b |
Raw Materials (Wt%) | P−Co | P−30 | P−60 |
---|---|---|---|
Pork subcutaneous fat | 40 | 28 | 16 |
Linseed oleogel | / | 12 | 24 |
Sodium caseinate | 2 | 2 | 2 |
Cold Water | 23 | 23 | 23 |
Lean meat | 15 | 15 | 15 |
Liver | 18 | 18 | 18 |
Sodium chloride | 2 | 2 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.J.; Lorenzo, J.M.; Franco, D.; Pateiro, M.; Domínguez, R.; Munekata, P.E.S.; Pastrana, L.M.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels 2020, 6, 17. https://doi.org/10.3390/gels6020017
Martins AJ, Lorenzo JM, Franco D, Pateiro M, Domínguez R, Munekata PES, Pastrana LM, Vicente AA, Cunha RL, Cerqueira MA. Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels. 2020; 6(2):17. https://doi.org/10.3390/gels6020017
Chicago/Turabian StyleMartins, Artur J., José M. Lorenzo, Daniel Franco, Mirian Pateiro, Rubén Domínguez, Paulo E. S. Munekata, Lorenzo M. Pastrana, António A. Vicente, Rosiane L. Cunha, and Miguel A. Cerqueira. 2020. "Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes" Gels 6, no. 2: 17. https://doi.org/10.3390/gels6020017
APA StyleMartins, A. J., Lorenzo, J. M., Franco, D., Pateiro, M., Domínguez, R., Munekata, P. E. S., Pastrana, L. M., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2020). Characterization of Enriched Meat-Based Pâté Manufactured with Oleogels as Fat Substitutes. Gels, 6(2), 17. https://doi.org/10.3390/gels6020017