Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Rheology of SF-BGE, SF-BGE/TA, and SF-BGE/TA/ZnO NP Hydrogel
2.2. Morphology of SF-BGE and SF-BGE/TA Solutions and SF-BGE/TA/ZnO NP Hydrogel
2.3. Cytocompatibility of SF-BGE, TA, and SF-BGE/TA Solutions and SF-BGE/TA/ZnO NP Hydrogel
2.4. In Vivo Hemostatic Capability of SF-BGE and SF-BGE/TA Solutions and SF-BGE/TA/ZnO Hydrogel with Rat Tail Amputation Model
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Water-Soluble Silk Fibroin (SF)-Butyl Glycidyl Ether (BGE) Derivative
4.3. Preparation of SF-BGE/TA/ZnO NP Composite Hydrogel
4.4. Structural Analyses
4.5. Rheological Measurement
4.6. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
4.7. Cell Viability
4.8. Rat-Tail Amputation for Testing Hemostatic Capability In Vivo
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, B.B.; Hagerman, S.R.; Jamieson, K.; Castleberry, S.A.; Wang, W.; Holler, E.; Ljubimova, P.T. Multifunctional Self-Assembled Films for Rapid Hemostat and Sustained Anti-infective Delivery. ACS Biomater. Sci. Eng. 2015, 1, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fu, Q.; Deng, Y.; Wang, F.; Xia, B.; Chen, Z.; Chen, G. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo. Carbohydr. Polym. 2021, 253, 117256. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, X.; Wu, K.; Yang, D.; Jiao, Y.; Zhou, C. Tannic acid/Ca(II) anchored on the surface of chitin nanofiber sponge by layer-by-layer deposition: Integrating effective antibacterial and hemostatic performance. Int. J. Biol. Macromol. 2020, 159, 304–315. [Google Scholar] [CrossRef]
- Lamei, E.; Hasanzadeh, M. Fabrication of chitosan nanofibrous scaffolds based on tannic acid and metal-organic frameworks for hemostatic wound dressing applications. Int. J. Biol. Macromol. 2020, 208, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xu, G.; Li, Q.; Zhang, S.; Yang, Y.; Chen, J. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Compos. B Eng. 2022, 234, 109746. [Google Scholar] [CrossRef]
- Hong, H.; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J.; Lee, H.; Ajiteru, O.; Sultan, M.T.; Lee, O.J.; Kim, S.H.; et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020, 232, 119679. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Y.Q. Processing and characterization of a novel electropolymerized silk fibroin hydrogel membrane. Sci. Rep. 2014, 4, 6182. [Google Scholar] [CrossRef] [Green Version]
- Gil, E.S.; Panilaitis, B.; Bellas, E.; Kaplan, D.L. Functionalized silk biomaterials for wound healing. Adv. Healthc. Mater. 2013, 2, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shefa, A.A.; Taz, M.; Lee, S.Y.; Lee, B.T. Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydr. Polym. 2019, 208, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, Y.; Xu, J.; Li, H.; Song, G.; Ding, M.; Kang, Z.; Yin, Y.; Wang, A.; Ning, P.; et al. Evaluation of the biomedical properties of a Ca+-conjugated silk fibroin porous material. Mater. Sci. Eng. C 2019, 104, 110003. [Google Scholar] [CrossRef]
- Seo, Y.B.; Lee, O.J.; Sultan, M.T.; Lee, J.M.; Park, Y.R.; Yeon, Y.K.; Lee, J.S.; Lee, Y.J.; Kim, S.H.; Park, C.H. In vitro and in vivo evaluation of the duck’s feet collagen sponge for hemostatic applications. J. Biomater. Appl. 2017, 32, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Teuschl, A.H.; Zipperle, J.; Huber-Gries, C.; Kaplan, D.L. Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements. J. Biomed. Mater. Res. A 2017, 105, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Hou, X.; Cui, C.; Sun, S.; Sadik, S.; Wu, S.; Zhou, F. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng. Regen. 2021, 2, 57–62. [Google Scholar] [CrossRef]
- Deng, L.; Qi, Y.; Liu, Z.; Xi, Y.; Xue, W. Effect of tannic acid on blood components and functions. Colloids Surf. B Biointerfaces 2019, 184, 110505. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Weng, B.; Gilkerson, R.; Materon, L.A.; Lozano, K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym. 2015, 115, 16–24. [Google Scholar] [PubMed]
- Fan, H.; Wang, L.; Feng, X.; Bu, Y.; Wu, D.; Jin, Z. Supramolecular Hydrogel Formation Based on Tannic Acid. Macromolecules 2017, 50, 666–676. [Google Scholar] [CrossRef]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; Koeverden, M.P.V.; Such, G.K.; Cui, J.; Caruso, F. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef]
- Schmidt, G.; Woods, J.T.; Fung, L.X.B.; Gilpin, C.J.; Hamaker, B.R.; Wilker, J.J. Strong Adhesives from Corn Protein and Tannic Acid. Adv. Sustain. Syst. 2019, 3, 1900077. [Google Scholar]
- Shefa, A.A.; Taz, M.; Hossain, M.; Kim, Y.S.; Lee, S.Y.; Lee, B.T. Investigation of efficiency of a novel, zinc oxide loaded TEMPO-oxidized cellulose nanofiber based hemostat for topical bleeding. Int. J. Biol. Macromol. 2019, 126, 786–795. [Google Scholar] [PubMed]
- Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 2014, 10, 1195–1208. [Google Scholar]
- Shewale, V.; Joshi, P.; Mukhopadhyay, S.; Deshpande, M.; Pandey, R.; Hussain, S.; Karna, S.P. First-Principles Study of Nanoparticle–Biomolecular Interactions: Anchoring of a (ZnO)12 Cluster on Nucleobases. J. Phys. Chem. C 2011, 115, 10426–10430. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.N.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Rao, K.M.; Suneetha, M.; Park, G.T.; Babu, A.G.; Han, S.S. Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 2020, 155, 71–80. [Google Scholar] [CrossRef]
- Bae, S.B.; Kim, M.H.; Park, W.H. Electrospinning and dual crosslinking of water-soluble silk fibroin modified with glycidyl methacrylate. Polym. Degrad. Stab. 2020, 179, 109304. [Google Scholar] [CrossRef]
- Drnovšek, N.; Kocen, R.; Gantar, A.; Drobnič-Košorok, M.; Leonardi, A.; Križaj, I.; Rečnik, A.; Novak, S. Size of silk fibroin beta-sheet domains affected by Ca2+. J. Mater. Chem. B 2016, 4, 6597–6608. [Google Scholar] [CrossRef]
- Sato, T.; Abe, S.; Ito, S.; Abe, T. Silk fibroin fiber for selective palladium adsorption: Kinetic, isothermal and thermodynamic properties. J. Environ. Chem. Eng. 2019, 7, 102958. [Google Scholar] [CrossRef]
- Fan, Y.; Cho, U.R. Influence of the hybrid materials based on carbon nanotubes and tannic acid on the rheological, thermal and mechanical performances of nitrile butadiene rubber composites. Polym. Compos. 2019, 40, 4510–4518. [Google Scholar] [CrossRef]
- He, Z.; Nie, T.; Hu, Y.; Zhou, Y.; Zhu, J.; Liu, Z.; Liu, L.; Leong, K.W.; Chen, Y.; Mao, H.Q. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J. Control Rel. 2020, 318, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Lee, J.; Lee, H.; Park, W.H. ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel. Int. J. Biol. Macromol. 2022, 210, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, W.; Qiu, X.; Fu, F.; Zhong, R.; Liu, W.; Yang, D. In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent UV-Absorption Properties and Its Application in Polyurethane. ACS Sustain. Chem. Eng. 2018, 6, 3696–3705. [Google Scholar] [CrossRef]
- Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 2019, 199, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Shin, M.; Koh, M.Y.; Ryu, J.H.; Lee, M.S.; Hong, S.; Lee, H. TAPE: A Medical Adhesive Inspired by a Ubiquitous Compound in Plants. Adv. Funct. Mater. 2015, 25, 2402–2410. [Google Scholar] [CrossRef]
- Shin, M.; Ryu, J.H.; Park, J.P.; Kim, K.; Yang, J.W.; Lee, H. DNA/Tannic Acid Hybrid Gel Exhibiting Biodegradability, Extensibility, Tissue Adhesiveness, and Hemostatic Ability. Adv. Funct. Mater. 2015, 25, 1270–1278. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.M.; Lee, J.; Lee, S.Y.; Lee, H.; Chathuranga, K.; Lee, J.; Park, W. Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels 2022, 8, 650. https://doi.org/10.3390/gels8100650
Yang CM, Lee J, Lee SY, Lee H, Chathuranga K, Lee J, Park W. Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels. 2022; 8(10):650. https://doi.org/10.3390/gels8100650
Chicago/Turabian StyleYang, Chul Min, Jeehee Lee, Su Yeon Lee, Haeshin Lee, Kiramage Chathuranga, Jongsoo Lee, and Wonho Park. 2022. "Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities" Gels 8, no. 10: 650. https://doi.org/10.3390/gels8100650
APA StyleYang, C. M., Lee, J., Lee, S. Y., Lee, H., Chathuranga, K., Lee, J., & Park, W. (2022). Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities. Gels, 8(10), 650. https://doi.org/10.3390/gels8100650