Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1
Abstract
:1. Introduction
2. Results
2.1. Screening of Potential Targets of Osmanthus Fragrans Extract
2.2. Identification of Overlapping Gene and Construction of the PPI Network
2.3. GO and KEGG Enrichment Analysis of Overlapping Genes
2.4. Molecular Docking
2.5. UV-Vis Absorption Spectrum of Osmanthus Extract
2.6. XRD Pattern of OF/NIPAAM Hydrogels
2.7. Effect of Extract on the Cell Viability of MC3T3-E1 Cells
2.8. Osmanthus Fragrans Extract Increases ALP Activity in Osteoblasts
2.9. Osmanthus Fragrans Extract Encourages the Formation of Mineralized Nodule
2.10. Osmanthus Fragrans Extract Promotes Osteogenic Differentiation Dependent on Autophagy Upregulation
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Data Collection
5.2. Overlapping Gene Identification and Protein–Protein Interaction (PPI) Network Construction
5.3. Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
5.4. Molecular Docking Verification
5.5. Preparation of Osmanthus Ethanol Extract and Detection of Components
5.6. Preparation of OF/NIPAAM Hydrogel
5.7. Cell Culture and CCK-8 Assay
5.8. ALP Staining
5.9. Alizarin Red Staining
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Wu, L.; Liu, J.; Huang, W.; Wang, Y.; Chen, Q.; Lu, B. Exploration of Osmanthus fragrans Lour.’s composition, nutraceutical functions and applications. Food Chem. 2022, 377, 131853. [Google Scholar] [CrossRef]
- He, Y.; Yuan, W.; Dong, M.; Han, Y.; Shang, F. The first genetic map in sweet osmanthus osmanthus fragrans lour. using specific locus amplified fragment sequencing. Front. Plant Sci. 2017, 8, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zeng, X.; Yang, J.; Wang, C. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Hortic. Res. 2021, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Wang, G.; Wang, A.Y. A History of Food Culture in China; World Scientific: Singapore, 2015. [Google Scholar]
- Adams, M.; Gmünder, F.; Hamburger, M. Plants traditionally used in age related brain disorders-A survey of ethnobotanical literature. J. Ethnopharmacol. 2007, 1133, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Zang, D.; Xiang, Q. Studies on Osmanthus fragrans cultivars. J. Nanjing For. Univ. Nat. Sci. Ed. 2004, 28, 7–13. [Google Scholar]
- Li, K.Y.; Tsai, Y.C.; Hung, C.Y. Effect of an Osmanthus f ragrans flower beverage on the antioxidant activity in healthy individuals. Taiwan. J. Agric. Chem. Food Sci. 2013, 51, 7–16. [Google Scholar]
- Jiang, Y.; Mao, S.; Huang, W.; Zhao, Y. Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model. J. Agric. Food Chem. 2016, 64, 2459–2466. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, S.; Li, H.; Xu, D.; Xu, X.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Chen, G.; Chen, S.; Xiao, Y.; Fu, N. Antioxidant capacities and total phenolic contents of 30 flowers. Ind. Crops Prod. 2018, 111, 430–445. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Zhu, Y.; Zhao, T.; Xiao, F.; Wang, Y.; Lu, B. Acteoside, the Main Bioactive Compound in Osmanthus fragrans Flowers, Palliates Experimental Colitis in Mice by Regulating the Gut Microbiota. J. Agric. Food Chem. 2022, 70, 1148–1162. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Li, M.; Xu, T.; Zhang, L.; Lu, B.; Wu, X.; Ge, Z. Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on anti-hypoxia activity. Sci. Rep. 2017, 7, 10068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Nakamura, S.; Xu, B.; Matsuda, H. Chemical structures of constituents from the flowers of Osmanthus fragrans var. aurantiacus. J. Nat. Med. 2015, 69, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xu, R.; Shen, X.; Du, S. Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation. Biochem. Bioph. Res. Co. 2020, 531, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, W.; Wang, B.; Xiong, Y. 1α, 25-Dihydroxyvitamin D3 ameliorates diabetes-induced bone loss by attenuating FoxO1-mediated autophagy. J. Biol. Chem. 2021, 296, 100287. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, D.Y.; Sun, J.Y. Fracture toughness and blocking force of temperature-Sensitive PolyNIPAAm and alginate hybrid gels. Gels 2022, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE 2013, 8, e83922. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Guo, Y.; Li, X.; Lv, L. Purification and Preliminary Identification of Total Flavonoids from Artemisia selengensis Turcz. Shi Pin Ke Xue 2013, 34, 85. [Google Scholar]
- Sun, S.; Wu, P. A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem. 2011, 21, 4095–4097. [Google Scholar] [CrossRef]
- Zhu, C.; Shen, S.; Zhang, S.; Chen, X. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front. Endocrinol. (Lausanne) 2022, 13, 898634. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Wei, J.; Zhao, C.; Li, G. Natural Polyphenols Targeting Senescence: A Novel Prevention and Therapy Strategy for Cancer. Int. J. Mol. Sci. 2020, 21, 684. [Google Scholar] [CrossRef] [Green Version]
- Feldman, F.; Koudoufio, M.; Desjardins, Y.; Levy, E. Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021, 13, 672. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res. 2022, 184, 106414. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr. Pharm. Design 2019, 25, 2443–2458. [Google Scholar] [CrossRef]
- Adamova, E.; Janeckova, E.; Kleparnik, K.; Matalova, E. Caspases and osteogenic markers—In vitro screening of inhibition impact. In Vitro Cell. Dev.-An. 2016, 52, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, J.; Chen, X.; He, F. Spontaneous up-regulation of SIRT1 during osteogenesis contributes to stem cells’ resistance to oxidative stress. J. Cell. Biochem. 2018, 119, 4928–4944. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Z.; Mao, Z.; Miao, D. Role of p53 deficiency in socket healing after tooth extractions. J. Mol. Histol. 2020, 51, 55–65. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Mao, W.W.; Jiang, L. Oxidative stress induces downregulation of TP53INP2 and suppresses osteogenic differentiation of BMSCs during osteoporosis through the autophagy degradation pathway. Free Radical Bio. Med. 2021, 166, 226–237. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMS (n.). J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, F.W.; Jin, D. Autophagy preserves the osteogenic ability of periodontal ligament stem cells under high glucose conditions in rats. Arch. Oral Biol. 2019, 101, 172–179. [Google Scholar] [CrossRef]
- Bin, H.; Huangqin, C.; Longquan, S. The ethanol extract of Osmanthus fragrans attenuates Porphyromonas gingivalis lipopolysaccharide-stimulated inflammatory effect through the nuclear factor erythroid 2-related factor-mediated antioxidant signalling pathway. Arch. Oral Biol. 2015, 60, 1030–1038. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Zhao, M.; Yang, M.; Rao, L.; Wu, C.; Hu, Y.; Chen, H.; Li, Y. Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1. Gels 2022, 8, 659. https://doi.org/10.3390/gels8100659
Huang B, Zhao M, Yang M, Rao L, Wu C, Hu Y, Chen H, Li Y. Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1. Gels. 2022; 8(10):659. https://doi.org/10.3390/gels8100659
Chicago/Turabian StyleHuang, Bin, Mengyao Zhao, Mingzhe Yang, Lu Rao, Chizhou Wu, Yuzhu Hu, Huangqin Chen, and Yuesheng Li. 2022. "Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1" Gels 8, no. 10: 659. https://doi.org/10.3390/gels8100659
APA StyleHuang, B., Zhao, M., Yang, M., Rao, L., Wu, C., Hu, Y., Chen, H., & Li, Y. (2022). Osmanthus Fragrans Loaded NIPAAM Hydrogel Promotes Osteogenic Differentiation of MC3T3-E1. Gels, 8(10), 659. https://doi.org/10.3390/gels8100659