Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Gels as Edible Coatings
2.1.1. Thiobarbituric Acid (TBA) Analysis
2.1.2. Microbiological Analysis
2.2. Evaluation of Gels as Delivery Systems of Rosemary Extract
2.2.1. Thiobarbituric Acid (TBA) Analysis
2.2.2. Microbiological Analysis
2.2.3. Total Volatile Basic Nitrogen (TVB-N)
3. Conclusions
4. Materials and Methods
4.1. Sardine Fillet Preparation
4.2. Preparation of Coating Solution and Treatment of Fish Fillets
4.3. Chemical Analysis
4.3.1. Thiobarbituric Acid (TBA) Analysis
4.3.2. Total Volatile Basic Nitrogen (TVB-N)
4.4. Microbiological Analysis
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Šimat, V.; Hamed, I.; Petričević, S.; Bogdanović, T. Seasonal changes in free amino acid and fatty acid compositions of sardines, Sardina Pilchardus (Walbaum, 1792): Implications for nutrition. Foods 2020, 9, 867. [Google Scholar] [CrossRef] [PubMed]
- Çoban, Ö.E.; Can, Ö.P. The effect of active packaging film containing rosemary extract on the quality of smoked rainbow trout (Oncorhynchus mykiss). J. Aquat. Food Prod. Technol. 2013, 22, 361–370. [Google Scholar] [CrossRef]
- González-Fandos, E.; Villarino-Rodrıguez, A.; Garcıa-Linares, M.C.; Garcıa-Arias, M.T.; García-Fernández, M.C. Microbiological safety and sensory characteristics of salmon slices processed by the sous vide method. Food Control 2005, 16, 77–85. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Ghavi, F.F. Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. J. Aquat. Food Prod. Technol. 2016, 25, 835–842. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Int. Food Res. J. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Gennadios, A.; Hanna, M.A.; Kurth, L.B. Application of edible coatings on meats, poultry and seafoods: A review. LWT-Food Sci. Technol. 1997, 30, 337–350. [Google Scholar] [CrossRef]
- Mohan, C.O.; Ravishankar, C.N.; Lalitha, K.V.; Gopal, T.S. Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocoll. 2012, 26, 167–174. [Google Scholar] [CrossRef]
- Bazargani-Gilani, B. Activating sodium alginate-based edible coating using a dietary supplement for increasing the shelf life of rainbow trout fillet during refrigerated storage (4 ± 1 C). J. Food Saf. 2018, 38, e12395. [Google Scholar] [CrossRef] [Green Version]
- Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S.A.; Hamzeh, S. The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control 2016, 67, 163–170. [Google Scholar] [CrossRef]
- Yıldız, P.O.; Yangılar, F. Effects of different whey protein concentrate coating on selected properties of rainbow trout (Oncorhynchus mykiss) during cold storage (4 °C). Int. J. Food Prop. 2016, 19, 2007–2015. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S.; Vongkamjan, K.; Sumpavapol, P.; Yarnpakdee, S. Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. J. Food Sci. Technol. 2015, 52, 6182–6193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Turienzo, L.; Cobos, A.; Moreno, V.; Caride, A.; Vieites, J.M.; Diaz, O. Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem. 2011, 128, 187–194. [Google Scholar] [CrossRef]
- Sallam, K.I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Ng, V.K.; Mikš-Krajnik, M.; Yang, H. Effects of fish gelatin and tea polyphenol coating on the spoilage and degradation of myofibril in fish fillet during cold storage. Food Bioprocess Technol. 2017, 10, 89–102. [Google Scholar] [CrossRef]
- Co, E.D.; Marangoni, A.G. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar] [CrossRef]
- Moschakis, T.; Panagiotopoulou, E.; Katsanidis, E. Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties. LWT-Food Sci. Technol. 2016, 73, 153–161. [Google Scholar] [CrossRef]
- Zampouni, K.; Soniadis, A.; Moschakis, T.; Biliaderis, C.G.; Lazaridou, A.; Katsanidis, E. Crystalline microstructure and physicochemical properties of olive oil oleogels formulated with monoglycerides and phytosterols. LWT-Food Sci. Technol. 2022, 154, 112815. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, Z.; Xue, C. Recent advances on food-grade oleogels: Fabrication, application and research trends. Crit. Rev. Food Sci. Nutr. 2022, 62, 7659–7676. [Google Scholar] [CrossRef] [PubMed]
- Demirkesen, I.; Mert, B. Recent developments of oleogel utilizations in bakery products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2460–2479. [Google Scholar] [CrossRef]
- Kouzounis, D.; Lazaridou, A.; Katsanidis, E. Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Sci. 2017, 130, 38–46. [Google Scholar] [CrossRef]
- Martins, A.J.; Lorenzo, J.M.; Franco, D.; Pateiro, M.; Domínguez, R.; Munekata, P.E.; Pastrana, L.M.; Vicente, A.A.; Cunha, R.L.; Cerqueira, M.A. Characterization of enriched meat-based pâté manufactured with oleogels as fat substitutes. Gels 2020, 6, 17. [Google Scholar] [CrossRef]
- Panagiotopoulou, E.; Moschakis, T.; Katsanidis, E. Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT-Food Sci. Technol. 2016, 73, 351–356. [Google Scholar] [CrossRef]
- Zampouni, K.; Soniadis, A.; Dimakopoulou-Papazoglou, D.; Moschakis, T.; Biliaderis, C.G.; Katsanidis, E. Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. LWT-Food Sci. Technol. 2022, 158, 113172. [Google Scholar] [CrossRef]
- Pinto, T.C.; Martins, A.J.; Pastrana, L.; Pereira, M.C.; Cerqueira, M.A. Oleogel-based systems for the delivery of bioactive compounds in foods. Gels 2021, 7, 86. [Google Scholar] [CrossRef]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A unique class of materials for drug delivery applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Kodela, S.P.; Pandey, P.M.; Nayak, S.K.; Uvanesh, K.; Anis, A.; Pal, K. Novel agar–stearyl alcohol oleogel-based bigels as structured delivery vehicles. Int. J. Polym. Mater. 2017, 66, 669–678. [Google Scholar] [CrossRef]
- Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S.; Lupi, F.R.; Gabriele, D. Key characteristics and modelling of bigels systems: A review. Mater. Sci. Eng. C 2019, 97, 932–953. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Pal, K.; Pramanik, K.; Rana, U.A.; Shakir, I.; Anis, A. Sunflower oil and protein-based novel bigels as matrices for drug delivery applications—Characterization and in vitro antimicrobial efficiency. Polym. Plast. Technol. Eng. 2015, 54, 837–850. [Google Scholar] [CrossRef]
- Rehman, K.; Amin, M.C.I.M.; Zulfakar, M.H. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. J. Oleo. Sci. 2014, 63, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagiri, S.S.; Singh, V.K.; Kulanthaivel, S.; Banerjee, I.; Basak, P.; Battachrya, M.K.; Pal, K. Stearate organogel–gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. J. Mech. Behav. Biomed. Mater. 2015, 43, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, F.; Golmakani, M.T. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system. Innov. Food Sci. Emerg. Technol. 2022, 78, 103028. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Iturra, N.; Contardo, I.; Millao, S.; Morales, E.; Rubilar, M. Food-Grade Bigels with Potential to Replace Saturated and Trans Fats in Cookies. Gels 2022, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Mpountoukas, P.; Vantarakis, A.; Sivridis, E.; Lialiaris, T. Cytogenetic study in cultured human lymphocytes treated with three commonly used preservatives. Food Chem. Toxicol. 2008, 46, 2390–2393. [Google Scholar] [CrossRef] [PubMed]
- Mamur, S.; Yüzbaşıoğlu, D.; Ünal, F.; Aksoy, H. Genotoxicity of food preservative sodium sorbate in human lymphocytes in vitro. Cytotechnology 2012, 64, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennerz, B.S.; Vafai, S.B.; Delaney, N.F.; Clish, C.B.; Deik, A.A.; Pierce, K.A.; Ludwig, V.K.; Mootha, V.K. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol. Genet. Metab. 2015, 114, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalafalla, F.A.; Ali, F.H.; Hassan, A.R.H. Quality improvement and shelf-life extension of refrigerated Nile tilapia (Oreochromis niloticus) fillets using natural herbs. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of herbs and spices for food preservation: Advantages and limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; VanAlstyne, P.; Uhlir, A.; Yang, X. A review on rosemary as a natural antioxidation solution. Eur. J. Lipid Sci. Technol. 2017, 119, 1600439. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, W.X.; Li, C.; Pan, X.L.; Xie, X.G.; Li, T.H. DFT study on the antioxidant activity of rosmarinic acid. THEODJ. 2005, 719, 177–183. [Google Scholar] [CrossRef]
- Fernández-López, J.; Sevilla, L.; Sayas-Barberá, E.; Navarro, C.; Marin, F.; Pérez-Alvarez, J.A. Evaluation of the antioxidant potential of hyssop (Hyssopus officinalis L.) and rosemary (Rosmarinus officinalis L.) extracts in cooked pork meat. J. Food Sci. 2003, 68, 660–664. [Google Scholar] [CrossRef]
- Wellwood, C.R.; Cole, R.A. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J. Agric. Food Chem. 2004, 52, 6101–6107. [Google Scholar] [CrossRef]
- Sarabi, M.; Keramat, J.; Kadivar, M. Antioxidant effect of rosemary extract and BHT on the quality of coated fried Escolar (Lipidocybium flavobrunium) fish fillets during frozen storage. Int. Food Res. J. 2017, 24, 525. [Google Scholar]
- Peiretti, P.G.; Gai, F.; Ortoffi, M.; Aigotti, R.; Medana, C. Effects of rosemary oil (Rosmarinus officinalis) on the shelf-life of minced rainbow trout (Oncorhynchus mykiss) during refrigerated storage. Foods 2012, 1, 28–39. [Google Scholar] [CrossRef]
- Özyurt, G.; Kuley, E.; Balikçi, E.; Kaçar, Ç.; Gökdogan, S.; Etyemez, M.; Özogul, F. Effect of the icing with rosemary extract on the oxidative stability and biogenic amine formation in sardine (Sardinella aurita) during chilled storage. Food Bioproc. Technol. 2012, 5, 2777–2786. [Google Scholar] [CrossRef]
- Djeddi, S.; Bouchenah, N.; Settar, I.; Skaltsa, H.D. Composition and antimicrobial activity of the essential oil of Rosmarinus officinalis from Algeria. Chem. Nat. Compd. 2007, 43, 487–490. [Google Scholar] [CrossRef]
- Klančnik, A.; Guzej, B.; Kolar, M.H.; Abramovič, H.; Možina, S.S. In vitro antimicrobial and antioxidant activity of commercial rosemary extract formulations. J. Food Prot. 2009, 72, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J. Food Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Giménez, B.; Roncalés, P.; Beltrán, J.A. The effects of natural antioxidants and lighting conditions on the quality characteristics of gilt-head sea bream fillets (Sparus aurata) packaged in a modified atmosphere. J. Sci. Food Agric. 2004, 84, 1053–1060. [Google Scholar] [CrossRef]
- Giménez, B.; Roncalés, P.; Beltrán, J.A. The effects of natural antioxidants and lighting conditions on the quality of salmon (Salmo salar) fillets packaged in modified atmosphere. J. Sci. Food Agric. 2005, 85, 1033–1040. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997, 59, 345–353. [Google Scholar] [CrossRef]
- Mendes, R.; Pestana, C.; Gonçalves, A. The effects of soluble gas stabilisation on the quality of packed sardine fillets (Sardina pilchardus) stored in air, VP and MAP. Int. J. Food Sci. Technol. 2008, 43, 2000–2009. [Google Scholar] [CrossRef]
- Pothakos, V.; Samapundo, S.; Devlieghere, F. Total mesophilic counts underestimate in many cases the contamination levels of psychrotrophic lactic acid bacteria (LAB) in chilled-stored food products at the end of their shelf-life. Food Microbiol. 2012, 32, 437–443. [Google Scholar] [CrossRef]
- Pereda, M.; Ponce, A.G.; Marcovich, N.E.; Ruseckaite, R.A.; Martucci, J.F. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 2011, 25, 1372–1381. [Google Scholar] [CrossRef]
- Di Bernardini, R.; Harnedy, P.; Bolton, D.; Kerry, J.; O’Neill, E.; Mullen, A.M.; Hayes, M. Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem. 2011, 124, 1296–1307. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; De Lacey, A.L.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef]
- Sharma, Y.; Velamuri, R.; Fagan, J.; Schaefer, J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020, 25, 4599. [Google Scholar] [CrossRef]
- Yamane, M.A.; Williams, A.C.; Barry, B.W. Terpene penetration enhancers in propylene glycol/water co-solvent systems: Effectiveness and mechanism of action. J. Pharm. Pharmacol. 1995, 47, 978–989. [Google Scholar] [CrossRef]
- Calligaris, S.; Da Pieve, S.; Arrighetti, G.; Barba, L. Effect of the structure of monoglyceride–oil–water gels on aroma partition. Int. Food Res. J. 2010, 43, 671–677. [Google Scholar] [CrossRef]
- Fan, W.; Sun, J.; Chen, Y.; Qiu, J.; Zhang, Y.; Chi, Y. Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem. 2009, 115, 66–70. [Google Scholar] [CrossRef]
- Homayounpour, P.; Jalali, H.; Shariatifar, N.; Amanlou, M.; Khanjari, A. Protective effect of nanochitosan incorporated with free/nanoliposome Cumin (Cuminum cyminum L.) aqueous extract on sardine fish. J. Aquat. Food Prod. Technol. 2020, 29, 949–961. [Google Scholar] [CrossRef]
- Connell, J.J. Control of Fish Quality, 4th ed.; Fishing News Books Limited: London, UK, 1995; p. 245. [Google Scholar]
- Ahmad, M.; Benjakul, S.; Sumpavapol, P.; Nirmal, N.P. Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. Int. J. Food Microbiol. 2012, 155, 171–178. [Google Scholar] [CrossRef]
Gels as Edible Coating | Gels as Edible Coating and Delivery System | ||||||||
---|---|---|---|---|---|---|---|---|---|
Days | C | H | O | BG | HR | OR | BGHR | BGOR | |
0 | 3.77 ± 0.54a | 3.40 ± 0.08a | 3.79 ± 0.06a | 3.25 ± 0.15a | 3.27 ± 0.05a | 3.70 ± 0.14a | 2.92 ± 0.2 5a | 2.90 ± 0.26a | |
Psychrotrophic | 1 | 4.74 ± 1.13a | 4.32 ± 0.07ab | 6.12 ± 0.03a | 3.30 ± 0.11b | 4.20 ± 0.18ab | 5.87 ± 0.07a | 3.27 ± 0.11b | 3.22 ± 0.12b |
Bacteria | 3 | 7.12 ± 0.82a | 5.00 ± 0.02b | 7.40 ± 0.11a | 6.74 ± 0.05a | 5.04 ± 0.05b | 7.42 ± 0.06a | 6.53 ± 0.08a | 6.12 ± 0.19ab |
log (CFU/g) | 5 | 8.50 ± 0.07ab | 7.02 ± 0.07c | 9.13 ± 0.06a | 8.13 ± 0.11abc | 7.03 ± 0.00c | 8.97 ± 0.03a | 8.03 ± 0.02abc | 7.66 ± 0.07bc |
7 | 9.86 ± 0.22a | 8.32 ± 0.01d | 9.15 ± 0.06c | 9.64 ± 0.06ab | 8.00 ± 0.03d | 9.00 ± 0.02c | 9.42 ± 0.11bc | 9.15 ± 0.16c | |
0 | 3.63 ± 0.10a | 3.22 ± 0.02cd | 3.43 ± 0.02abc | 3.55 ± 0.07ab | 3.13 ± 0.02cd | 3.34 ± 0.06bcd | 3.29 ± 0.12cd | 3.10 ± 0.10cd | |
Pseudomonas spp. | 1 | 4.45 ± 0.47a | 3.47 ± 0.05b | 3.95 ± 0.06ab | 3.95 ± 0.02ab | 3.15 ± 0.04b | 3.84 ± 0.07ab | 3.82 ± 0.03b | 3.72 ± 0.06b |
log (CFU/g) | 3 | 6.94 ± 0.67a | 5.22 ± 0.12b | 7.36 ± 0.11a | 6.51 ± 0.11a | 5.29 ± 0.07b | 7.24 ± 0.01a | 6.39 ± 0.06ab | 6.20 ± 0.07ab |
5 | 8.28 ± 0.74abc | 7.19 ± 0.11d | 9.19 ± 0.09a | 7.89 ± 0.04bcd | 7.09 ± 0.02d | 8.71 ± 0.15ab | 7.43 ± 0.04cd | 7.19 ± 0.07d | |
7 | 9.83 ± 0.18a | 9.25 ± 0.04bc | 9.40 ± 0.11bc | 9.74 ± 0.05a | 9.19 ± 0.06bc | 9.04 ± 0.08c | 9.46 ± 0.04b | 9.27 ± 0.05bc | |
0 | 2.48 ± 0.41a | 1.92 ± 0.11ab | 2.46 ± 0.06ab | 2.52 ± 0.09a | 1.69 ± 0.12b | 2.22 ± 0.15ab | 2.39 ± 0.06ab | 2.21 ± 0.08ab | |
Enterobacteriaceae | 1 | 3.26 ± 0.74a | 2.45 ± 0.03a | 3.74 ± 0.09a | 2.94 ± 0.03a | 2.33 ± 0.07a | 3.56 ± 0.08a | 2.84 ± 0.06a | 2.75 ± 0.08a |
log (CFU/g) | 3 | 5.93 ± 0.52a | 4.40 ± 0.11bc | 4.58 ± 0.02bc | 5.30 ± 0.12ab | 4.38 ± 0.01bc | 4.30 ± 0.06c | 5.11 ± 0.06bc | 4.91 ± 0.05bc |
5 | 6.96 ± 0.86ab | 6.52 ± 0.01abc | 7.75 ± 0.04a | 5.92 ± 0.26bc | 6.48 ± 0.02abc | 7.69 ± 0.02a | 5.23 ± 0.08c | 5.00 ± 0.04c | |
7 | 8.40 ± 0.30a | 7.59 ± 0.03b | 7.17 ± 0.01bc | 8.57 ± 0.06a | 7.42 ± 0.08b | 6.72 ± 0.01c | 8.43 ± 0.04a | 8.19 ± 0.08a |
Coding | Composition of Coatings | Total RE * in the Coating |
---|---|---|
C | No coating | 0% |
H | Hydrogel: 10% w/w gelatin in H2O | 0% |
O | Oleogel: 15% w/w monoglycerides in sunflower oil | 0% |
BG | 20% oleogel + 80% hydrogel | 0% |
HR | Hydrogel: 10% w/w gelatin in H2O | 2% |
OR | Oleogel: 15% w/w monoglycerides in sunflower oil | 2% |
BGHR | 20% oleogel + 80% hydrogel | 2% (added in the aqueous phase) |
BGOR | 20% oleogel + 80% hydrogel | 2% (added the lipid phase) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanelaki, A.; Zampouni, K.; Mourtzinos, I.; Katsanidis, E. Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract. Gels 2022, 8, 660. https://doi.org/10.3390/gels8100660
Kanelaki A, Zampouni K, Mourtzinos I, Katsanidis E. Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract. Gels. 2022; 8(10):660. https://doi.org/10.3390/gels8100660
Chicago/Turabian StyleKanelaki, Aikaterini, Konstantina Zampouni, Ioannis Mourtzinos, and Eugenios Katsanidis. 2022. "Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract" Gels 8, no. 10: 660. https://doi.org/10.3390/gels8100660
APA StyleKanelaki, A., Zampouni, K., Mourtzinos, I., & Katsanidis, E. (2022). Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract. Gels, 8(10), 660. https://doi.org/10.3390/gels8100660