Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis
2.2. XRD Analysis
2.3. Infrared Spectroscopy
2.4. FE-SEM with EDAX Analysis
2.5. HRTEM Analysis with SAED
2.6. X-ray Photoelectron Spectra
2.7. Magnetic Analysis
3. Conclusions
4. Materials and Methods
Characterization Techniques
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qarony, W.; Hossain, M.K.; Hossain, M.I.; Zeng, L.; Ma, S.; Yu, K.M.; Salleo, A.; Knipp, D.; Tung Yup, C.; Tsang, Y.H. Reversible photochromic and photoluminescence in iodide perovskites. Thin Solid Film. 2021, 737, 138950. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Wang, D.; Han, M.; Qian, G.; Wu, F.; Lin, Q.; Hu, Z. Reversible Phase Transitions of all Inorganic Copper-Based Perovskites: Water-Triggered Fluorochromism for Advanced Anticounterfeiting Applications. ACS Appl. Electron. Mater. 2022, 4, 225–232. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Mon. Für Chem.-Chem. Mon. 2017, 148, 795–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffo, A.; Mozzati, M.C.; Albini, B.; Galinetto, P.; Bini, M. Role of non-magnetic dopants (Ca, Mg) in GdFeO3 perovskite nanoparticles obtained by different synthetic methods: Structural, morphological and magnetic properties. J. Mater. Sci. Mater. Electron. 2020, 31, 18263–18277. [Google Scholar] [CrossRef]
- Mir, S.A.; Ikram, M.; Asokan, K. September. Effect of Ni doping on optical, electrical and magnetic properties of Nd orthoferrite. J. Phys. Conf. Ser. 2014, 534, 012017. [Google Scholar] [CrossRef]
- Somvanshi, A.; Husain, S.; Manzoor, S.; Tiwari, S.; Fatema, M.; Khan, W. Room temperature dual ferroic behavior induced by (Bi, Ni) co-doping in nanocrystalline Nd0.7Bi0.3Fe1−xNixO3 (0 ≤ x ≤ 0.3). J. Mater. Sci. Mater. Electron. 2020, 31, 11010–11020. [Google Scholar] [CrossRef]
- Mathur, S.; Shen, H.; Lecerf, N.; Kjekshus, A.; Fjellvaag, H.; Goya, G.F. Nanocrystalline orthoferrite GdFeO3 from a novel heterobimetallic precursor. Adv. Mater. 2002, 14, 1405–1409. [Google Scholar] [CrossRef]
- Popkov, V.I.; Albadi, Y. The effect of co-precipitation temperature on the crystallite size and aggregation/agglomeration of GdFeO3 nanoparticles. Нанoсистемы Физика Химия Математика 2021, 12, 224–231. [Google Scholar] [CrossRef]
- Santhosh, B.S.; Yashas, S.R.; Kumara Swamy, N.; Shivaraju, H.P. Application of non-hierarchical gadolinium ortho-ferrite nanostructure for LED-driven photocatalytic mineralization of doxycycline hydrochloride. J. Mater. Sci. Mater. Electron. 2022, 33, 11676–11686. [Google Scholar] [CrossRef]
- Alecu, A.-E.; Costea, C.-C.; Surdu, V.-A.; Voicu, G.; Jinga, S.-I.; Busuioc, C. Processing of Calcium Magnesium Silicates by the Sol–Gel Route. Gels 2022, 8, 574. [Google Scholar] [CrossRef]
- Nawaz, A.; Ullah, S.; Alnuwaiser, M.A.; Rehman, F.U.; Selim, S.; Al Jaouni, S.K.; Farid, A. Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022, 8, 537. [Google Scholar] [CrossRef]
- Mocioiu, O.-C.; Vlăduț, C.M.; Atkinson, I.; Brătan, V.; Mocioiu, A.-M. The Influence of Gel Preparation and Thermal Treatment on the Optical Properties of SiO2-ZnO Powders Obtained by Sol–Gel Method. Gels 2022, 8, 498. [Google Scholar] [CrossRef]
- Mariyappan, V.; Keerthi, M.; Chen, S.M.; Jeyapragasam, T. Nanostructured perovskite type gadolinium orthoferrite decorated RGO nanocomposite for the detection of nitrofurantoin in human urine and river water samples. J. Colloid Interface Sci. 2021, 600, 537–549. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Li, S.; Chen, L.; Li, Z. Study on the Structure, Magnetic Properties and Mechanism of Zn-Doped Yttrium Iron Garnet Nanomaterial Prepared by the Sol-gel Method. Gels 2022, 8, 325. [Google Scholar] [CrossRef]
- Jovanovic, J.D.; Adnadjevic, B.K. Kinetics of the Release of Nicotinamide Absorbed on Partially Neutralized Poly(acrylic-co-methacrylic acid) Xerogel under the Conditions of Simultaneous Microwave Heating and Cooling. Gels 2021, 7, 193. [Google Scholar] [CrossRef]
- Wei, K.; Liang, B.; Sun, C.; Jiang, Y.; Yuan, M. Metal Halide Perovskites for Red-Emission Light-Emitting Diodes. Small Struct. 2022, 3, 2200063. [Google Scholar] [CrossRef]
- Albadi, Y.; Martinson, K.D.; Shvidchenko, A.V.E.; Buryanenko, I.V.; Semenov, V.G.; Popkov, V.I. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: The effect of strong agglomeration on the magnetic behavior. Нанoсистемы Физика Химия Математика 2020, 11, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Sathiyamurthy, K.; Rajeevgandhi, C.; Bharanidharan, S.; Sugumar, P.; Subashchandrabose, S. Electrochemical and magnetic properties of zinc ferrite nanoparticles through chemical co-precipitation method. Chem. Data Collect. 2020, 28, 100477. [Google Scholar] [CrossRef]
- Ilhan, S.; Izotova, S.G.; Komlev, A.A. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram. Int. 2015, 41, 577–585. [Google Scholar] [CrossRef]
- Vandana, C.S.; Rudramadevi, B.H. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite. Mater. Res. Express 2018, 5, 046101. [Google Scholar] [CrossRef]
- Datt, G.; Raja, M.M.; Abhyankar, A.C. Steering of Magnetic Interactions in Ni0.5Zn0.5Fe2–x(Mn)xO4 Nanoferrites via Substitution-Induced Cationic Redistribution. J. Phys. Chem. C 2021, 125, 10693–10707. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, S.; Zheng, M.; Chen, H.; Wu, A. Synthesis and magnetic properties of nanocrystalline Gd3Fe5O12 and GdFeO3 powders prepared by sol–gel auto-combustion method. Mater. Res. Bull. 2018, 104, 92–96. [Google Scholar] [CrossRef]
- Dehsari, H.S.; Asadi, K. Impact of Stoichiometry and Size on the Magnetic Properties of Cobalt Ferrite Nanoparticles. J. Phys. Chem. C 2018, 122, 29106–29121. [Google Scholar] [CrossRef]
- Sena, N.C.; Castro, T.J.; Garg, V.K.; Oliveira, A.C.; Morais, P.C.; da Silva, S.W. Gadolinium ferrite nanoparticles: Synthesis and morphological, structural and magnetic properties. Ceram. Int. 2017, 43, 4042–4047. [Google Scholar] [CrossRef]
- Puli, V.S.; Adireddy, S.; Ramana, C.V. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J. Alloys Compd. 2015, 644, 470–475. [Google Scholar] [CrossRef]
GdFeO3 | Crystallite Size (nm) |
---|---|
800 °C | 20.2 |
900 °C | 23.6 |
1000 °C | 25.1 |
1100 °C | 27 |
Element | Peak Binding Energy |
---|---|
Gd 4d | 152.02 146.87 140.34 |
Fe 2p | 709.62 717.75 723.64 711.65 |
O 1s | 530 535.02 |
Temperature | Saturation Magnetization (Ms) emu/g | Coercivity G |
---|---|---|
800 °C | 33.1 | 544 |
900 °C | 38.7 | 605 |
1000 °C | 47.2 | 684 |
1100 °C | 53.1 | 729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guganathan, L.; Rajeevgandhi, C.; Sathiyamurthy, K.; Thirupathi, K.; Santhamoorthy, M.; Chinnasamy, E.; Raorane, C.J.; Raj, V.; Kim, S.-C.; Anand, P. Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method. Gels 2022, 8, 688. https://doi.org/10.3390/gels8110688
Guganathan L, Rajeevgandhi C, Sathiyamurthy K, Thirupathi K, Santhamoorthy M, Chinnasamy E, Raorane CJ, Raj V, Kim S-C, Anand P. Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method. Gels. 2022; 8(11):688. https://doi.org/10.3390/gels8110688
Chicago/Turabian StyleGuganathan, Loganathan, Chinnaiyan Rajeevgandhi, Kaliyamurthy Sathiyamurthy, Kokila Thirupathi, Madhappan Santhamoorthy, Ellappan Chinnasamy, Chaitany Jayprakash Raorane, Vinit Raj, Seong-Cheol Kim, and Pichapillai Anand. 2022. "Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method" Gels 8, no. 11: 688. https://doi.org/10.3390/gels8110688
APA StyleGuganathan, L., Rajeevgandhi, C., Sathiyamurthy, K., Thirupathi, K., Santhamoorthy, M., Chinnasamy, E., Raorane, C. J., Raj, V., Kim, S. -C., & Anand, P. (2022). Magnetic Application of Gadolinium Orthoferrite Nanoparticles Synthesized by Sol–Gel Auto-Combustion Method. Gels, 8(11), 688. https://doi.org/10.3390/gels8110688