Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Component Screening
2.2. The Behavior of Phase and Nanoemulsion Optimization
2.3. Characterization: Structure and Morphology
2.4. Micromeritics
2.5. Determination of Conductance and Viscosity
2.6. Nanoemulgel Formulation
2.6.1. Nanoemulgel pH Determination and Concentration of Drug
2.6.2. Ability to Spread
2.6.3. Measurement of Rheological Behaviour
2.7. Applying Central Composite Rotatable Design for Formulation
Effect of Independent Variables on Particle Size (nm), Zeta Potential, and Time Phases
2.8. Studies for Permeability of Skin
2.9. In Vitro Release Studies
2.10. DPPH Scavenging Activity of Babchi Oil Nanoemulgel
2.11. Dermatokinetic Study
2.12. Studies for Stability
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Experimental Methods
4.2.1. Solubility of Babchi Oil
4.2.2. Screening of Nanoemulsion Components
4.2.3. Construction of Phase Diagrams
4.2.4. Nanoemulsion Formulation
4.2.5. Nanoemulsion Optimization
Nanoemulsion Structure and Morphology
Nanoemulsion Micromeritics
Nanoemulsion Conductivity and Viscosity
Nanoemulsion-Based Hydrogel (Nanoemulgel) Formulation
4.2.6. Nanoemulsion Characterization
Particle Size and Polydispersity Index (PDI)
Drug Content Determination
pH Determination
Spreadability
Measurements of Viscosity and Rheological Management
4.2.7. Ex Vivo Drug Studies on Permeation
4.2.8. Determination of Nanoemulgel Drug Content
4.2.9. DPPH Scavenging Activity of Nanoemulgel
4.2.10. In Vitro Release and Permeation Studies
4.2.11. Release of Babchi Oil Nanoemulgel
4.2.12. Dermatokinetic Studies
4.2.13. Stability Studies
4.2.14. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affandi, A.M.; Khan, I.; Saaya, N.N. Epidemiology and Clinical Features of Adult Patients with Psoriasis in Malaysia: 10-Year Review from the Malaysian Psoriasis Registry (2007–2016). Dermatol. Res. Pract. 2018, 2018, 4371471. [Google Scholar] [CrossRef] [Green Version]
- Krueger, J.G.; Bowcock, A. Psoriasis Pathophysiology: Current Concepts of Pathogenesis. Ann. Rheum. Dis. 2005, 64, ii30–ii36. [Google Scholar] [CrossRef] [PubMed]
- Salim, N.; Ahmad, N.; Musa, S.H.; Hashim, R.; Tadros, T.F.; Basri, M. Nanoemulsion as a Topical Delivery System of Antipsoriatic Drugs. RSC Adv. 2016, 6, 6234–6250. [Google Scholar] [CrossRef]
- Sarkar, S. A Treatise on Topical Corticosteroid in Dermatology. Indian J. Dermatol. 2018, 63, 530. [Google Scholar] [CrossRef]
- Campalani, E.; Allen, M.H.; Fairhurst, D.; Young, H.S.; Mendonca, C.O.; Burden, A.D.; Griffiths, C.E.M.; Crook, M.A.; Barker, J.N.W.N.; Smith, C.H. Apolipoprotein E Gene Polymorphisms Are Associated with Psoriasis but Do Not Determine Disease Response to Acitretin. Br. J. Dermatol. 2006, 154, 345–352. [Google Scholar] [CrossRef]
- Warren, R.B.; Griffiths, C.E.M. Systemic Therapies for Psoriasis: Methotrexate, Retinoids, and Cyclosporine. Clin. Dermatol. 2008, 26, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, M.; Singh, D.; Singh, M.R. Novel Colloidal Carriers for Psoriasis: Current Issues, Mechanistic Insight and Novel Delivery Approaches. J. Control. Release 2013, 170, 380–395. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Liang, X.; Ding, M.; Zhong, J.; Ji, Z.; Xiang, W. Controllable Synthesis of Lanthanide Upconversion Nanomaterials through Impurity Doping. Fabr. Self-Assem. Nanobiomater. Appl. Nanobiomater. 2016, 1, 211–241. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-Emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Amsterdam, R. Basic Physical Sciences for the Formulation of Cosmetic Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 39–76. [Google Scholar]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, Structure, and Physical Properties. J. Phys. Condens. Matter 2006, 18, R635. [Google Scholar] [CrossRef] [Green Version]
- Md, F. Biosurfactant: Production and Application. J. Pet. Environ. Biotechnol. 2012, 3, 124. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Mustafa, G.; Agrawal, G.P.; Hashmi, S.; Khan, R.A.; Aba Alkhayl, F.F.; Ullah, Z.; Ali, M.S.; Elkirdasy, A.F.; Khan, S. A Microemulsion-Based Gel of Isotretinoin and Erythromycin Estolate for the Management of Acne. J. Drug Deliv. Sci. Technol. 2022, 71, 103277. [Google Scholar] [CrossRef]
- Gutekunst, S.B.; Siemsen, K.; Huth, S.; Möhring, A.; Hesseler, B.; Timmermann, M.; Paulowicz, I.; Mishra, Y.K.; Siebert, L.; Adelung, R.; et al. 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomater. Sci. Eng. 2019, 5, 1784–1792. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Thakur, V.K.; Gao, Z.; Gu, J.; Kessler, M.R. High-Performance Thermosets with Tailored Properties Derived from Methacrylated Eugenol and Epoxy-Based Vinyl Ester. Polym. Int. 2018, 67, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Pandele, A.M.; Neacsu, P.; Cimpean, A.; Staras, A.I.; Miculescu, F.; Iordache, A.; Voicu, S.I.; Thakur, V.K.; Toader, O.D. Cellulose Acetate Membranes Functionalized with Resveratrol by Covalent Immobilization for Improved Osseointegration. Appl. Surf. Sci. 2018, 438, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Govender, P.P.; Mamo, M.A.; Tamulevicius, S.; Mishra, Y.K.; Thakur, V.K. Progress in Lignin Hydrogels and Nanocomposites for Water Purification: Future Perspectives. Vacuum 2017, 146, 342–355. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Jawaid, T.; Alsanad, S.M.; Kamal, M.; Rawat, P.; Singh, V.; Alam, P.; Alam, P. Solubility Enhancement, Formulation Development, and Antibacterial Activity of Xanthan-Gum-Stabilized Colloidal Gold Nanogel of Hesperidin against Proteus Vulgaris. Gels 2022, 8, 655. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.H.; Foudah, A.I.; Alam, A.; Salkini, M.A.; Muharram, M.M.; Labrou, N.E.; Kumar, P. Development of Gum-Acacia-Stabilized Silver Nanoparticles Gel of Rutin against Candida Albicans. Gels 2022, 8, 472. [Google Scholar] [CrossRef]
- Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of Babchi Essential Oil into Microsponges: Physicochemical Properties, Cytotoxic Evaluation and Anti-Microbial Activity. J. Food Drug Anal. 2019, 27, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Chopra, B.; Dhingra, A.K.; Dhar, K.L. Psoralea Corylifolia L. (Buguchi)—Folklore to Modern Evidence: Review. Fitoterapia 2013, 90, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Khan, G.N.; Asad, M.H.H. Bin Psoralea Corylifolia L: Ethnobotanical, Biological, and Chemical Aspects: A Review. Phyther. Res. 2018, 32, 597–615. [Google Scholar] [CrossRef]
- Sah, P.; Agarwal, D.; Garg, S.P. Isolation and Identification of Furocoumarins from the Seeds of Psoralea Corylifolia Linn. Indian J. Pharm. Sci. 2006, 68, 768. [Google Scholar] [CrossRef] [Green Version]
- Marwaha, T.K. Formulation design and evaluation of Herbal anti psoriatic emulgel. J. Pharm. Sci. Innov. 2013, 2, 30–42. [Google Scholar] [CrossRef]
- Chen, H.; Chang, X.; Du, D.; Li, J.; Xu, H.; Yang, X. Microemulsion-Based Hydrogel Formulation of Ibuprofen for Topical Delivery. Int. J. Pharm. 2006, 315, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Aboofazeli, R.; Barlow, D.J.; Lawrence, M.J. Particle Size Analysis of Concentrated Phospholipid Microemulsions: I. Total Intensity Light Scattering. AAPS PharmSci 2000, 2, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, R.; Bandyopadhyay, S.; Kapil, R.; Garg, B. Optimized Nanoemulsifying Systems with Enhanced Bioavailability of Carvedilol. Colloids Surf. B Biointerfaces 2013, 101, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic Property in Pharmaceutical Formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Worachun, N.; Opanasopit, P.; Rojanarata, T.; Panomsuk, S. Cremophor RH40-PEG 400 Microemulsions as Transdermal Drug Delivery Carrier for Ketoprofen. Pharm. Dev. Technol. 2013, 18, 798–803. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Iqubal, M.K.; Iqubal, A.; Imtiyaz, K.; Rizvi, M.M.A.; Gupta, M.M.; Ali, J.; Baboota, S. Combinatorial Lipid-Nanosystem for Dermal Delivery of 5-Fluorouracil and Resveratrol against Skin Cancer: Delineation of Improved Dermatokinetics and Epidermal Drug Deposition Enhancement Analysis. Eur. J. Pharm. Biopharm. 2021, 163, 223–239. [Google Scholar] [CrossRef] [PubMed]
Run | Oil % v/v | Smix % v/v | Particle Size (nm) | Zeta Potential | EE (%) |
---|---|---|---|---|---|
1 | 3 | 5 | 193.43 | −22.57 | 89.43 |
2 | 4 | 6 | 249.35 | −16.36 | 89.11 |
3 | 3 | 5 | 194.34 | −23.13 | 88.09 |
4 | 4 | 4 | 283.13 | −25.08 | 90.07 |
5 | 1.5 | 5 | 120.34 | −13.98 | 58.21 |
6 | 3 | 5 | 193.25 | −22.98 | 88.61 |
7 | 3 | 5 | 194.12 | −23.62 | 89.75 |
8 | 2 | 6 | 131.87 | −14.87 | 65.98 |
9 | 3 | 6.4 | 176.21 | −12.76 | 79.64 |
10 | 4.4 | 5 | 302.45 | −18.25 | 93.12 |
11 | 3 | 3.5 | 204.54 | −29.08 | 76.12 |
12 | 3 | 5 | 195.04 | −22.11 | 88.04 |
13 | 2 | 4 | 144.04 | −24.13 | 66.31 |
Skin Part | Type | Tmax | Cmax | AUC | Ke |
---|---|---|---|---|---|
Epidermis | Formulation | 2 | 220.049 | 872.4898 | 0.13295 |
Conventional | 2 | 114.569 | 472.9198 | 0.137736 | |
Dermis | Formulation | 2 | 164.875 | 644.4886 | 0.139326 |
Conventional | 2 | 375.918 | 375.9179 | 0.139155 |
Factors | Levels Used | ||||
---|---|---|---|---|---|
Independent Variable | Axial −α | Low (−1) | Medium (0) | High (+1) | Axial + α |
A—Oil (% v/v) | 1.58 | 2 | 3 | 4 | 4.41 |
B—Smix (% v/v) | 3.58 | 4 | 5 | 6 | 6.41 |
Dependent Variable | Constraints used | ||||
R1—Particle size (nm) | Minimum | ||||
R2—ZP | Maximum | ||||
R3—Entrapment efficiency (%) | Maximum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, A.; Alqarni, M.H.; Foudah, A.I.; Raish, M.; Salkini, M.A. Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants. Gels 2022, 8, 761. https://doi.org/10.3390/gels8120761
Alam A, Alqarni MH, Foudah AI, Raish M, Salkini MA. Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants. Gels. 2022; 8(12):761. https://doi.org/10.3390/gels8120761
Chicago/Turabian StyleAlam, Aftab, Mohammed H. Alqarni, Ahmed I. Foudah, Mohammad Raish, and Mohamad Ayman Salkini. 2022. "Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants" Gels 8, no. 12: 761. https://doi.org/10.3390/gels8120761
APA StyleAlam, A., Alqarni, M. H., Foudah, A. I., Raish, M., & Salkini, M. A. (2022). Babchi Oil-Based Nanoemulsion Hydrogel for the Management of Psoriasis: A Novel Energy Economic Approach Employing Biosurfactants. Gels, 8(12), 761. https://doi.org/10.3390/gels8120761