Polyacrylamide/poly(2-(dimethylamino) Ethyl Methacrylate) Interpenetrating Polymer Networks as Drug Delivery Systems for Diclofenac Sodium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Equilibrium Swelling Degree in Water
2.2. Swelling Kinetics
2.3. Scanning Electron Microscopy (SEM)
2.4. Thermal Properties of PDMAEMA/PAAm IPNs as Well as of the Single PAAm Network
2.5. Diclofenac Sodium Content (%) in the Networks
2.6. In Vitro Diclofenac Sodium Release Study
2.7. TM-DSC of Diclofenac Sodium Loaded PDMAEMA/PAAm IPNs
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of PDMAEMA/PAAm IPN
4.2.2. Swelling Kinetics in Water
4.2.3. Equilibrium Swelling Degree in Water
4.2.4. Determination of the Diffusion Coefficient (D) of Water in the IPNs
4.2.5. Scanning Electron Microscopy (SEM)
4.2.6. Temperature-Modulated Differential Scanning Calorimetry (TM-DSC)
4.2.7. Loading Efficiency (LE)
4.2.8. In Vitro Drug Release Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chuasuwan, B.; Binjesoh, V. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Diclofenac Sodium and Diclofenac Potassium. J. Pharm. Sci. 2009, 98, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Sintov, A.C.; Botner, S. Transdermal drug delivery using microemulsion and aqueous systems: Influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int. J. Pharm. 2006, 311, 55–62. [Google Scholar] [CrossRef]
- Rubio, L.; Alonso, C.; Rodríguez, G.; Barbosa-Barros, L.; Coderch, L.; De la Maza, A.; Parra, J.L.; López, O. Bicellar systems for in vitro percutaneous absorption of diclofenac. Int. J. Pharm. 2010, 386, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.K.; Purohit, S.; Kumar, Y.; Mishra, S.; Bhandari, A. Preparation, characterization and permeation studies of a nanovesicular system containing diclofenac for transdermal delivery. Pharm. Dev. Technol. 2014, 19, 48–54. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Chang, C.C. Auto-adhesive transdermal drug delivery patches using beetle inspired micropillar structures. J. Mater. Chem. B 2013, 1, 5963–5970. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ge, Y.; Tang, Y.; Yuan, Y.; Zhang, Q.; Li, R.; Xu, Q. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. J. Microencapsul. 2010, 27, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, S.; Arami, S. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes. Biol. Med. Res. Int. 2013, 2013, 616810. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Wang, A. A pH sensitive carboxymethyl cellulose-g-poly (acrylic acid)/polyvinylpyrrolidone/sodium alginate composite hydrogel bead for the controlled release of diclofenac. J. Control. Rel. 2015, 213, E91–E92. [Google Scholar] [CrossRef]
- Saidi, L.; Vilela, C.; Oliveira, H.; Silvestre, A.J.D.; Freire, C.S.R. Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydr. Polym. 2017, 169, 357–365. [Google Scholar] [CrossRef]
- Goh, C.F.; Lane, M.E. Formulation of diclofenac for dermal delivery. Int. J. Pharm. 2014, 473, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, K.M.; Ramana, M.V.; Satyanarayana, D. Design and evaluation of diclofenac sodium controlled drug delivery systems. Indian J. Pharm. Sci. 2007, 69, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Çetin, K.; Denizli, A. Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium. React. Funct. Polym. 2022, 170, 105125. [Google Scholar] [CrossRef]
- Ray, S.; Banerjee, S.; Maiti, S.; Laha, B.; Barik, S.; Sa, B.; Bhattacharyya, U.K. Novel interpenetrating network microspheres of xanthan gum-poly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine--in vitro and in vivo evaluation. Drug Deliv. 2010, 17, 508–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, A.; Priya, G.R. Formulation and Evaluation of Interpenetrating Polymer Network Microparticles of Diclofenac Sodium. Res. J. Pharm. Techn. 2022, 15, 792–798. [Google Scholar] [CrossRef]
- Zhang, C.; Easteal, A.J. Encapsulation of Diclofenac Sodium with Acidic Copolymer Hydrogels Based on PEG/Poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfoni c acid) Semi-Interpenetrating Network Using in Situ Loading Technique. J. Appl. Polym. Sci. 2009, 113, 2217–2231. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Guo, B.; Ma, P.X. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromolecules 2014, 15, 3246–3252. [Google Scholar] [CrossRef]
- Banerjee, S.; Chaurasia, G.; Pal, D.; Ghosh, A.K.; Ghosh, A.; Kaity, S. Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J. Sci. Ind. Res. 2010, 69, 777–784. [Google Scholar]
- Biswas, A.; Mondal, S.; Das, S.K.; Bose, A.; Thomas, S.; Ghosal, K.; Roy, S.; Provaznik, I. Development and characterization of natural product derived macromolecule based interpenetrating polymer network for therapeutic drug targeting. ACS Omega 2021, 6, 28699–28709. [Google Scholar] [CrossRef]
- Liu, Q.; Singh, A.; Lalani, R.; Liu, L. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization. Biomacromolecules 2012, 13, 1086–1092. [Google Scholar] [CrossRef]
- Lilge, I.; Schönherr, H. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. Langmuir 2016, 32, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Merino, S.; González-Domínguez, J.M.; Rauti, R.; Ballerini, L.; Prato, M.; Vázquez, E. Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Sci. Rep. 2017, 7, 10942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Shen, W.; Xiong, Q.; Wang, H.; Zhou, Z.; Chena, W.; Zhang, Q. Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core. RSC Adv. 2015, 5, 28133–28140. [Google Scholar] [CrossRef]
- Shevtsov, V.Y.; Hsina, T.Y.; Shieh, Y.T. Preparation of amphiphilic copolymers via base-catalyzed hydrolysis of quaternized poly[2-(dimethylamino)ethyl methacrylate]. Polym. Chem. 2022, 13, 1429–1436. [Google Scholar] [CrossRef]
- Gao, C.; Liu, M.; Chen, S.; Jin, S.; Chen, J. Preparation of oxidized sodium alginate-graft-poly (2-dimethylamino) ethyl methacrylate) gel beads and in vitro controlled release behavior of BSA. Int. J. Pharm. 2009, 371, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Samsonova, O.; Pfeiffer, C.; Hellmund, M.; Merkel, O.M.; Kissel, T. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene De-livery Agents. Polymers 2011, 3, 693–718. [Google Scholar] [CrossRef]
- Orakdogen, N. pH-responsive swelling behaviour, elasticity and molecular characteristics of poly(N,N-dimethylaminoethyl methacrylate) gels at various initial monomer concentrations. Polym. Bull. 2011, 67, 1347–1366. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.N.; Yang, B.; Wang, L.G. Swelling or deswelling? Composition-dependent CO2-responsive swelling behaviors of poly(acrylamide-co-2-dimethylaminoethyl methacrylate) hydrogels. Colloid Polym. Sci. 2018, 296, 393–403. [Google Scholar] [CrossRef]
- Simeonov, M.; Monova, A.; Kostova, B.; Vassileva, E. Drug transport in stimuli responsive acrylic and methacrylic interpenetrating polymer networks. J. Appl. Polym. Sci. 2017, 134, 45380. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.M.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25. [Google Scholar] [CrossRef]
- Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169. [Google Scholar] [CrossRef]
- Bukowski, C.; Zhang, T.; Riggleman, R.A.; Crosby, A.J. Load-bearing entanglements in polymer glasses. Sci. Adv. 2021, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Zihui, L.; Hiroaki, S.; Scot, C.; Warren, M.; Kamperman, H.; Hitesh, A.; Sol, M.G.; Wiesner, U. Metal Nano-particle-Block Copolymer Composite Assembly and Disassembly. Chem. Mater. 2009, 21, 5578–5584. [Google Scholar]
φPDMAEMA | n | D [m2/s] |
---|---|---|
0 | 0.50 ± 0.03 | 1.34 × 10−9 |
0.26 | 0.78 ± 0.18 | 7.05 × 10−9 |
0.33 | 0.66 ± 0.05 | 5.30 × 10−9 |
0.46 | 0.644 ± 0.007 | 7.10 × 10−9 |
0.52 | 0.61 ± 0.03 | 9.19 × 10−9 |
1 | - | - |
Sample | Loading Efficiency (%) of Diclofenac Sodium in the Polymer Networks | Diclofenac Sodium Content (%) in the Polymer Networks |
---|---|---|
IPN 1 | 41% | 17% |
IPN 2 | 37% | 16% |
IPN 3 | 32% | 14% |
IPN 4 | 35% | 15% |
PAAm | 38% | 16% |
IPNs Designation | PAAm [M] | PDMAEMA [M] | φPDMAEMA |
---|---|---|---|
PAAm | 1 | - | 0 |
IPN 1 | 1 | 0.3 | 0.26 |
IPN 2 | 1 | 0.5 | 0.33 |
IPN 3 | 1 | 0.7 | 0.46 |
IPN 4 | 1 | 1 | 0.52 |
PDMAEMA | 0 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorova, K.; Kostova, B.; Georgieva, D.; Apostolov, A.; Vassileva, E. Polyacrylamide/poly(2-(dimethylamino) Ethyl Methacrylate) Interpenetrating Polymer Networks as Drug Delivery Systems for Diclofenac Sodium. Gels 2022, 8, 780. https://doi.org/10.3390/gels8120780
Grigorova K, Kostova B, Georgieva D, Apostolov A, Vassileva E. Polyacrylamide/poly(2-(dimethylamino) Ethyl Methacrylate) Interpenetrating Polymer Networks as Drug Delivery Systems for Diclofenac Sodium. Gels. 2022; 8(12):780. https://doi.org/10.3390/gels8120780
Chicago/Turabian StyleGrigorova, Kristina, Bistra Kostova, Dilyana Georgieva, Anton Apostolov, and Elena Vassileva. 2022. "Polyacrylamide/poly(2-(dimethylamino) Ethyl Methacrylate) Interpenetrating Polymer Networks as Drug Delivery Systems for Diclofenac Sodium" Gels 8, no. 12: 780. https://doi.org/10.3390/gels8120780
APA StyleGrigorova, K., Kostova, B., Georgieva, D., Apostolov, A., & Vassileva, E. (2022). Polyacrylamide/poly(2-(dimethylamino) Ethyl Methacrylate) Interpenetrating Polymer Networks as Drug Delivery Systems for Diclofenac Sodium. Gels, 8(12), 780. https://doi.org/10.3390/gels8120780