A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Overview of the Calibration Process
2.2. Standard Calibration Prints
2.3. Power Decay in Precursor and Printed Layers
2.4. Calibrations for Different Deswelling Ratios
2.5. Characterization of the Calibrated Prints
2.5.1. Direct Fitting of the Piecewise-Linear Curve
2.5.2. From Direct Fitting to Adjusted Fitting
2.5.3. Saturation of Crosslinking Density at Higher Powers
2.5.4. Chain Diameter and Porosity
2.6. Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials and Resin Preparations
4.2. Printing of the Hydrogel Micro-Structures for Calibration Prints
4.3. Printing of the 3D Helical Hydrogel Structures
4.4. Sample Preparation for SEM
4.5. Theoretical Calculation for Power Decay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalid, M.Y.; Arif, Z.U.; Noroozi, R.; Zolfagharian, A.; Bodaghi, M. 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. J. Manuf. Process. 2022, 81, 759–797. [Google Scholar] [CrossRef]
- Liu, X.; Gao, M.; Chen, J.; Guo, S.; Zhu, W.; Bai, L.; Zhai, W.; Du, H.; Wu, H.; Yan, C.; et al. Recent Advances in Stimuli-Responsive Shape-Morphing Hydrogels. Adv. Funct. Mater. 2022, 32, 2203323. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, L.; Bae, J. Advances in 4D printing of liquid crystalline elastomers: Materials, techniques, and applications. Mater. Horizons 2022, 9, 1825–1849. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Spiegel, C.A.; Hippler, M.; Münchinger, A.; Bastmeyer, M.; Barner-Kowollik, C.; Wegener, M.; Blasco, E. 4D Printing at the Microscale. Adv. Funct. Mater. 2020, 30, 1907615. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Wuethrich, A.; Trau, M. A material odyssey for 3D nano/microstructures: Two photon polymerization based nanolithography in bioapplications. Appl. Mater. Today 2020, 19, 100635. [Google Scholar] [CrossRef]
- Adam, G.; Benouhiba, A.; Rabenorosoa, K.; Clévy, C.; Cappelleri, D.J. 4D Printing: Enabling Technology for Microrobotics Applications. Adv. Intell. Syst. 2021, 3, 2000216. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Wang, H.; You, J.; Chan, E.; Ruan, Q.; Liu, H.; Yang, J.K.W. 2.5D, 3D and 4D printing in nanophotonics—A progress report. Mater. Today Proc. 2022, 70, 304–309. [Google Scholar] [CrossRef]
- Koepele, C.A.; Guix, M.; Bi, C.; Adam, G.; Cappelleri, D.J. 3D-Printed Microrobots with Integrated Structural Color for Identification and Tracking. Adv. Intell. Syst. 2020, 2, 1900147. [Google Scholar] [CrossRef] [Green Version]
- Faraji Rad, Z.; Prewett, P.D.; Davies, G.J. High-resolution two-photon polymerization: The most versatile technique for the fabrication of microneedle arrays. Microsystems Nanoeng. 2021, 7, 71. [Google Scholar] [CrossRef]
- Tottori, S.; Zhang, L.; Qiu, F.; Krawczyk, K.K.; Franco-Obregõn, A.; Nelson, B.J. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 2012, 24, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Yasa, I.C.; Tabak, A.F.; Yasa, O.; Ceylan, H.; Sitti, M. 3D-Printed Microrobotic Transporters with Recapitulated Stem Cell Niche for Programmable and Active Cell Delivery. Adv. Funct. Mater. 2019, 29, 1808992. [Google Scholar] [CrossRef]
- Zhou, X.; Hou, Y.; Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5, 030701. [Google Scholar] [CrossRef]
- del Barrio, J.; Sánchez-Somolinos, C. Light to Shape the Future: From Photolithography to 4D Printing. Adv. Opt. Mater. 2019, 7, 1900598. [Google Scholar] [CrossRef]
- He, G.S.; Tan, L.S.; Zheng, Q.; Prasad, P.N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.S.; De Boni, L.; Otuka, A.J.G.; Tribuzi, V.; Mendonça, C.R. Two-Photon Polymerization Fabrication of Doped Microstructures; InTech: London, UK, 2012; Volume 30. [Google Scholar]
- Hell, S.; Reiner, G.; Cremer, C.; Stelzer, E.H. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 1993, 169, 391–405. [Google Scholar] [CrossRef]
- Diaspro, A.; Federici, F.; Robello, M. Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl. Opt. 2002, 41, 685–690. [Google Scholar] [CrossRef]
- Williams, H.E.; Luo, Z.; Kuebler, S.M. Effect of refractive index mismatch on multi-photon direct laser writing. Opt. Express 2012, 20, 25030. [Google Scholar] [CrossRef]
- de Marco, C.; Alcântara, C.C.; Kim, S.; Briatico, F.; Kadioglu, A.; de Bernardis, G.; Chen, X.; Marano, C.; Nelson, B.J.; Pané, S. Indirect 3D and 4D Printing of Soft Robotic Microstructures. Adv. Mater. Technol. 2019, 4, 1900332. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Davis, A.C.; Cappelleri, D.J. Smart Polymers for Microscale Machines. Adv. Funct. Mater. 2021, 31, 2007125. [Google Scholar] [CrossRef]
- Zhu, H.; He, Y.; Wang, Y.; Zhao, Y.; Jiang, C. Mechanically-Guided 4D Printing of Magnetoresponsive Soft Materials across Different Length Scale. Adv. Intell. Syst. 2022, 4, 2100137. [Google Scholar] [CrossRef]
- Cao, C.; Qiu, Y.; Guan, L.; Wei, Z.; Yang, Z.; Zhan, L.; Zhu, D.; Ding, C.; Shen, X.; Xia, X.; et al. Dip-In Photoresist for Photoinhibited Two-Photon Lithography to Realize High-Precision Direct Laser Writing on Wafer. ACS Appl. Mater. Interfaces 2022, 14, 31332–31342. [Google Scholar] [CrossRef] [PubMed]
- Stichel, T.; Hecht, B.; Steenhusen, S.; Houbertz, R.; Sextl, G. Two-photon polymerization setup enables experimental mapping and correction of spherical aberrations for improved macroscopic structure fabrication. Opt. Lett. 2016, 41, 4269. [Google Scholar] [CrossRef]
- Stichel, T.; Hecht, B.; Houbertz, R.; Sextl, G. Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds. Appl. Phys. A Mater. Sci. Process. 2015, 121, 187–191. [Google Scholar] [CrossRef]
- Horváth, B.; Ormos, P.; Kelemen, L. Nearly aberration-free multiphoton polymerization into thick photoresist layers. Micromachines 2017, 8, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Yin, Q.; Qiao, Y.; Wang, T. Shape Morphing of Hydrogels in Alternating Magnetic Field. ACS Appl. Mater. Interfaces 2019, 11, 21194–21200. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Zhu, L.; Xia, Y.; Liu, J.; Liang, J.; Xu, J.; Wang, B.; Wang, S. Octopus Inspired Hydrogel Actuator with Synergistic Structural Color and Shape Change. Adv. Mater. Interfaces 2022, 9, 2200401. [Google Scholar] [CrossRef]
- Han, D.; Lu, Z.; Chester, S.A.; Lee, H. Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography. Sci. Rep. 2018, 8, 1963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, X.; Chen, L.; Zhang, C.; Liao, L. Multi-responsive hydrogel actuator with photo-switchable color changing behaviors. Dye. Pigment. 2020, 174, 108042. [Google Scholar] [CrossRef]
- Yoshida, K.; Nakajima, S.; Kawano, R.; Onoe, H. Spring-shaped stimuli-responsive hydrogel actuator with large deformation. Sens. Actuators B Chem. 2018, 272, 361–368. [Google Scholar] [CrossRef]
- Huang, H.W.; Sakar, M.S.; Petruska, A.J.; Pané, S.; Nelson, B.J. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 12263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, S.; Sakar, M.S.; Kennedy, S.; Peters, C.; Bottani, R.; Starsich, F.; Mao, A.; Sotiriou, G.A.; Pané, S.; Pratsinis, S.E.; et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 2014, 26, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Z.; Jin, D.; Zhang, C.; Sun, R.; Li, Z.; Hu, K.; Ni, J.; Cai, Z.; Pan, D.; et al. Botanical-Inspired 4D Printing of Hydrogel at the Microscale. Adv. Funct. Mater. 2019, 30, 1907377. [Google Scholar] [CrossRef]
- Ji, S.; Li, X.; Chen, Q.; Lv, P.; Duan, H. Enhanced Locomotion of Shape Morphing Microrobots by Surface Coating. Adv. Intell. Syst. 2021, 3, 2000270. [Google Scholar] [CrossRef]
- Jin, D.; Chen, Q.; Huang, T.Y.; Huang, J.; Zhang, L.; Duan, H. Four-dimensional direct laser writing of reconfigurable compound micromachines. Mater. Today 2019, 32, 19–25. [Google Scholar] [CrossRef]
- Huang, T.; Huang, H.; Jin, D.D.; Chen, Q.Y.; Huang, J.Y.; Zhang, L.; Duan, H.L. Four-dimensional micro-building blocks. Sci. Adv. 2020, 6, eaav8219. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W. Recent progress in PNIPAM-based multi-responsive actuators: A mini-review. Chem. Eng. J. 2022, 433, 133496. [Google Scholar] [CrossRef]
- Sun, X.F.; Zeng, Q.; Wang, H.; Hao, Y. Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellulose 2019, 26, 1909–1922. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, L.Y.; Li, Y.K.; Lee, Y.M. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 2007, 48, 1718–1728. [Google Scholar] [CrossRef]
- Park, Y.; Kim, M.; Chung, H.J.; Woo, A.H.; Noda, I.; Jung, Y.M. The study of ph effects on phase transition of multi-stimuli responsive p(Nipaam-co-aac) hydrogel using 2d-cos. Polymers 2021, 13, 1447. [Google Scholar] [CrossRef]
- Hauser, A.W.; Evans, A.A.; Na, J.H.; Hayward, R.C. Photothermally Reprogrammable Buckling of Nanocomposite Gel Sheets. Angew. Chem. 2015, 127, 5524–5527. [Google Scholar] [CrossRef]
- Zhou, Y.; Hauser, A.W.; Bende, N.P.; Kuzyk, M.G.; Hayward, R.C. Waveguiding Microactuators Based on a Photothermally Responsive Nanocomposite Hydrogel. Adv. Funct. Mater. 2016, 26, 5447–5452. [Google Scholar] [CrossRef]
- Lim, D.; Lee, E.; Kim, H.; Park, S.; Baek, S.; Yoon, J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015, 11, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.H.; Lu, Y.; Chen, J.F.; Yu, S.H. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control. Small 2014, 10, 2796–2800. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Schianti, J.N.; Almeida, M.G.; Pavani, A.; Panepucci, R.R.; Hernandez-Figueroa, H.E.; Gabrielli, L.H. Low-loss modified SU-8 waveguides by direct laser writing at 405 nm. Opt. Mater. Express 2017, 7, 2651. [Google Scholar] [CrossRef]
- Parsi Sreenivas, V.V.; Winkler, A.; Harazim, S.; Schmidt, O.G. Ultraviolet transmittance of SU-8 photoresist and its importance in multi-wavelength photolithography. J. Vac. Sci. Technol. B 2018, 36, 051601. [Google Scholar] [CrossRef]
- Rabbani, A.; Salehi, S. Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing. J. Nat. Gas Sci. Eng. 2017, 42, 157–168. [Google Scholar] [CrossRef]
- Ezeakacha, C.P.; Rabbani, A.; Salehi, S.; Ghalambor, A. Integrated image processing and computational techniques to characterize formation damage. In Proceedings of the SPE International Symposium on Formation Damage Control, Lafayette, LA, USA, 7–9 February 2018. [Google Scholar] [CrossRef]
- Gibson, S.F.; Lanni, F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 1992, 9, 154. [Google Scholar] [CrossRef]
Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7 | |
---|---|---|---|---|---|---|---|
Height | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
Slope | 0.400 | 0.125 | 0.345 | 0.151 | 0.302 | 0.287 | 0.049 |
Equivalent Power | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | |
---|---|---|---|---|---|---|
30 | Height | 20 | 40 | 60 | 80 | 100 |
Slope | 0.098 | 0.545 | 0.16 | 0.319 | 0.413 | |
40 | Height | 30 | 55 | 75 | 90 | 100 |
Slope | 0.125 | 0.541 | 0.331 | 0.118 | 0.646 |
Equivalent Power | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7 | |
---|---|---|---|---|---|---|---|---|
50 | Height | 35 | 50 | 60 | 70 | 80 | 90 | 100 |
Slope | 0.132 | 0.525 | 0.379 | 0.091 | 0.194 | 0.496 | 0.313 | |
60 | Height | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Slope | 0.044 | 0.584 | 0.488 | 0.152 | 0.183 | 0.676 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Lee, H.; Fang, L.; Cappelleri, D.J. A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations. Gels 2022, 8, 828. https://doi.org/10.3390/gels8120828
Tan L, Lee H, Fang L, Cappelleri DJ. A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations. Gels. 2022; 8(12):828. https://doi.org/10.3390/gels8120828
Chicago/Turabian StyleTan, Liyuan, Hyunjin Lee, Li Fang, and David J. Cappelleri. 2022. "A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations" Gels 8, no. 12: 828. https://doi.org/10.3390/gels8120828
APA StyleTan, L., Lee, H., Fang, L., & Cappelleri, D. J. (2022). A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations. Gels, 8(12), 828. https://doi.org/10.3390/gels8120828