Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source
Abstract
:1. Introduction
2. Methodology
3. Hydrogels
4. Classifications of Hydrogels
5. Hydrogels Prepared with Natural Polymers
5.1. Hydrogels Loaded with Liposomes
5.2. Hydrogels Loaded with Self-Double-Emulsifying Drug Delivery System
5.3. Hydrogels Loaded with Microparticles
5.4. Hydrogels Loaded with Nanoemulsion
5.5. Hydrogels Loaded with Microemulsion
5.6. Hydrogel Loaded with Nanocrystals
5.7. Hydrogel Loaded with Cubosomes
6. Hydrogels Prepared with Synthetic Polymers
6.1. Hydrogels Loaded with Liposomes
6.2. Hydrogels Loaded with Self-Nanoemulsifying Drug Delivery Systems
6.3. Hydrogels Loaded with Phytosomes
6.4. Hydrogels Loaded with Nanoparticles
6.5. Hydrogels Loaded with Nanostructured Lipid Carrier
6.6. Hydrogels Loaded with Microemulsion
6.7. Hydrogels Loaded with Nanoemulsion
6.8. Hydrogel Loaded with Cubosomes
6.9. Hydrogel Loaded with Nanosponge
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ALG | Alginate |
API | Active pharmaceutical ingredients |
ATC | Articaine |
BCN | Baicalin |
BQ | Buparvaquone |
Ca | Calcium |
CAR | Carbopol |
CHI | Chitosan |
CL | Cutaneous leishmaniasis |
CP | Clobetasol propionate |
CUBO | Cubosomes |
CUR | Curcumin |
ES | Escin-sitosterol |
GAL | Galactomannan |
GEN | Genistein |
HA | Hyaluronic acid |
IBU | Ibuprofen |
KETO | Ketoconazole |
LS | Liposomes |
MP | Microparticle |
NC | Nanocapsule |
NCY | Nanocrystals |
NE | Nanoemulsions |
NLC | Nanostructured lipid carrier |
NM | Not mentioned |
NP | Not performed |
NPT | Nanoparticle |
NS | Nanosponge |
PENY | Phenytoin |
PG | Pentyl Gallate |
PHY | Phytosomes |
POL | Poloxamer |
PVA | Polyvinyl alcohol |
QbD | Quality by Design |
ROS | Rosmarinic acid |
RTTS | Res, 3,5,4′-trihydroxy-trans-stilbene |
RVT | Resveratrol |
SC | Stratum corneum |
SDEDDS | Self-double-emulsifying drug delivery system |
SIM | Simvastatin |
SLNP | Solid lipid nanoparticles |
SNEDDS | Self-nanoemulsifying drug delivery systems |
SSD | Silver sulfadiazine |
SSDF | Semi-solid dosage form |
TDDS | Topical drug delivery system |
TEN | Tenoxicam |
TER | Terbinafine hydrochloride |
TMPTI | 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra-iodide |
X | Xanthan |
XG | Xanthan gum |
ZnO | Zinc oxide |
References
- Fakhree, M.; Ahmadian, S. Pharmaceutical dosage forms: Past, present, future. In Drug Delivery; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 51–89. [Google Scholar]
- Afrin, S.; Gupta, V. Pharmaceutical Formulation; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Noordin, M.I. Advance delivery system dosage form for analgesic, their rationale, and specialty. In Pain Relief-From Analgesics to Alternative Therapies; IntechOpen: London, UK, 2017. [Google Scholar]
- Singh Malik, D.; Mital, N.; Kaur, G. Topical drug delivery systems: A patent review. Expert Opin. Ther. Pat. 2016, 26, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, S. Dermatological preparations, formulation and evaluation of various semi-solid dosage form. Asian J. Pharm. Res. Dev. 2014, 2, 10–25. [Google Scholar]
- Panwar, A.; Upadhyay, N.; Bairagi, M.; Gujar, S.; Darwhekar, G.; Jain, D. Emulgel: A review. Asian J. Pharm. Life Sci. 2011, 2231, 4423. [Google Scholar]
- Ilić, T.; Pantelić, I.; Savić, S. The implications of regulatory framework for topical semisolid drug products: From critical quality and performance attributes towards establishing bioequivalence. Pharmaceutics 2021, 13, 710. [Google Scholar] [CrossRef]
- Bora, A.; Deshmukh, S.; Swain, K. Recent advances in semisolid dosage form. Int. J. Pharm. Sci. Res. 2014, 5, 3594–3608. [Google Scholar]
- Sharadha, M.; Gowda, D.; Gupta, V.; Akhila, A. An overview on topical drug delivery system–updated review. Int. J. Res. Pharm. Sci 2020, 11, 368–385. [Google Scholar] [CrossRef]
- Yu, Y.-Q.; Yang, X.; Wu, X.-F.; Fan, Y.-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef] [PubMed]
- Nastiti, C.M.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Choi, H.; Kwon, M.; Choi, H.E.; Hahn, S.K.; Kim, K.S. Non-Invasive Topical Drug-Delivery System Using Hyaluronate Nanogels Crosslinked via Click Chemistry. Materials 2021, 14, 1504. [Google Scholar] [CrossRef]
- Bharat, P.; Paresh, M.; Sharma, R.; Tekade, B.; Thakre, V.; Patil, V. A review: Novel advances in semisolid dosage forms & patented technology in semisolid dosage forms. Int. J. PharmTech Res. 2011, 3, 420–430. [Google Scholar]
- Badola, A.; Goyal, M.; Baluni, S. Gels And Jellies A Recent Technology In Semisolids: A. World J. Pharm. Res. 2021, 10, 461–475. [Google Scholar]
- Rathod, H.J.; Mehta, D.P. A review on pharmaceutical gel. Int. J. Pharm. Sci. 2015, 1, 33–47. [Google Scholar]
- Jeganath, S.; Jeevitha, E. Pharmaceutical Gels and Recent Trends-A Review. Res. J. Pharm. Technol. 2019, 12, 6181–6186. [Google Scholar]
- Paul, S.D.; Sharma, H.; Jeswani, G.; Jha, A.K. Novel gels: Implications for drug delivery. In Nanostructures for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 379–412. [Google Scholar]
- Zielińska, A.; Eder, P.; Rannier, L.; Cardoso, J.C.; Severino, P.; Silva, A.M.; Souto, E.B. Hydrogels for modified-release drug delivery systems. Curr. Pharm. Des. 2021. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef]
- Voci, S.; Gagliardi, A.; Molinaro, R.; Fresta, M.; Cosco, D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021, 7, 33. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef]
- Michalik, R.; Wandzik, I. A mini-review on chitosan-based hydrogels with potential for sustainable agricultural applications. Polymers 2020, 12, 2425. [Google Scholar] [CrossRef]
- Cai, M.-H.; Chen, X.-Y.; Fu, L.-Q.; Du, W.-L.; Yang, X.; Mou, X.-Z.; Hu, P.-Y. Design and development of hybrid hydrogels for biomedical applications: Recent trends in anticancer drug delivery and tissue engineering. Front. Bioeng. Biotechnol. 2021, 9. [Google Scholar] [CrossRef]
- Bahram, M.; Mohseni, N.; Moghtader, M. An introduction to hydrogels and some recent applications. In Emerging Concepts in Analysis and Applications of Hydrogels; IntechOpen: London, UK, 2016. [Google Scholar]
- Russo, E.; Villa, C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.D.; Silva, L.B.; Park, Y.; Shakouri, T.; Keskin-Erdogan, Z.; Sawadkar, P.; Cho, K.J.; Knowles, J.C.; Chau, D.Y.; Kim, H.-W. Recent advances in drug delivery systems for glaucoma treatment. Mater. Today Nano 2022, 100178. [Google Scholar] [CrossRef]
- Veloso, S.R.; Andrade, R.G.; Castanheira, E.M. Review on the advancements of magnetic gels: Towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv. Colloid Interface Sci. 2021, 288, 102351. [Google Scholar] [CrossRef] [PubMed]
- Harrison, I.P.; Spada, F. Hydrogels for atopic dermatitis and wound management: A superior drug delivery vehicle. Pharmaceutics 2018, 10, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Lohani, A.; Bhattacharya, S.S. Hydrogel as a novel drug delivery system: A review. J. Fundam. Pharm. Res 2014, 2, 35–48. [Google Scholar]
- Gallo, E.; Diaferia, C.; Rosa, E.; Smaldone, G.; Morelli, G.; Accardo, A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int. J. Nanomed. 2021, 16, 1617. [Google Scholar] [CrossRef]
- Gonzalez-Delgado, J.A.; Castro, P.M.; Machado, A.; Araujo, F.; Rodrigues, F.; Korsak, B.; Ferreira, M.; Tome, J.P.; Sarmento, B. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. Int. J. Pharm. 2016, 510, 221–231. [Google Scholar] [CrossRef]
- Jøraholmen, M.W.; Johannessen, M.; Gravningen, K.; Puolakkainen, M.; Acharya, G.; Basnet, P.; Škalko-Basnet, N. Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020, 12, 1203. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Huang, J.; Xia, N.; Li, T.; Xia, Q. Self-double-emulsifying drug delivery system incorporated in natural hydrogels: A new way for topical application of vitamin C. J. Microencapsul. 2018, 35, 90–101. [Google Scholar] [CrossRef]
- Marafon, P.; Fachel, F.N.S.; Dal Prá, M.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. Development, physico-chemical characterization and in-vitro studies of hydrogels containing rosmarinic acid-loaded nanoemulsion for topical application. J. Pharm. Pharmacol. 2019, 71, 1199–1208. [Google Scholar] [CrossRef]
- Kelmann, R.G.; Colombo, M.; Nunes, R.J.; Simões, C.M.; Koester, L.S. Nanoemulsion-loaded hydrogels for topical administration of pentyl gallate. Aaps Pharmscitech 2018, 19, 2672–2678. [Google Scholar] [CrossRef]
- Cardoso, A.M.; de Oliveira, E.G.; Coradini, K.; Bruinsmann, F.A.; Aguirre, T.; Lorenzoni, R.; Barcelos, R.C.S.; Roversi, K.; Rossato, D.R.; Pohlmann, A.R. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng. C 2019, 96, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Djekic, L.; Martinovic, M.; Stepanović-Petrović, R.; Micov, A.; Tomić, M.; Primorac, M. Formulation of hydrogel-thickened nonionic microemulsions with enhanced percutaneous delivery of ibuprofen assessed in vivo in rats. Eur. J. Pharm. Sci. 2016, 92, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, N.; Ermiş, S.; Özkan, S. Development of topical hydrogels of terbinafine hydrochloride and evaluation of their antifungal activity. Drug Dev. Ind. Pharm. 2015, 41, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Koop, H.S.; de Freitas, R.A.; de Souza, M.M.; Savi-Jr, R.; Silveira, J.L.M. Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan. Carbohydr. Polym. 2015, 116, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xie, J.; Luo, Y.; Ma, Y.; Tang, S.; Yue, P.; Yang, M. Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: A case study. Carbohydr. Polym. 2018, 202, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Morsi, N.M.; Abdelbary, G.A.; Ahmed, M.A. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur. J. Pharm. Biopharm. 2014, 86, 178–189. [Google Scholar] [CrossRef]
- Furlani, F.; Rossi, A.; Grimaudo, M.A.; Bassi, G.; Giusto, E.; Molinari, F.; Lista, F.; Montesi, M.; Panseri, S. Controlled Liposome Delivery from Chitosan-Based Thermosensitive Hydrogel for Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 894. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Verma, S.; Verma, P.R.P.; Singh, S.K.; Chakraborty, A. Fabrication of liquid and solid self-double emulsifying drug delivery system of atenolol by response surface methodology. J. Drug Deliv. Sci. Technol. 2017, 41, 45–57. [Google Scholar] [CrossRef]
- Yasasvini, S.; Anusa, R.; VedhaHari, B.; Prabhu, P.; RamyaDevi, D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater. Sci. Eng. C 2017, 72, 160–167. [Google Scholar] [CrossRef]
- Rashid, S.A.; Bashir, S.; Naseem, F.; Farid, A.; Rather, I.A.; Hakeem, K.R. Olive Oil Based Methotrexate Loaded Topical Nanoemulsion Gel for the Treatment of Imiquimod Induced Psoriasis-like Skin Inflammation in an Animal Model. Biology 2021, 10, 1121. [Google Scholar] [CrossRef]
- Hung, W.-H.; Chen, P.-K.; Fang, C.-W.; Lin, Y.-C.; Wu, P.-C. Preparation and Evaluation of Azelaic Acid Topical Microemulsion Formulation: In Vitro and In Vivo Study. Pharmaceutics 2021, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Jung, H.T.; Ho, M.J.; Lee, J.E.; Kim, H.T.; Kim, D.Y.; Lee, H.C.; Choi, Y.S.; Kang, M.J. Montelukast nanocrystals for transdermal delivery with improved chemical stability. Pharmaceutics 2020, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Jain, P.; Jain, S.; Jain, R.; Bhargava, S.; Jain, A. Topical delivery of erythromycin through cubosomes for acne. Pharm. Nanotechnol. 2018, 6, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Dhawan, S.; Nanda, S. Cubosome: A Potential Liquid Crystalline Carrier System. Curr. Pharm. Des. 2020, 26, 3300–3316. [Google Scholar] [CrossRef]
- Kaur, S.D.; Singh, G.; Singh, G.; Singhal, K.; Kant, S.; Bedi, N. Cubosomes as Potential Nanocarrier for Drug Delivery: A Comprehensive Review. J. Pharm. Res. Int. 2021, 33, 118–135. [Google Scholar] [CrossRef]
- Chen, G.; Ullah, A.; Xu, G.; Xu, Z.; Wang, F.; Liu, T.; Su, Y.; Zhang, T.; Wang, K. Topically applied liposome-in-hydrogels for systematically targeted tumor photothermal therapy. Drug Deliv. 2021, 28, 1923–1931. [Google Scholar] [CrossRef]
- Lalatsa, A.; Statts, L.; de Jesus, J.A.; Adewusi, O.; Dea-Ayuela, M.A.; Bolas-Fernandez, F.; Laurenti, M.D.; Passero, L.F.D.; Serrano, D.R. Topical buparvaquone nano-enabled hydrogels for cutaneous leishmaniasis. Int. J. Pharm. 2020, 588, 119734. [Google Scholar] [CrossRef]
- Djekic, L.; Čalija, B.; Micov, A.; Tomić, M.; Stepanović-Petrović, R. Topical hydrogels with escin β-sitosterol phytosome and escin: Formulation development and in vivo assessment of antihyperalgesic activity. Drug Dev. Res. 2019, 80, 921–932. [Google Scholar] [CrossRef]
- Motawea, A.; Borg, T.; Abd El-Gawad, A.E.-G.H. Topical phenytoin nanostructured lipid carriers: Design and development. Drug Dev. Ind. Pharm. 2018, 44, 144–157. [Google Scholar] [CrossRef]
- Goindi, S.; Narula, M.; Kalra, A. Microemulsion-based topical hydrogels of tenoxicam for treatment of arthritis. Aaps Pharmscitech 2016, 17, 597–606. [Google Scholar] [CrossRef]
- De Vargas, B.A.; Bidone, J.; Oliveira, L.K.; Koester, L.S.; Bassani, V.L.; Teixeira, H.F. Development of topical hydrogels containing genistein-loaded nanoemulsions. J. Biomed. Nanotechnol. 2012, 8, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-B.; Kang, R.-R.; Tang, T.-T.; Li, Y.-J.; Wu, J.-Y.; Wang, J.-M.; Liu, X.-Y.; Xiang, D.-X. Topical delivery of 3, 5, 4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv. Transl. Res. 2019, 9, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Melo, N.F.S.d.; Campos, E.V.R.; Franz-Montan, M.; Paula, E.D.; Silva, C.M.G.d.; Maruyama, C.R.; Stigliani, T.P.; Lima, R.D.; Araújo, D.R.d.; Fraceto, L.F. Characterization of articaine-loaded poly (ε-caprolactone) nanocapsules and solid lipid nanoparticles in hydrogels for topical formulations. J. Nanosci. Nanotechnol. 2018, 18, 4428–4438. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Banerjee, S.; Khan, S.; Jha, P.N.; Gupta, G.; Dua, K.; Hasnain, M.S.; Nayak, A.K.; Dubey, S.K.; Singhvi, G. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater. Sci. Eng. C 2021, 119, 111548. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, M.; Rao, R. Topical delivery of clobetasol propionate loaded nanosponge hydrogel for effective treatment of psoriasis: Formulation, physicochemical characterization, antipsoriatic potential and biochemical estimation. Mater. Sci. Eng. C 2021, 119, 111605. [Google Scholar] [CrossRef]
- Ponto, T.; Latter, G.; Luna, G.; Leite-Silva, V.R.; Wright, A.; Benson, H.A. Novel Self-Nano-Emulsifying Drug Delivery Systems Containing Astaxanthin for Topical Skin Delivery. Pharmaceutics 2021, 13, 649. [Google Scholar] [CrossRef]
- Akuffo, R.; Sanchez, C.; Chicharro, C.; Carrillo, E.; Attram, N.; Mosore, M.-T.; Yeboah, C.; Kotey, N.K.; Boakye, D.; Ruiz-Postigo, J.-A. Detection of cutaneous leishmaniasis in three communities of Oti Region, Ghana. PLoS Negl. Trop. Dis. 2021, 15, e0009416. [Google Scholar] [CrossRef]
- Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021, 13, 1475. [Google Scholar] [CrossRef]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current trends in advanced alginate-based wound dressings for chronic wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef]
- Prabha, A.S.; Dorothy, R.; Jancirani, S.; Rajendran, S.; Singh, G.; Kumaran, S.S. Recent advances in the study of toxicity of polymer-based nanomaterials. In Nanotoxicity; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–165. [Google Scholar]
- Musielak, E.; Feliczak-Guzik, A.; Nowak, I. Synthesis and Potential Applications of Lipid Nanoparticles in Medicine. Materials 2022, 15, 682. [Google Scholar] [CrossRef]
- Gundogdu, E.; Demir, E.-S.; Ekinci, M.; Ozgenc, E.; Ilem-Ozdemir, D.; Senyigit, Z.; Gonzalez-Alvarez, I.; Bermejo, M. An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies. Nanomaterials 2022, 12, 250. [Google Scholar] [CrossRef] [PubMed]
- Varrica, C.; Carvalheiro, M.; Faria-Silva, C.; Eleutério, C.; Sandri, G.; Simões, S. Topical Allopurinol-Loaded Nanostructured Lipid Carriers: A Novel Approach for Wound Healing Management. Bioengineering 2021, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.; Nabi, B.; Rehman, S.; Md, S.; Alhakamy, N.A.; Ahmad, O.A.; Baboota, S.; Ali, J. Development and Evaluation of Polymeric Nanosponge Hydrogel for Terbinafine Hydrochloride: Statistical Optimization, In Vitro and In Vivo Studies. Polymers 2020, 12, 2903. [Google Scholar] [CrossRef] [PubMed]
- Mashaqbeh, H.; Obaidat, R.; Al-Shar’i, N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers 2021, 13, 4073. [Google Scholar] [CrossRef] [PubMed]
API | Novel Formulation | Novel Formulation Method | Gelling Agent for Making Hydrogels | Novel Formulation and Hydrogel Mixing Method | Use | References |
---|---|---|---|---|---|---|
Resveratrol | Liposomes | Film hydration method | Chitosan | Hand stirring method | Vaginal chlamydia infection | [32] |
Vitamin C | Self-double-emulsifying drug delivery system | Two-step emulsification method | Xanthan gum | Mixing with a mechanical stirrer | Penetration enhance the skin | [33] |
Rosmarinic acid | Nanoemulsions | Spontaneous emulsification method | Hydroxyethyl cellulose | Rosmarinic acid- nanoemulsion added to hydroxyethyl cellulose and stirred for 15 min | New anti-ageing skin products | [34] |
Pentyl Gallate | Nanoemulsions | Spontaneous emulsification method | Chitosan | Chitosan added to pentyl gallate nanoemulsions | Increase skin penetration for herpis labialis | [35] |
Phenytoin | Nanocapsule | Interfacial deposition | Chitosan | Chitosan was dispersed in the nanoemulsion and nanocapsule | Skin permeation and wound healing activity | [36] |
Nanoemulsion | Spontaneous emulsification method | Chitosan | ||||
Ibuprofen | Microemulsion | NM | Xanthan gum | Mixing | To enhance percutaneous delivery | [37] |
Terbinafine hydrochloride | Microemulsion | NM | Chitosan, and Natrosol 250 | Gelling agent added to Terbinafine hydrochloride microemulsion | Anti fungal activity | [38] |
Curcumin | Microemulsion | NM | Xanthan and galactomannan | Curcumin microemulsion was added to hydrogel preparation | To increase skin penetration and anti-inflammatory activity | [39] |
Baicalin | Nanocrystals | Coupling homogenization technology followed by spray-drying technology | Hyaluronic acid | Baicalin nanocrystals was added into hyaluronic acid hydrogel and mixed | To improve skin permeation | [40] |
Silver sulfadiazine | Cubosome | Emulsification method | Chitosan | Cubosome incorporated into chitosan | Increasing skin permeation and for treating topical burn | [41] |
API-Novel Formulation | Droplet/Particle Range | Drug Content/Entrapment Efficiency (%) | PDI | Zeta Potential (mV) | pH | Viscosity | Shape | Time | DR (%) | References |
---|---|---|---|---|---|---|---|---|---|---|
RVT-LS | 100 to 200 nm (Average 158 ± 22 nm) | 85 ± 2 | 0.077 | −6.72 ± 2.47 | NP | appropriate viscosity (NM) | Spherical | 8 h | 61 | [32] |
Vit C-SDEDDS | 0.06 to 60.26 μm (Average 17.13 ± 2.50 μm) | NP | NP | NP | NP | NP | NP | NP | NP | [33] |
ROS-NE | 180.57 ± 1.82 to 224.67 ± 2.31 nm | 98.59 ± 2.12 to 107.69 ± 6.28 | 0.123 ± 0.021 to 0.230 ± 0.036 | −39.65 ± 1.53 to 46.17 ± 3.90 | 3.85 ± 0.07 to 4.73 ± 0.07 | 1.1 to 1.3 cps | NP | 8 h | 71.8 ± 1.98 | [34] |
PG-NE | 164.3 ± 7.4 nm | 96.2 ± 3.4 | 0.12 ± 0.03 | −48.9 ± 2.1 | 5.5 ± 0.2 | Near to 1 cps | NM | NP | NP | [35] |
PENY-NC | 161 ± 4 nm | 95.2 ± 1.4 | 0.14 ± 0.01 | −15.7 ± 0.3 | 5.6 ± 0.1 | NP | Spherical | 3 h 24 h | 27 ± 1 67 ± 1 | [36] |
PENY-NE | 125 ± 6 nm | 88.7 ± 1.1 | 0.12 ± 0.01 | −10.8 ± 0.4 | 5.0 ± 0.7 | NP | Spherical | 3 h 24 h | 36 ± 2 77 ± 2 | [36] |
IBU-ME | 14.34 ± 0.98 nm | NP | 0.220 ± 0.075 | NP | 5.23 | 0.2025 ± 0.003 Pas | NP | 12 h | 46.78 ± 4.59 | [37] |
TER-ME | 44.98 ± 27.34 nm | NP | NP | NP | NP | 77.98 ± 0.75 cp | Spherical | NP | NP | [38] |
CUR-ME | 231.8 ± 7.6 nm | 99.50 | NP | NP | NP | NP | NP | NP | NP | [39] |
BCN-NCY | 189.21 ± 0.36 nm | NP | NP | NP | NP | NP | Spherical Gel TEM showed network structure | 4 h | 65.3 ± 3.2 | [40] |
SSD-CUBO | 152.3 to 389.6 nm | 86.05 ± 3.86 to 94.56 ± 1.40 | 0.25 ± 0.004 to 0.65 ± 0.45 | NP | NP | NP | Cubic | NP | NP | [41] |
API-Novel Formulation | Hydrogel Made of | Hydrogel Concentration | Formulation Concentration | Loading Efficient (%) | Ph | Droplet SIZE (nm) | Zeta Potential | Viscosity | SEM | References |
---|---|---|---|---|---|---|---|---|---|---|
RVT-LS | CHI | 2.5% w/w | 20% w/w | NP | NP | NP | NP | NP | NP | [32] |
Vit-C-SEDDS | XG | 2% | 5% | NP | 5.5 ± 0.1 | NP | NP | 4.62 ± 0.50 | The structure of Vit-C was completely destroyed in freeze-dried hydrogel | [33] |
ROS-NE | HEC | 1% w/v | 0.1% w/v | 98.50 ± 3.59 to 100.79 ± 1.98 | 3.83 ± 0.05 to 4.73 ± 0.07 | NP | NP | NP | NP | [34] |
PG-NE | CHI | 2.5% w/w | 0.5% w/w | 94.4 ± 4.8 | 5.0 ± 0.3 | 297.0 ± 8.6 | 52.6 ± 0.1 | NP | NP | [35] |
PENY-NCY | CHI | 2.75% w/v | 0.025% w/v | 0.24 ± 0.01 mg/gm | 4.8 ± 0.1 | NP | NP | 24.23 ± 2.70 pasn | NP | [36] |
PENY-NE | CHI | 2.75% w/v | 0.025% w/v | 0.25 ± 0.01 mg/gm | 4.7 ± 0.2 | NP | NP | 24.53 ± 3.71 pasn | NP | [36] |
IBU-ME | XG | 0.25–1% | 5% | NP | NP | 5.17 ± 0.01 | NP | 1.12 ± 0.15 to 6.80 ± 0.02 | NP | [37] |
TER-ME | CHI, NAT, and CAR | CHI-1%, | 1% | NP | 3.04 ± 0.02 | NP | NP | 5044.03 ± 22.43 | NP | [38] |
NAT-4%, | ||||||||||
CAR-1% | ||||||||||
CUR-ME | X-GAL | 1.25% | NP | 103.90 | 5.3 | NP | NP | NP | Network structure | [39] |
BCN-NCY | HA | 0.5%, 1%, 1.5% and 2%, w/v | 1% | NP | NP | NP | NP | NP | Porous structure | [40] |
SSD-CUBO | CHI | NP | NP | NP | 4 | NP | NP | NP | NP | [41] |
API-Formulation-Hydrogel | In Vitro Release Study | In Vitro Kinetics | In Vivo Skin Studies | Animal Used | References | ||||
---|---|---|---|---|---|---|---|---|---|
Time | Drug Released (%) | Model | Mechanism | Model Skin | Time | DR | |||
RVT-LS-CHI | 8 h | 38 | NP | NP | NP | NP | NP | NP | [32] |
Vit C-SEDDS-XG | 6 h | 72.33 | Weibull model | Fickian diffusion and Case-II transport | Porcine abdominal skin | 12 h | 12% | NP | [33] |
ROS-NE-HEC | 8 h | 57 ± 0.36 | NP | NP | Pig ear skin | 8 h | 0.65 ± 0.08 µg/cm2 | NP | [34] |
PG-NE-CHI | 24 h | Not shown | NP | NP | Porcine ear skin | NP | NP | NP | [35] |
PENY-NC-CHI | 12 h | 43 ± 1 | NP | NP | Porcine ear skin | 12 h | NP | Male Wistar rats | [36] |
PENY-NE-CHI | 12 h | 53 ± 1 | NP | NP | Porcine ear skin | 12 h | NP | Male Wistar rats | [36] |
IBU-ME-XG | 12 | ME-XG-H1-23%, ME-XG-H2-16%, ME-XG-H3-14%, and ME-XG-4-11% | Zero order | NP | NP | NP | NP | Male Wistar rats | [37] |
TER-ME-CHI TER-ME-NAT | 7 h | 8.70 | Zero order | NP | NP | NP | NP | NP | [38] |
CUR-ME-X-GAL | 10 h | <60 | Higuchi | Diffusion controlled | Porcine ear skin | NP | NP | NP | [39] |
BCN-NCY-HA | 6 h | 0.5 and 1% CAR->95% 1.5%CAR-85.4% 2%CAR-72.3% | NP | NP | Mouse abdominal skin | 12 h | NM | NP | [40] |
SSD-CUBO-CHI | NP | NP | Zero order | Diffusion controlled | NP | NP | NP | NP | [41] |
API | Novel Formulation | Novel Formulation Method | Gelling Agent for Making Hydrogels | Formulation and Hydrogel Mixing Method | Use | References |
---|---|---|---|---|---|---|
IR780 iodide and IR792 perchlorate | LP | Thin-film hydration method | Poloxamer 407, and 188 | Gelling agents added to novel formulation | Targeted tumor photothermal therapy | [51] |
Buparvaquone | SNDDS | NM | Carbopol 940 | Carbopol was mixed with novel formulation | Cutaneous leishmaniasis | [52] |
Escin and escin β-sitosterol phytosome | PHY | NM | Carbopol 934 | Hydrogel added dropwise to the novel formulation | Antihyperalgesic activity | [53] |
Pentyl Gallate | NE | Spontaneous emulsification method | Aristoflex AVC | Gelling agent added to novel formulation | Increase skin penetration for herpis labialis | [35] |
Simvastatin | MP | Ionic gelation method | Poly vinyl alcohol | Chemical cross linking method | Sustained SIM release and wound healing activity | [44] |
5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-porphyrin tetra-iodide | NP | Solvent evaporation method | Carbopol-940 | Novel formulation added to CAR-940 | Photodynamic applications | [31] |
Phenytoin | NLC | Hot homogenization followed by ultrasonication method | Carbomer 934 | CAR dispersed in the NLC suspension | Increasing the entrapment efficacy and to sustained release. | [54] |
Tenoxicam | ME | NM | Carbopol 940 | TEN-ME gelled with CAR-940 | Arthritis | [55] |
Genistein | NE | Spontaneous emulsification process | Carbopol 940 | Hand stirring method | To enhance skin permeation | [56] |
Terbinafine hydrochloride | ME | NM | Carbopol 974 | Mixing in magnetic stirrer | Anti fungal activity | [38] |
Silver sulfadiazine | CUBO | Emulsification method | Carbomer 934 | Cubosome incorporated into CAR-934 | For improving skin permeation and to treat topical burn | [41] |
Resveratrol 3,5,4′-trihydroxy-trans-stilbene | ME | NM | Carbopol 940 | CAR dispersed in novel formulation | Treatment of osteoarthritis | [57] |
Articaine | NC and SLNP | NM | Aristoflex AVC | NC and SLNP was incorporated into ART hydrogel | In-vitro release studies | [58] |
ketoconazole | CUBO | Hot emulsification method | Carbopol 971P | CUBO added to CAR-971P hydrogel and stirred (350 rpm) | In-vitro release and ex vivo penetration studies | [59] |
Clobetasol propionate | NS | NM | Carbopol 934 | CP-NS incorporated into CAR-934 hydrogel | Anti-psoriatic studies | [60] |
API-Novel Formulation | Droplet/Particle Range (nm) | Entrapment Efficiency (%) | PDI | Zeta Potential (mV) | pH | Viscosity | Shape | SEM | DR | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | % | Kinetics | ||||||||||
IR 780-LS | Around 130 | NP | 0.185 | NP | NP | NP | Spherical | Freeze dried formulation-porous sponge-like structures | NP | NP | NP | [51] |
IR 792-LS | 122 | NP | NP | NP | NP | NP | Spherical | NP | NP | NP | NP | |
BQ-SEDDS | 255 ± 37 | NP | 0.685 ± 0.085 | −13.5 ± 0.2 | NP | NP | Spherical | NP | NP | NP | NP | [52] |
SIM-MP | between 0.5 μm <10 μm | 51 ± 0.7 to 82 ± 0.3 | NP | NP | NP | NP | Spherical | Rough | 8 h | 3.8 ± 1.1 to 9.9 ± 0.4 | NP | [44] |
TMPTI-NPT | 118 ± 5 and 133 ± 2 | 55.8 ± 1.1 to 92.5 ± 3.5 | 0.17 ± 0.01 to 0.18 ± 0.03 | −21.6 ± 1.0 to 26.7 ± 3.0 | NP | NP | Spherical | NP | NP | NP | NP | [31] |
PENY-NLC | 121.45 ± 2.65 to 258.24 ± 6.59 | 55.24 ± 1.60 to 88.80 ± 4.13 | 0.18 ± 0.01 to 0.41 ± 0.02 | −15.44 ± 0.87 to −32.26 ± 1.68 | 5.67 ± 0.02 to 6.49 ± 0.23 | NP | Spherical | Smooth surface | 48 h | 73.47 ± 2.45 | Higuchi model | [54] |
TEN-ME | 106 to 122 | 99 | NP | Near zero | 5.5 to 5.7 | 11,100 to 12,000 cps | Spherical | NP | NP | NP | NP | [55] |
GEN-NE | GEN-NE-MCT-240 ± 28 | 93.00 ± 2.00 | <0.25 | −37 ± 4 | 5.8 ± 0.3 | 1.50 ± 0.10 | NP | NP | NP | NP | NP | [56] |
GEN-NE-ODD-247 ± 23 | 96.00 ± 1.00 | <0.25 | −36 ± 4 | 5.9 ± 0.2 | 1.80 ± 0.07 | NP | NP | NP | NP | NP | ||
SSD-CUBO | 150 to 400 | 74.93 ± 0.903 to 92.10 ± 0.250 | 0.25 ± 0.004 to 0.65 ± 0.45 | −17.61 to 7.41 | NP | NP | Cubic | NP | NP | NP | Zero order | [41] |
RTTS-ME | 17.5 ± 1.4 | NP | 0.068 ± 0.016 | −11.8 ± 0.5 | NP | 14.2 ± 0.1 mPa s | Spherical | NP | NP | NP | NP | [57] |
ART-NC | 4455 ± 21 | 78.10 | 0068 ± 0005 | NP | 8.1 ± 1.2 | NP | Spherical | Smooth surface | 400 min | 50 | Higuchi model | [58] |
ART-SLNP | 2499 ± 22 | 65.70 | 0113 ± 0008 | NP | 7.9 ± 0.9 | NP | Spherical | Smooth surface | 300 min | 50 | NP | |
KETO-CUBO | 188.6 ± 5.992 to 381 ± 2.082 | 15.79 ± 1.23 to 72.22 ± 1.08 | 0.437 ± 0.032 to 0.918 ± 0.06 | NP | NP | NP | Cubic | NP | 24 h | 67 | Korsmeyer–Peppas model | [59] |
CP-NS | 194.27 ± 49.24 nm | 56.33 ± 0.94% | 0.498 ± 0.095 | −21.83 ± 0.95 | NP | NP | Porus and crystalline nature | Freeze dried formulation-porous sponge-like structures. | 1st h 6th h 24th h | 32.39 ± 0.10 55.81 ± 0.60 86.25 ± 0.28 | Higuchi model | [60] |
API-Novel Formulation | Hydrogel Made of | Hydrogel Concentration | Formulation Concentration | Particle Size | PDI | ZP | Loading Efficient (%) | pH | Viscosity | References |
---|---|---|---|---|---|---|---|---|---|---|
IR 780-LS | Pol-407 and 188 | NM | NM | NP | NP | NP | NP | NP | NP | [51] |
Escin and escin β-sitosterol PHY | CAR-934 | 1% | 1–5% | NP | NP | NP | NP | 4.95 to 6.3 | 1.0 ± 0.4 to 31.7 ± 0.5 Pas | [53] |
BQ-SNDDS | CAR-940 | 1% | 2% | 266 ± 99 | 0.609 ± 0.046 | −28.7 ± 1.1 | NP | NP | Appropriate for skin application (NM) | [52] |
BQ-SNDDS | CAR-940 | 2% | 2% | 260 ± 35 | 0.758 ± 0.072 | −34.5 ± 1.2 | NP | NP | Appropriate for skin application (NM) | |
SIM-MP | PVA | 5, 7 and 9% w/v | 2.5, 5, and 10 mg | NP | NP | NP | NP | NP | NP | [44] |
TMPTI-NPT | CAR-940 | NM | NM | NP | NP | NP | NP | 5.7 to 6.6 | NP | [31] |
PENY-NLC | CAR-934 | 1% w/v | 0.05% | NP | NP | NP | 90 to 100 | 6.88 ± 0.30 and 7.27 ± 0.16 | 16 to 18 ps | [54] |
TEN-ME | CAR-940 | NM | NM | NP | NP | NP | NP | NP | NP | [55] |
GEN-NE-MCT | CAR-940 | 0.5% | 0.1 (1 mg/gm) | NP | NP | NP | 92.00 ± 3.00 | 7 | 25–33 cP | [56] |
GEN-NE-ODD | CAR-940 | 0.5% | 0.1 (1 mg/gm) | NP | NP | NP | 91.00 ± 6.00 | 7 | 58–64 cP | |
TER-ME | CAR-940 | 1% | NP | NP | NP | NP | NP | 3.04 ± 0.02 | 5044.03 ± 22.43 | [38] |
SSD-CUBO | CAR-934 | 0.5, 1, 1.5 and 2% | NP | NP | NP | 76 to 91 | 8 | 925 to 982 cps at 10 rpm | [41] | |
RTTS-ME | CAR-940 | 1.50% | 2% | NP | NP | NP | NP | 6.7 | 171.1 ± 0.3 mPa·s | [57] |
ATC-NC | ART | 2% | 20 mg/gm | 463.2 ± 24.7 nm | 0.190 ± 0.013 | NP | NP | NP | 19,554.99 Pa·s−1 | [58] |
ATC-SLNP | ART | 2% | 20 mg/gm | 315.3 ± 20.1 nm | 0.206 ± 0.009 | NP | NP | NP | 22,090.23 Pa·s−1 | |
PG-NE | ART | 2% w/w | 0.5% w/w | 97.3 ± 2.7 | 5.1 ± 0.2 | 162.1 ± 1.1 | −46.5 ± 1.3 | NP | NP | [35] |
KETO-CUBO | CAR-971P | 1% w/w | 0.2% w/w | NP | NP | NP | 96.81 ± 4.50 | NP | 25,586.67 ± 743.32 at 1.0 rpm | [59] |
CP-NS | CAR-934 | NP | NP | NP | NP | NP | NP | NP | NP | [60] |
API-Novel Formulation-Hydrogel | In Vitro Release Study | Ex Vivo Skin Studies | Animal Used | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time | Drug Released (%) | Kinetics | Mechanism | Model Skin | Time | DR (%) | Kinetics | Mechanism | |||
IR 780-LS-POL | 12 h | >90 | NP | NP | NP | NP | NP | NP | NP | CT-26 cancer bearing mice | [51] |
BQ-SNDDS-CAR-940 | NP | NP | NP | NP | BALB/c mouse skin | NP | NP | Zero order | Case II drug transport | BALB/c mouse | [52] |
Escin and ES-PHY-CAR-934 | NP | NP | NP | NP | NP | NP | NP | NP | NP | Wistar rat | [53] |
SIM-MP-PVA | 7 days | 2.5 mg SIM-92% 5 mg SIM-60% 10 mg SIM-36% | NP | NP | NP | NP | NP | NP | NP | Wistar rat | [44] |
TMPTI-NPT-CAR-940 | 4.5 h 24 h | 20 40 | Korsmeyer–Peppas model | Non-fickian diffusion | Porcine skin | 24 h | Not detected | NP | NP | NP | [31] |
PENY-NLC-CAR-934 | 48 h | 51.13 ± 1.69 | Korsmeyer–Peppas model | Non-fickian diffusion | NP | NP | NP | NP | NP | NP | [54] |
TEN-ME-CAR-940 | NP | NP | NP | NP | Laca mouse skin | 24 h | 64–71 | NP | NP | Rat Sprague-Dawley | [55] |
GEN-NE-MCT-CAR-940 | 8 h | NP | NP | NP | Porcine skin | In 8 h | 100 µg/cm2 | NP | NP | NP | [56] |
GEN-NE-ODD-CAR-940 | 8 h | NP | NP | NP | Porcine skin | In 8 h | 150 µg/cm2 | NP | NP | NP | |
SSD-CUBO-CAR-934 | 12 h | 76 to 98 | NP | NP | NP | NP | NP | NP | NP | Male adult Wister rats | [41] |
RTTS-ME-CAR-940 | NP | NP | NP | NP | Porcine abdominal skin | NP | NP | NP | NP | Rabbit | [57] |
ATC-NC-ART | 8 h | NP | Higuchi | Diffusion | NP | NP | NP | NP | NP | NP | [58] |
ATC-SLNP-ART | NP | NP | NP | NP | NP | NP | NP | NP | NP | NP | |
PG-NE | 24 | Not shown | NP | NP | Porcine ear skin | NP | NP | NP | NP | NP | [35] |
KETO-CUBO-CAR-971P | NP | NP | NP | NP | Goat skin | 24 h | 92.73 | NP | NP | NP | [59] |
CP-NS-CAR-934 | NP | NP | NP | NP | NP | NP | NP | NP | NP | Male Swiss albino mice | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoshari, Y. Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022, 8, 174. https://doi.org/10.3390/gels8030174
Almoshari Y. Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels. 2022; 8(3):174. https://doi.org/10.3390/gels8030174
Chicago/Turabian StyleAlmoshari, Yosif. 2022. "Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source" Gels 8, no. 3: 174. https://doi.org/10.3390/gels8030174
APA StyleAlmoshari, Y. (2022). Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels, 8(3), 174. https://doi.org/10.3390/gels8030174