Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Hydrogels Samples
2.1.1. Physicochemical Properties
2.1.2. Rheological and Mechanical Properties
2.1.3. Microstructural Features
2.2. Stability of Hydrogel Samples during Storage
2.2.1. Stability of TBC Content and Antioxidant Activity
2.2.2. Stability of Color
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. General Experimental Procedure
4.3. CBJ Preparation
4.4. Preparation of Hydrogel Products
4.5. Characterization of Hydrogels Samples
4.5.1. Physicochemical Parameters
4.5.2. Rheological Properties
4.5.3. Mechanical Properties
4.5.4. Optical Microscopy
4.6. Storage Stability Study (SSS)
4.7. Determination of Total Bioactive Compounds (TBC)
4.8. Determination of Antioxidant Activity (AA)
4.9. Color Measurement
4.10. Kinetics and Half-Life Time Analysis
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Chen, L.; McClements, D.J.; Qiu, C.; Li, C.; Zhang, Z.; Ming, M.; Tian, Y.; Zhu, K.; Jin, Z. Stimulus-responsive hydrogels in food science: A review. Food Hydrocoll. 2022, 124, 107218. [Google Scholar] [CrossRef]
- Klein, M.; Poverenov, E. Natural biopolymer-based hydrogels for use in food and agriculture. J. Sci. Food Agric. 2020, 100, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Arraez, S.; Capella, J.V.; Castelló, M.L.; Ortolá, M.D. Physicochemical characteristics of citrus jelly with non-cariogenic and functional sweeteners. J. Food Sci. Technol. 2016, 53, 3642–3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, H.; Wu, Y.; Woshnak, L.; Mitmesser, S. Effects of hydrocolloids, acids and nutrients on gelatin network in gummies. Food Hydrocoll. 2021, 113, 106549. [Google Scholar] [CrossRef]
- Periche, Á.; Castelló, M.L.; Heredia, A.; Escriche, I. Stevia rebaudiana, oligofructose and isomaltulose as sugar replacers in marshmallows: Stability and antioxidant properties. J. Food Process. Preserv. 2016, 40, 724–732. [Google Scholar] [CrossRef]
- Dai, H.; Li, X.; Du, J.; Ma, L.; Yu, Y.; Zhou, H.; Guo, T.; Zhang, Y. Effect of interaction between sorbitol and gelatin on gelatin properties and its mechanism under different citric acid concentrations. Food Hydrocoll. 2020, 101, 105557. [Google Scholar] [CrossRef]
- Šeremet, D.; Mandura, A.; Cebin, A.; Martinić, A.; Galić, K.; Komes, D. Challenges in confectionery industry: Development and storage stability of innovative white tea-based candies. J. Food Sci. 2020, 85, 2060–2068. [Google Scholar] [CrossRef]
- Cedeño-Pinos, C.; Martínez-Tomé, M.; Murcia, M.A.; Jordán, M.J.; Bañón, S. Assessment of rosemary (Rosmarinus officinalis L.) extract as antioxidant in jelly candies made with fructan fibres and stevia. Antioxidants 2020, 9, 1289. [Google Scholar] [CrossRef]
- Rivero, R.; Archaina, D.; Sosa, N.; Schebor, C. Development and characterization of two gelatin candies with alternative sweeteners and fruit bioactive compounds. LWT-Food Sci. Technol. 2021, 141, 110894. [Google Scholar] [CrossRef]
- Mandura, A.; Šeremet, D.; Ščetar, M.; Vojvodić Cebin, A.; Belščak-Cvitanović, A.; Komes, D. Physico-chemical, bioactive, and sensory assessment of white tea-based candies during 4-months storage. J. Food Process. Preserv. 2020, 44, e14628. [Google Scholar] [CrossRef]
- de Moura, S.C.; Berling, C.L.; Garcia, A.O.; Queiroz, M.B.; Alvim, I.D.; Hubinger, M.D. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res. Int. 2019, 121, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Otálora, M.C.; de Jesús Barbosa, H.; Perilla, J.E.; Osorio, C.; Nazareno, M.A. Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: Gummy candies. LWT-Food Sci. Technol. 2019, 103, 222–227. [Google Scholar] [CrossRef]
- Marinelli, V.; Lucera, A.; Incoronato, A.L.; Morcavallo, L.; Del Nobile, M.A.; Conte, A. Strategies for fortified sustainable food: The case of watermelon-based candy. J. Food Sci. Technol. 2021, 58, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Calín-Sánchez, Á.; Clemente-Villalba, J.; Hernández, F.; Carbonell-Barrachina, Á.A.; Sendra, E.; Wojdyło, A. Quality parameters and consumer acceptance of jelly candies based on pomegranate juice “Mollar de Elche”. Foods 2020, 9, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Comparative study of the structural properties, color, bioactive compounds content and antioxidant capacity of aerated gelatin gels enriched with cryoconcentrated blueberry juice during storage. Polymers 2020, 12, 2769. [Google Scholar] [CrossRef] [PubMed]
- Casas-Forero, N.; Moreno-Osorio, L.; Orellana-Palma, P.; Petzold, G. Effects of cryoconcentrate blueberry juice incorporation on gelatin gel: A rheological, textural and bioactive properties study. LWT-Food Sci. Technol. 2021, 138, 110674. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Guerra-Valle, M.; Gianelli, M.P.; Petzold, G. Evaluation of freeze crystallization on pomegranate juice quality in comparison with conventional thermal processing. Food Biosci. 2021, 41, 101106. [Google Scholar] [CrossRef]
- da Silva Haas, I.C.; de Espindola, J.S.; de Liz, G.R.; Luna, A.S.; Bordignon-Luiz, M.T.; Prudêncio, E.S.; de Gois, J.S.; Fedrigo, I.M.T. Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives. J. Food Eng. 2022, 315, 110802. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Tobar-Bolaños, G.; Casas-Forero, N.; Zúñiga, R.N.; Petzold, G. Quality attributes of cryoconcentrated calafate (Berberis microphylla) juice during refrigerated storage. Foods 2020, 9, 1314. [Google Scholar] [CrossRef]
- Qin, F.G.; Ding, Z.; Peng, K.; Yuan, J.; Huang, S.; Jiang, R.; Shao, Y. Freeze concentration of apple juice followed by centrifugation of ice packed bed. J. Food Eng. 2021, 291, 110270. [Google Scholar] [CrossRef]
- Chen, J.Y.; Du, J.; Li, M.L.; Li, C.M. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT-Food Sci. Technol. 2020, 128, 109448. [Google Scholar] [CrossRef]
- Tutunchi, P.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem. 2019, 297, 124994. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, J.A.; Cruz, M.T.C.; Barragán-Huerta, B.E. Betaxanthins and antioxidant capacity in Stenocereus pruinosus: Stability and use in food. Food Res. Int. 2017, 91, 63–71. [Google Scholar] [CrossRef]
- Periche, Á.; Heredia, A.; Escriche, I.; Andrés, A.; Castelló, M.L. Optical, mechanical and sensory properties of based-isomaltulose gummy confections. Food Biosci. 2014, 7, 37–44. [Google Scholar] [CrossRef]
- Mardani, M.; Yeganehzad, S.; Ptichkina, N.; Kodatsky, Y.; Kliukina, O.; Nepovinnykh, N.; Naji-Tabasi, S. Study on foaming, rheological and thermal properties of gelatin-free marshmallow. Food Hydrocoll. 2019, 93, 335–341. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef]
- Sadahira, M.S.; Rodrigues, M.I.; Akhtar, M.; Murray, B.S.; Netto, F.M. Influence of pH on foaming and rheological properties of aerated high sugar system with egg white protein and hydroxypropylmethylcellulose. LWT-Food Sci. Technol. 2018, 89, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Hartel, R.W.; Joachim, H.; Hofberger, R. (Eds.) Aerated Confections. In Confectionery Science and Technology, 1st ed.; Springer Nature: Cham, Switzerland, 2018; pp. 301–327. [Google Scholar]
- Yang, F.; Zhang, M.; Bhandari, B.; Liu, Y. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT-Food Sci. Technol. 2018, 87, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Laurindo, J.B.; Peleg, M. Mechanical measurements in puffed rice cakes. J. Texture Stud. 2007, 38, 619–634. [Google Scholar] [CrossRef]
- Zúñiga, R.N.; Aguilera, J.M. Structure–fracture relationships in gas-filled gelatin gels. Food Hydrocoll. 2009, 23, 1351–1357. [Google Scholar] [CrossRef]
- Zúñiga, R.N.; Kulozik, U.; Aguilera, J.M. Ultrasonic generation of aerated gelatin gels stabilized by whey protein β-lactoglobulin. Food Hydrocoll. 2011, 25, 958–967. [Google Scholar] [CrossRef]
- Kaletunc, G.; Normand, M.D.; Johnson, E.A.; Peleg, M. “Degree of elasticity” determination in solid foods. J. Food Sci. 1991, 56, 950–953. [Google Scholar] [CrossRef]
- Kumar, S.S.; Chauhan, A.S.; Giridhar, P. Nanoliposomal encapsulation mediated enhancement of betalain stability: Characterisation, storage stability and antioxidant activity of Basella rubra L. fruits for its applications in vegan gummy candies. Food Chem. 2020, 333, 127442. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Amaro, A.L.; Pintado, M. Impact of food matrix components on nutritional and functional properties of fruit-based products. Curr. Opin. Food Sci. 2018, 22, 153–159. [Google Scholar] [CrossRef]
- Hani, N.; Romli, S.; Ahmad, M. Influences of red pitaya fruit puree and gelling agents on the physico-mechanical properties and quality changes of gummy confections. Int. J. Food Sci. 2015, 50, 331–339. [Google Scholar] [CrossRef]
- Barba, F.; Jäger, H.; Meneses, N.; Esteve, M.; Frígola, A.; Knorr, D. Evaluation of the quality changes of blueberry juice during refrigerated storage after processing of high pressure and pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Cortellino, G.; Rizzolo, A. Storage stability of novel functional drinks based on ricotta cheese whey and fruit juices. Beverages 2018, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, G.; Wang, W.; Yue, J.; Yue, P.; Gao, X. Anthocyanin profile, color and antioxidant activity of blueberry (Vaccinium ashei) juice as affected by thermal pretreatment. Int. J. Food Prop. 2019, 22, 1035–1046. [Google Scholar] [CrossRef] [Green Version]
- Mar, J.M.; Silva, L.S.; Rabelo, M.S.; Muniz, M.P.; Nunomura, S.M.; Correa, R.F.; Kinupp, V.F.; Campelo, P.H.; Bezerra, J.A.; Sanches, E. Encapsulation of amazonian blueberry juices: Evaluation of bioactive compounds and stability. LWT-Food Sci. Technol. 2020, 124, 109152. [Google Scholar] [CrossRef]
- Maier, T.; Fromm, M.; Schieber, A.; Kammerer, D.R.; Carle, R. Process and storage stability of anthocyanins and non-anthocyanin phenolics in pectin and gelatin gels enriched with grape pomace extracts. Eur. Food Res. Technol. 2009, 229, 949–960. [Google Scholar] [CrossRef]
- Tavares, I.M.; Sumere, B.R.; Gómez-Alonso, S.; Gomes, E.; Hermosín-Gutiérrez, I.; da Silva, R.; Lago-Vanzela, E.S. Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Res. Int. 2020, 128, 108750. [Google Scholar] [CrossRef] [PubMed]
- Teribia, N.; Buve, C.; Bonerz, D.; Aschoff, J.; Hendrickx, M.; van Loey, A. Impact of processing and storage conditions on color stability of strawberry puree: The role of PPO reactions revisited. J. Food Eng. 2021, 294, 110402. [Google Scholar] [CrossRef]
- Kia, E.M.; Langroodi, A.M.; Ghasempour, Z.; Ehsani, A. Red beet extract usage in gelatin/gellan based gummy candy formulation introducing Salix aegyptiaca distillate as a flavouring agent. J. Food Sci. Tech. 2020, 57, 3355–3362. [Google Scholar] [CrossRef]
- Tarone, A.; Cazarin, C.; Junior, M. Anthocyanins: New techniques and challenges in microencapsulation. Food Res. Int. 2020, 133, 109092. [Google Scholar] [CrossRef]
- Amjadi, S.; Ghorbani, M.; Hamishehkar, H.; Roufegarinejad, L. Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chem. 2018, 256, 156–162. [Google Scholar] [CrossRef]
- da Rosa, J.R.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Weis, G.C.C.; Hecktheuer, L.H.R.; Muller, E.I.; de Menezes, C.R.; da Rosa, C.S. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019, 89, 742–748. [Google Scholar] [CrossRef]
- Muhamad, I.I.; Jusoh, Y.M.; Nawi, N.M.; Aziz, A.A.; Padzil, A.M.; Lian, H.L. Advanced natural food colorant encapsulation methods: Anthocyanin plant pigment. In Natural and Artificial Flavoring Agents and Food Dyes, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 495–526. [Google Scholar]
- Vukoja, J.; Pichler, A.; Kopjar, M. Stability of anthocyanins, phenolics and color of tart cherry jams. Foods 2019, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Sinela, A.; Rawat, N.; Mertz, C.; Achir, N.; Fulcrand, H.; Dornier, M. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chem. 2017, 214, 234–241. [Google Scholar] [CrossRef]
- Yan, B.; Davachi, S.M.; Ravanfar, R.; Dadmohammadi, Y.; Deisenroth, T.W.; van Pho, T.; Odorisio, P.A.; Darji, R.H.; Abbaspourrad, A. Improvement of vitamin C stability in vitamin gummies by encapsulation in casein gel. Food Hydrocoll. 2021, 113, 106414. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, H.; Fang, Y.; Lu, J.; Yang, W.; Qiao, Z.; Lou, Q.; Xu, D.; Zhang, J. Comparison of gelling properties and flow behaviors of microbial transglutaminase (MTGase) and pectin modified fish gelatin. J. Texture Stud. 2019, 50, 400–409. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lai, K.; Fan, Y.; Liu, Y.; Huang, Y. Effects of sucrose, glucose and fructose on the large deformation behaviors of fish skin gelatin gels. Food Hydrocoll. 2020, 101, 105537. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.; Wrolstad, R. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Orellana-Palma, P.; Guerra-Valle, M.; Zúñiga, R.N. Centrifugal filter-assisted block freeze crystallization applied to blueberry juice. Processes 2021, 9, 421. [Google Scholar] [CrossRef]
Physicochemical Parameter | GG | AGG | GM | AGM |
---|---|---|---|---|
TSS (°Brix) | 16.8 ± 0.0 a | 21.0 ± 0.1 b | 61.0 ± 1.0 cd | 60.1 ± 0.2 c |
pH | 5.0 ± 0.0 a | 5.2 ± 0.0 c | 5.1 ± 0.0 b | 5.1 ± 0.0 b |
Moisture (%) | 83.1 ± 0.1 d | 78.9 ± 0.2 c | 38.7 ± 0.4 a | 38.3 ± 2.6 ab |
Water activity | 0.988 ± 0.001 d | 0.981 ± 0.003 c | 0.889 ± 0.009 ab | 0.877 ± 0.008 a |
Density (kg/m3) | 1083.2 ± 15.9 b | 408.6 ± 5.3 a | 1202.1 ± 33.1 c | 406.5 ± 14.2 a |
Gas hold-up (ε, %) | ND | 62.3 ± 0.9 a | ND | 66.2 ± 1.5 b |
Sample | TBC | AA | |||
---|---|---|---|---|---|
TPC | TAC | TFC | DPPH | FRAP | |
CBJ | 773.3 ± 8.7 e | 22.3 ± 0.7 e | 566.8 ± 7.6 e | 4585.4 ± 8.5 e | 4442.0 ± 61.9 d |
GG | 233.4 ± 1.6 a | 3.9 ± 0.1 cd | 136.1 ± 2.9 cd | 782.9 ± 3.0 b | 1067.8 ± 13.5 a |
AGG | 251.0 ± 3.6 cd | 3.5 ± 0.2 a | 133.7 ± 3.7 c | 759.1 ± 1.1 a | 1057.3 ± 45.9 a |
GM | 247.7 ± 0.9 c | 3.7 ± 0.2 abc | 119.6 ± 3.9 a | 911.3 ± 2.2 d | 1075.1 ± 12.6 ab |
AGM | 238.5 ± 3.9 ab | 3.7 ± 0.1 ab | 123.9 ± 4.7 ab | 870.5 ± 4.8 c | 1083.3 ± 31.8 ab |
Assay | Kinetic Parameters | 4 °C | 25 °C | ||||
---|---|---|---|---|---|---|---|
CBJ | GG | AGG | CBJ | GM | AGM | ||
TPC | k (10−3 day−1) | 13.0 ± 0.6 a | 18.6 ± 0.1 c | 24.9 ± 1.4 e | 36.8 ± 0.7 f | 16.4 ±0.6 b | 21.3 ± 1.3 d |
t1/2 (day) | 53.3 ± 2.7 f | 37.2 ± 0.3 d | 27.9 ± 1.6 b | 18.8 ± 0.4 a | 42.4 ± 1.5 e | 32.6 ± 1.9 c | |
R2 | 0.94 | 0.87 | 0.86 | 0.89 | 0.92 | 0.90 | |
TAC | k (10−3 day−1) | 22.3 ± 1.2 a | 40.9 ± 1.1 b | 47.9 ± 1.7 c | 67.7 ± 2.2 ed | 43.6 ± 2.4 b | 60.1 ± 7.2 d |
t1/2 (day) | 31.1 ± 1.8 e | 16.9 ± 0.4 d | 14.5 ± 0.5 c | 10.3 ± 0.3 a | 15.9 ± 0.9 cd | 11.5 ± 0.1 b | |
R2 | 0.97 | 0.99 | 0.97 | 0.97 | 0.98 | 0.99 | |
TFC | k (10−3day−1) | 21.8 ± 0.5 a | 28.4 ± 0.5 b | 38.8 ± 1.6 d | 66.7 ± 0.9 f | 33.1 ± 0.1 c | 41.9 ± 1.7 e |
t1/2 (day) | 31.8 ± 0.7 e | 24.4 ± 0.4 d | 17.9 ± 0.7 b | 10.4 ± 0.2 a | 20.9 ± 0.8 c | 16.5 ± 0.6 b | |
R2 | 0.96 | 0.98 | 0.95 | 0.97 | 0.90 | 0.99 | |
DPPH | k (10−3 day−1) | 16.3 ± 0.6 a | 21.2 ± 0.4 b | 25.6 ± 0.6 c | 40.2 ± 0.7 d | 21.3 ± 0.6 b | 26.2 ± 0.6 c |
t1/2 (day) | 42.5 ± 1.7 d | 32.8 ± 0.6 c | 27.1 ± 0.6 b | 17.2 ± 0.3 a | 32.6 ± 0.9 c | 26.5 ± 0.6 b | |
R2 | 0.98 | 0.90 | 0.96 | 0.98 | 0.96 | 0.97 | |
FRAP | k (10−3 day−1) | 24.7 ± 0.6 a | 31.7 ± 0.2 b | 37.9 ± 1.7 d | 54.2 ± 1.5 f | 34.1 ± 0.3 c | 41.7 ± 0.6 e |
t1/2 (day) | 28.0 ± 0.7 e | 21.9 ± 0.2 d | 18.2 ± 0.8 c | 12.8 ± 0.3 a | 20.3 ± 0.2 c | 16.6 ± 0.2 b | |
R2 | 0.96 | 0.98 | 0.94 | 0.97 | 0.97 | 0.99 |
Sample | Time (Days) | L* | a* | b* | ΔE |
---|---|---|---|---|---|
4 °C | |||||
CBJ | 0 | 8.0 ± 0.2 d | 24.6 ± 0.9 f | 4.9 ± 0.2 c | - |
7 | 8.0 ± 0.0 d | 22.5 ± 0.0 e | 4.6 ± 0.1 c | 2.1 ± 1.0 a | |
14 | 7.1 ± 0.2 c | 21.6 ± 0.0 d | 4.3 ± 0.0 b | 3.1 ± 1.0 b | |
21 | 6.9 ± 0.2 bc | 21.0 ± 0.0 c | 4.3 ± 0.0 b | 3.8 ± 0.9 c | |
28 | 6.7 ± 0.2 b | 19.3 ± 0.1 b | 3.2 ± 0.1 a | 5.7 ± 0.9 d | |
35 | 6.3 ± 0.2 a | 17.4 ± 0.6 a | 3.2 ± 0.0 a | 7.6 ± 1.5 e | |
GG | 0 | 18.1 ± 0.6 d | 7.6 ± 0.4 f | 1.1 ± 0.0 d | - |
7 | 17.2 ± 0.3 cd | 7.1 ± 0.2 e | 1.1 ± 0.1 d | 1.2 ± 0.4 a | |
14 | 16.6 ± 0.3 bc | 5.8 ± 0.2 d | 0.8 ± 0.1 c | 2.4 ± 0.2 b | |
21 | 16.2 ± 0.5 b | 4.5 ± 0.1 c | 0.7 ± 0.0 c | 3.8 ± 0.3 c | |
28 | 15.9 ± 0.6 ab | 4.1 ± 0.1 b | 0.6 ± 0.0 b | 4.3 ± 0.1 d | |
35 | 15.3 ± 0.2 a | 3.8 ± 0.1 a | 0.5 ± 0.0 a | 4.8 ± 0.4 e | |
AGG | 0 | 60.2 ± 0.5 e | 10.2 ± 0.2 f | 10.0 ± 0.1 d | - |
7 | 58.7 ± 0.7 d | 9.6 ± 0.1 e | 9.9 ± 0.3 d | 1.7 ± 0.3 a | |
14 | 56.8 ± 0.3 c | 8.4 ± 0.2 d | 9.2 ± 0.0 c | 4.0 ± 0.0 b | |
21 | 54.8 ± 0.1 b | 7.9 ± 0.0 c | 8.6 ± 0.1 b | 6.0 ± 0.5 c | |
28 | 53.4 ± 0.1 a | 5.2 ± 0.0 b | 8.5 ± 0.0 b | 8.6 ± 0.2 d | |
35 | 51.9 ± 1.4 a | 4.6 ± 0.0 a | 7.7 ± 0.0 a | 10.3 ± 0.9 e | |
25 °C | |||||
CBJ | 0 | 8.0 ± 0.2 f | 24.6 ± 0.9 f | 4.9 ± 0.2 e | - |
7 | 6.8 ± 0.1 e | 18.4 ± 0.1 e | 3.9 ± 0.1 d | 6.4 ± 1.0 a | |
14 | 5.6 ± 0.0 d | 13.5 ± 0.5 d | 1.3 ± 0.0 c | 11.9 ± 1.3 b | |
21 | 4.6 ± 0.0 c | 10.7 ± 0.1 c | 1.0 ± 0.0 b | 14.8 ± 1.0 c | |
28 | 3.6 ± 0.0 b | 9.0 ± 0.0 b | 0.9 ± 0.0 a | 16.7 ± 1.0 d | |
35 | 3.0 ± 0.0 a | 7.6 ± 0.0 a | 0.9 ± 0.0 a | 18.1 ± 1.0 e | |
GM | 0 | 22.1 ± 0.6 e | 4.0 ± 0.1 f | 9.4 ± 0.4 d | - |
7 | 21.0 ± 0.4 d | 2.8 ± 0.1 e | 9.7 ± 0.1 c | 1.7 ± 0.3 a | |
14 | 19.3 ± 0.1 c | 2.5 ± 0.1 d | 8.7 ± 0.3 b | 3.3 ± 0.5 b | |
21 | 18.6 ± 0.4 b | 2.4 ± 0.1 c | 8.8 ± 0.1 b | 3.9 ± 0.3 c | |
28 | 17.9 ± 0.2 a | 2.3 ± 0.0 b | 8.7 ± 0.3 b | 4.6 ± 0.4 d | |
35 | 17.3 ± 0.5 a | 1.7 ± 0.0 a | 8.1 ± 0.2 a | 5.5 ± 0.3 e | |
AGM | 0 | 56.4 ± 1.6 f | 11.3 ± 0.5 f | 9.4 ± 0.4 d | - |
7 | 53.4 ± 0.8 e | 11.2 ± 0.1 e | 8.9 ± 0.1 c | 3.0 ± 1.0 a | |
14 | 47.8 ± 0.6 d | 10.9 ± 0.2 d | 8.8 ± 0.1 c | 8.6 ± 2.2 b | |
21 | 46.0 ± 1.0 c | 9.9 ± 0.3 c | 8.7 ± 0.3 bc | 10.5 ± 0.9 c | |
28 | 44.2 ± 0.5 b | 9.1 ± 0.0 b | 8.4 ± 0.1 b | 12.4 ± 1.6 d | |
35 | 40.7 ± 0.3 a | 8.8 ± 0.1 a | 7.9 ± 0.1 a | 15.9 ± 1.7 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Forero, N.; Trujillo-Mayol, I.; Zúñiga, R.N.; Petzold, G.; Orellana-Palma, P. Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels. Gels 2022, 8, 217. https://doi.org/10.3390/gels8040217
Casas-Forero N, Trujillo-Mayol I, Zúñiga RN, Petzold G, Orellana-Palma P. Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels. Gels. 2022; 8(4):217. https://doi.org/10.3390/gels8040217
Chicago/Turabian StyleCasas-Forero, Nidia, Igor Trujillo-Mayol, Rommy N. Zúñiga, Guillermo Petzold, and Patricio Orellana-Palma. 2022. "Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels" Gels 8, no. 4: 217. https://doi.org/10.3390/gels8040217
APA StyleCasas-Forero, N., Trujillo-Mayol, I., Zúñiga, R. N., Petzold, G., & Orellana-Palma, P. (2022). Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels. Gels, 8(4), 217. https://doi.org/10.3390/gels8040217