Effect of Morphology/Structure on the Phase Behavior and Nonlinear Rheological Properties of NR/SBR Blends
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of SBR Content on the Glass Transition Temperature (Tg) and Morphology of NR/SBR Blends
2.2. Linear Rheological Behaviors
2.3. Nonlinear Rheological Behavior
2.4. Fourier-Transform Rheology Analysis
3. Conclusion
4. Experimental
4.1. Materials
4.2. Sample Preparation
4.3. Characterizations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callan, J.E.; Hess, W.M.; Scott, C.E. Elastomer blends. Compatibility and relative response to fillers. Rubber Chem. Technol. 1971, 44, 814–837. [Google Scholar] [CrossRef]
- István, H.; Tamás, B. Phase morphology and mechanical properties of cyclic butylene terephthalate oligomer-containing rubbers: Effect of mixing temperature. Materials 2016, 9, 722. [Google Scholar]
- Tokita, N. Analysis of morphology formation in elastomer blends. Rubber Chem. Technol. 1977, 50, 292–300. [Google Scholar] [CrossRef]
- Hess, W.M.; Scott, C.E.; Callan, J.E. Carbon black distribution in elastomer blends. Rubber Chem. Technol. 1967, 40, 371–384. [Google Scholar] [CrossRef]
- Walters, M.H.; Keyte, D.N. Heterogeneous structure in blends of rubber polymers. Rubber Chem. Technol. 2012, 38, 62–75. [Google Scholar] [CrossRef]
- Berger, W.; Kammer, H.W.; Kummerlwe, C. Melt rheology and morphology of polymer blends. Die Makromol. Chem. 1984, 8, 101–108. [Google Scholar] [CrossRef]
- Avgeropoulos, G.N.; Weissert, F.C.; Biddison, P.H. Heterogeneous blends of polymers. Rheology and morphology. Rubber Chem. Technol. 1976, 49, 93–104. [Google Scholar] [CrossRef]
- Nelson, C.J.; Avgeropoulos, G.N.; Weissert, F.C.; Böhm, G. The relationship between rheology, morphology and physical properties in heterogeneous blends. Die Angew. Makromol. Chem. 1977, 60, 49–86. [Google Scholar] [CrossRef]
- Chin, S.L.; Xiao, R.; Cooper, B.G.; Varongchayakul, N.; Buch, K.; Kim, D.; Grinstaff, M.W. Macromolecular photoinitiators enhance the hydrophilicity and lubricity of natural rubber. J. Appl. Polym. Sci. 2016, 133, 43930. [Google Scholar] [CrossRef]
- Wang, Z.F.; Peng, Z.; Li, S.D.; Lin, H.; Zhang, K.X.; She, X.D.; Fu, X. The impact of esterification on the properties of starch/natural rubber composite. Compos. Sci. Technol. 2009, 69, 1797–1803. [Google Scholar] [CrossRef]
- Hamed, G.R. Tack and green strength of NR, SBR and NR-SBR blends. Rubber Chem. Technol. 1981, 54, 403–414. [Google Scholar] [CrossRef]
- Zaimova, D.; Bayraktar, E.; Miskioglu, I. Design and manufacturing of new elastomeric composites: Mechanical properties, chemical and physical analysis. Compos. Part B-Eng. 2016, 105, 203–210. [Google Scholar] [CrossRef]
- Li, H.; Zong, X.; Li, N.; Zhang, X.; He, A. Influences of crosslinkable crystalline copolymer on the polymer network and filler dispersion of NR/ESBR/CB nanocomposites. Compos. Part A-Appl. Sci. Manuf. 2021, 140, 106194. [Google Scholar] [CrossRef]
- Lin, L.; Nicholas, E.; Sebastian, K.; Chong, S.; He, W.; Song, X.; Kai, W.; Zhao, S.; Zhang, J.; Schlarb, A.K. Study on the impact of graphene and cellulose nanocrystal on the friction and wear properties of SBR/NR composites under dry sliding conditions. Wear 2018, 414–415, 43–49. [Google Scholar] [CrossRef]
- Karak, N.; Roy, M. Effect of compounding ingredients on rheometric characteristics and physical properties of a rubber based shoe sole. J. Sci. Ind. Res. 2003, 62, 820–826. [Google Scholar]
- Braihi, A.; Jawad, A.J.; Kadhum, A.; Aljibori, H.; Al Amiery, A. Chemical resistance of NR/SBR rubber blends for surfaces corrosion protection of metallic tanks in petrochemical industries. Koroze Ochr. Mater. 2020, 64, 65–71. [Google Scholar] [CrossRef]
- Hourston, D.J.; Song, M. Quantitative characterization of interfaces in rubber-rubber blends by means of modulated-temperature dsc. J. Appl. Polym. Sci. 2000, 76, 1791–1798. [Google Scholar] [CrossRef]
- Mansilla, M.A.; Silva, L.; Salgueiro, W.; Marzocca, A.J.; Somoza, A. A study about the structure of vulcanized natural rubber/styrene butadiene rubber blends and the glass transition behavior. J. Appl. Polym. Sci. 2012, 125, 992–999. [Google Scholar] [CrossRef]
- Sebenik, U.; Zupancic-Valant, A.; Krajnc, M. Investigation of rubber-rubber blends miscibility. Polym. Eng. Sci. 2006, 46, 1649–1659. [Google Scholar] [CrossRef]
- Wunde, M.; Klueppel, M. Influence of phase morphology and filler distribution in NR/BR and NR/SBR blends on fracture mechanical properties. Rubber Chem. Technol. 2016, 89, 588–607. [Google Scholar] [CrossRef]
- Mansilla, M.A.; Valentin, J.L.; Lopez-Manchado, M.A.; Gonzalez-Jimenez, A.; Marzocca, A.J. Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. Eur. Polym. J. 2016, 81, 365–375. [Google Scholar] [CrossRef]
- Kaliyathan, A.V.; Rane, A.V.; Huskic, M.; Kunaver, M.; Kalarikkal, N.; Rouxel, D.; Thomas, S. Carbon black distribution in natural rubber/butadiene rubber blend composites: Distribution driven by morphology. Compos. Sci. Technol. 2020, 200, 108484. [Google Scholar] [CrossRef]
- Kaliyathan, A.V.; Rane, A.V.; Huskic, M.; Kanny, K.; Kunaver, M.; Kalarikkal, N.; Thomas, S. The effect of adding carbon black to natural rubber/butadiene rubber blends on curing, morphological, and mechanical characteristics. J. Appl. Polym. Sci. 2022, 139, 51967. [Google Scholar] [CrossRef]
- Payne, A.R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 368–372. [Google Scholar] [CrossRef]
- Payne, A.R. The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. Rubber Chem. Technol. 1963, 36, 444–450. [Google Scholar] [CrossRef]
- Chazeau, L.; Sternstein, S.S. Modulus recovery kinetics and other insights into the Payne effect for filled elastomers. Polym. Compos. 2000, 21, 202–222. [Google Scholar] [CrossRef]
- Fan, X.; Xu, H.; Wu, C.; Song, Y.; Zheng, Q. Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene. J. Rheol. 2020, 64, 775–784. [Google Scholar] [CrossRef]
- Hyun, K.; Kim, S.H.; Ahn, K.H.; Lee, S.J. Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newton. Fluid Mech. 2002, 107, 51–65. [Google Scholar] [CrossRef]
- Fan, X.; Xu, H.; Zhang, Q.; Xiao, D.; Song, Y.; Zheng, Q. Insight into the weak strain overshoot of carbon black filled natural rubber. Polymer 2019, 167, 109–117. [Google Scholar] [CrossRef]
- Varkey, J.T.; Augustine, S.; Groeninckx, G.; Bhagawan, S.S.; Rao, S.S.; Thomas, S. Morphology and mechanical and viscoelastic properties of natural rubber and styrene butadiene rubber latex blends. J. Polym. Sci. Part B Polym. Phys. 2015, 38, 2189–2211. [Google Scholar] [CrossRef]
- Martinetti, L.; Olivia, C.; Schweizer, K.S.; Ewoldt, R.H. Inferring the nonlinear mechanisms of a reversible network. Macromolecules 2018, 51, 8772–8789. [Google Scholar] [CrossRef]
- Klat, D.; Karimi-Varzaneh, H.A.; Lacayo-Pineda, J. Phase morphology of NR/SBR blends: Effect of curing temperature and curing time. Polymers 2018, 10, 510. [Google Scholar] [CrossRef] [Green Version]
- Calvao, P.S.; Yee, M.; Demarquette, N.R. Effect of composition on the linear viscoelastic behavior and morphology of PMMA/PS and PMMA/PP blends. Polymer 2005, 46, 2610–2620. [Google Scholar] [CrossRef]
- Lin, Y.; Tan, Y.; Qiu, B.; Shangguan, Y.; Harkin-Jones, E.; Zheng, Q. Influence of annealing on chain entanglement and molecular dynamics in weak dynamic asymmetry polymer blends. J. Phys. Chem. B 2013, 117, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barron, C.R.; Macosko, C.W. Characterizing interface shape evolution in immiscible polymer blends via 3D image analysis. Langmuir 2009, 25, 9392–9404. [Google Scholar] [CrossRef]
- Meera, A.P.; Said, S.; Grohens, Y.; Thomas, S. Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J. Phys. Chem. C 2009, 113, 17997–18002. [Google Scholar] [CrossRef]
- Payne, A.R. A note on conductivity and modulus of carbon black-loaded rubbers. J. Appl. Polym. Sci. 1965, 9, 1073. [Google Scholar] [CrossRef]
- Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49, 2183–2196. [Google Scholar] [CrossRef] [Green Version]
- Sternstein, S.S.; Zhu, A.J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262–7273. [Google Scholar] [CrossRef]
- Sarvestani, A.S. On the emergence of the Payne effect in polymer melts reinforced with nanoparticles. Macromol. Theory Simul. 2016, 25, 312–321. [Google Scholar] [CrossRef]
- Cassagnau, P. Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 2003, 44, 2455–2462. [Google Scholar] [CrossRef]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999; pp. 413–415. [Google Scholar]
- Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M. Local chain deformation and overstrain in reinforced elastomers: An NMR study. Macromolecules 2013, 46, 5549–5560. [Google Scholar] [CrossRef]
- Ianniruberto, G.; Marrucci, G. Convective constraint release (CCR) revisited. J. Rheol. 2014, 58, 89–102. [Google Scholar] [CrossRef]
- Furuichi, K.; Nonomura, C.; Masubuchi, Y.; Watanabe, H. Chain contraction and nonlinear stress damping in primitive chain network simulations. J. Chem. Phys. 2010, 133, 174902. [Google Scholar] [CrossRef] [Green Version]
- Vermant, J.; Ceccia, S.; Dolgovskij, M.K.; Maffettone, P.L.; Macosko, C.W. Quantifying dispersion of layered nanocomposites via melt rheology. J. Rheol. 2007, 51, 429–450. [Google Scholar] [CrossRef]
- Xu, H.; Fan, X.; Song, Y.; Zheng, Q. Reinforcement and Payne effect of hydrophobic silica filled natural rubber nanocomposites. Compos. Sci. Technol. 2019, 187, 107943. [Google Scholar] [CrossRef]
- Chopra, D.; Vlassopoulos, D.; Hatzikiriakos, S.G. Nonlinear rheological response of phase separating polymer blends: Poly(styrene-co-maleic anhydride)/poly(methyl methacrylate). J. Rheol. 2000, 44, 27–45. [Google Scholar] [CrossRef]
- Chopra, D.; Haynes, C.; Hatzikiriakos, S.G.; Vlassopoulos, D. Modeling the shear-induced structural changes in polymeric fluids. J. Non-Newton. Fluid Mech. 1999, 82, 367–385. [Google Scholar] [CrossRef]
- Ewoldt, R.H.; Hosoi, A.E.; Mckinley, G.H. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 2015, 52, 1427–1458. [Google Scholar] [CrossRef] [Green Version]
- Klein, C.O.; Spiess, H.W.; Calin, A.; Balan, C.; Wilhelm, M. Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 2007, 40, 4250–4259. [Google Scholar] [CrossRef]
- Wilhelm, M. Fourier-transform rheology. Macromol. Mater. Eng. 2002, 287, 83–105. [Google Scholar] [CrossRef]
- Fleury, G.; Schlatter, G.; Muller, R. Non linear rheology for long chain branching characterization, comparison of two methodologies: Fourier transform rheology and relaxation. Rheol. Acta 2004, 44, 174–187. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, W.; Xu, Y.; Zhou, C. Correlations between local flow mechanism and macroscopic rheology in concentrated suspensions under oscillatory shear. Soft Matter 2011, 7, 2433. [Google Scholar] [CrossRef]
- Harwood, J.A.C.; Payne, A.R.; Whittaker, R.E. Stress-softening and reinforcement of rubber. J. Macromol. Sci. Part B Phys. 1971, 5, 473–486. [Google Scholar] [CrossRef]
- Harwood, J.; Mullins, L.; Payne, A.R. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. 2010, 9, 3011–3021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Shi, X.; Sun, S.; Zhong, J.; Yu, X.; Wang, D.; Song, Y.; Zuo, M.; Zheng, Q. Effect of Morphology/Structure on the Phase Behavior and Nonlinear Rheological Properties of NR/SBR Blends. Gels 2022, 8, 425. https://doi.org/10.3390/gels8070425
Yang L, Shi X, Sun S, Zhong J, Yu X, Wang D, Song Y, Zuo M, Zheng Q. Effect of Morphology/Structure on the Phase Behavior and Nonlinear Rheological Properties of NR/SBR Blends. Gels. 2022; 8(7):425. https://doi.org/10.3390/gels8070425
Chicago/Turabian StyleYang, Li, Xuanyu Shi, Shihao Sun, Jun Zhong, Xiaofeng Yu, Danling Wang, Yihu Song, Min Zuo, and Qiang Zheng. 2022. "Effect of Morphology/Structure on the Phase Behavior and Nonlinear Rheological Properties of NR/SBR Blends" Gels 8, no. 7: 425. https://doi.org/10.3390/gels8070425
APA StyleYang, L., Shi, X., Sun, S., Zhong, J., Yu, X., Wang, D., Song, Y., Zuo, M., & Zheng, Q. (2022). Effect of Morphology/Structure on the Phase Behavior and Nonlinear Rheological Properties of NR/SBR Blends. Gels, 8(7), 425. https://doi.org/10.3390/gels8070425