Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of NEG Components—A Solubility Evaluation of TAM
2.2. Preformulation
2.3. Preparation of NE Using an Ultrasonication Technique
2.4. Characterisation of the TAM-NE Formulations That Were Prepared
2.5. In Vitro Drug Release of the Optimised TAM-NEs
2.6. Preparation and Characterisation of the TAM-NEG System
2.7. Ex Vivo Skin Permeability Study
2.8. In Vitro Assessment of the Cytotoxicity of TAM-NEGs
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Screening and Optimisation of the Formulation Components
4.3. Preparation of TAM-NE Using a High-Energy Technique
4.4. Characterisation of TAM Nanoemulsion
4.5. Thermodynamic Stability
4.6. Droplet Size, PDI, and ZP Measurements
4.7. The Viscosity of the TAM-NE System
4.8. Drug Content Analysis
4.9. In Vitro Drug Release Study
4.10. Preparation and Characterisation of TAM-NE in the Nanogel System
4.11. Ex Vivo Skin Permeability
4.12. In Vitro Assessment of the Cytotoxicity of TAM-NEGs
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for Cancer Therapy: Current Progress and Perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- WHO. Breast Cancer Now Most Common Form of Cancer: WHO Taking Action. World Health Organization. 3 February 2021. Available online: https://www.who.int/news/item/03-02-2021-breast-cancer-now-most-common-form-of-cancer-who-taking-action (accessed on 8 June 2022).
- Makki, J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clin. Med. Insights Pathol. 2015, 8, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lila, A.S.A.; Soliman, M.S.; Kiran, H.C.; Gangadharappa, H.V.; Younes, K.M.; Khafagy, E.S.; Shehataf, T.M.; Ibrahimg, M.M.; Abdallahag, M.H. Tamoxifen-Loaded Functionalized Graphene Nanoribbons for Breast Cancer Therapy. J. Drug Deliv. Sci. Technol. 2021, 63, 102499. [Google Scholar] [CrossRef]
- Heisey, R.; Carroll, J.C. Identification and Management of Women with a Family History of Breast Cancer: Practical Guide for Clinicians. Can. Fam. Physician 2016, 62, 799–803. [Google Scholar]
- Shaker, D.S.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019, 87, 17. [Google Scholar] [CrossRef] [Green Version]
- Anton, N.; Gayeta, P.B.; Benoit, J.P.; Saulniera, P. Nano-Emulsions and Nanocapsules by the PIT Method: An Investigation on the Role of the Temperature Cycling on the Emulsion Phase Inversion. Int. J. Pharm. 2007, 344, 44–52. [Google Scholar] [CrossRef]
- Najlah, M.; Kadam, A.; Wan, K.W.; Ahmed, W.; Taylor, K.M.G.; Elhissi, A.M.A. Novel Paclitaxel Formulations Solubilized by Parenteral Nutrition Nanoemulsions for Application against Glioma Cell Lines. Int. J. Pharm. 2016, 506, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.-C.; Chiang, B.-H.; Huang, D.-W.; Li, P.-H. Skin Permeation of D-Limonene-Based Nanoemulsions as a Transdermal Carrier Prepared by Ultrasonic Emulsification. Ultrason. Sonochem. 2014, 21, 826–832. [Google Scholar]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef]
- Chen, L.H.; Cheng, L.C.; Doyle, P.S. Nanoemulsion-Loaded Capsules for Controlled Delivery of Lipophilic Active Ingredients. Adv. Sci. 2020, 7, 2001677. [Google Scholar] [CrossRef]
- Abolmaali, S.S.; Tamaddon, A.M.; Farvadi, F.S.; Daneshamuz, S.; Moghimi, H. Pharmaceutical Nanoemulsions and Their Potential Topical and Transdermal Applications. Iran. J. Pharm. Sci. 2011, 7, 139–150. [Google Scholar]
- da Silva Marques, T.Z.; Santos-Oliveira, R.; de Oliveira de Siqueira, L.B.; Cardoso, V.S.; Freitas, Z.M.F.; Barros, R.C.S.A.; Villa, A.L.V.; Monteiro, M.S.S.B.; Santos, E.P.; Ricci-Junior, E. Development and Characterization of a Nanoemulsion Containing Propranolol for Topical Delivery. Int. J. Nanomed. 2018, 13, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.A.; Patel, N.J.; Patel, R.P. Formulation and Evaluation of Curcumin Gel for Topical Application. Pharm. Dev. Technol. 2009, 14, 83–92. [Google Scholar] [CrossRef]
- Mendes Miranda, S.E.; de Alcântara Lemos, J.; Fernandes, R.S.; de Oliveira Silva, J.; Ottoni, F.M.; Townsend, D.M.; Rubello, D.; Alves, R.J.; Cassali, G.D.; Ferreira, L.A.M.; et al. Enhanced Antitumour Efficacy of Lapachol-Loaded Nanoemulsion in Breast Cancer Tumour Model. Biomed. Pharmacother. 2021, 133, 110936. [Google Scholar] [CrossRef]
- Gul, U.; Khan, M.I.; Madni, A.; Sohail, M.F.; Rehman, M.; Rasul, A.; Peltonen, L. Olive Oil and Clove Oil-Based Nanoemulsion for Topical Delivery of Terbinafine Hydrochloride: In Vitro and Ex Vivo Evaluation. Drug Deliv. 2022, 29, 600–612. [Google Scholar] [CrossRef]
- Esmaeili, F.; Baharifar, H.; Amani, A. Improved Anti-Inflammatory Activity and Minimum Systemic Absorption from Topical Gels of Ibuprofen Formulated by Micelle or Nanoemulsion. J. Pharm. Innov. 2022. [Google Scholar] [CrossRef]
- Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; et al. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics 2021, 13, 505. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Bosarge, A.; Goree, L.L.T.; MSc, B.; Darnell, R. Medium Chain Triglyceride Oil Consumption as Part of a Weight Loss Diet Does Not Lead to an Adverse Metabolic Profile When Compared to Olive Oil. J. Am. Coll. Nutr. 2008, 27, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Westmead Breast Cancer Institute. Hormonal Therapies for Breast Cancer. Available online: https://www.bci.org.au/breast-cancer-information/fact-sheets/hormonal-therapies-breast-cancer/ (accessed on 27 March 2022).
- Guimarães, R.D.C.A.; Macedo, M.L.R.; Munhoz, C.L.; Filiu, W.; Viana, L.H.; Nozaki, V.T.; Hiane, P.A. Sesame and Flaxseed Oil: Nutritional Quality and Effects on Serum Lipids and Glucose in Rats. Food Sci. Technol. 2013, 33, 209–217. [Google Scholar] [CrossRef]
- Upadhay, M. Preparation and Evaluation of Cilnidipine Microemulsion. J. Pharm. Bioallied Sci. 2012, 4, 114–115. [Google Scholar] [CrossRef]
- Guo, Y.; Mao, X.; Zhang, J.; Sun, P.; Wang, H.; Zhang, Y.; Ma, Y.; Xu, S.; Lv, R.; Liu, X. Oral Delivery of Lycopene-Loaded Microemulsion for Brain-Targeting: Preparation, Characterization, Pharmacokinetic Evaluation and Tissue Distribution. Drug Deliv. 2019, 26, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Gharby, S.; Harhar, H.; Bouzoubaa, Z.; Asdadi, A.; El Yadini, A.; Charrouf, Z. Chemical Characterization and Oxidative Stability of Seeds and Oil of Sesame Grown in Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.G.; León, L.; Pascual, M.; de la Rosa, R.; Belaj, A.; Sanz, C. Analysis of Olive (Olea europaea L.) Genetic Resources in Relation to the Content of Vitamin e in Virgin Olive Oil. Antioxidants 2019, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Chemical, Rheological and Nutritional Characteristics of Sesame and Olive Oils Blended with Linseed Oil. Adv. Pharm. Bull. 2018, 8, 107–113. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Paresh, D. Stability of Minor Lipid Components with Emphasis on Phytosterols During Chemical Interesterification of a Blend of Refined Olive Oil and Palm Stearinitle. J. Am. Oil Chem. Soc. 2008, 85, 13–21. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Dutta, P. Free and Esterified 4, 4′-Dimethylsterols in Hazelnut Oil and Their Retention during Refining Processes. J. Am. Oil Chem. Soc. 2007, 84, 297–304. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Pholphana, N.; Mahidol, C.; Wongyai, W.; Saengsooksree, K.; Nookabkaew, S.; Satayavivad, J. Variation of Sesamin, Sesamolin and Tocopherols in Sesame (Sesamum indicum L.) Seeds and Oil Products in Thailand. Food Chem. 2010, 122, 724–730. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Guo, Y.; Lara Ochoa, S.; Fathordoobady, F.; Singh, A. Optimal Ultrasonication Process Time Remains Constant for a Specific Nanoemulsion Size Reduction System. Sci. Rep. 2021, 11, 9241. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, M.; Chen, K.; Wang, M. Nano-Emulsion Prepared by High Pressure Homogenization Method as a Good Carrier for Sichuan Pepper Essential Oil: Preparation, Stability, and Bioactivity. LWT 2022, 154, 112779. [Google Scholar] [CrossRef]
- Osborne, D.W.; Musakhanian, J. Skin Penetration and Permeation Properties of Transcutol®—Neat or Diluted Mixtures. AAPS PharmSciTech 2018, 19, 3512–3533. [Google Scholar] [CrossRef]
- Ryu, K.A.; Park, P.J.; Kim, S.B.; Bin, B.H.; Jang, D.J.; Kim, S.T. Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration. Pharmaceutics 2020, 12, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Albarqi, H.A.; Alyami, H.S.; Alyami, M.H.; Alqahtani, A.A.; Alasiri, A.; Algahtani, T.S.; Mohammed, A.A.; et al. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and in Vivo Evaluation. Gels 2021, 7, 213. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Fan, W.; Yu, Q.; Dong, X.; Qi, J.; Zhu, Q.; Zhao, W.; Wu, W.; Chen, Z.; Li, Y.; et al. Size-Dependent Penetration of Nanoemulsions into Epidermis and Hair Follicles: Implications for Transdermal Delivery and Immunization. Oncotarget 2017, 8, 38214–38226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Alkhatib, M.H.; Bawadud, R.S.; Gashlan, H.M. Incorporation of Docetaxel and Thymoquinone in Borage Nanoemulsion Potentiates Their Antineoplastic Activity in Breast Cancer Cells. Sci. Rep. 2020, 10, 18124. [Google Scholar] [CrossRef]
- Sun, H.; Liu, K.; Liu, W.; Wang, W.; Guo, C.; Tang, B.; Gu, J.; Zhang, J.; Li, H.; Mao, X.; et al. Development and Characterization of a Novel Nanoemulsion Drug-Delivery System for Potential Application in Oral Delivery of Protein Drugs. Int. J. Nanomed. 2012, 7, 5529–5543. [Google Scholar] [CrossRef] [Green Version]
- Miastkowska, M.; Sliwa, P. Influence of Terpene Type on the Release from an O/W Nanoemulsion: Experimental and Theoretical Studies. Molecules 2020, 25, 2747. [Google Scholar] [CrossRef]
- Mahajan, H.S.; Tyagi, V.; Lohiya, G.; Nerkar, P. Thermally Reversible Xyloglucan Gels as Vehicles for Nasal Drug Delivery. Drug Deliv. 2012, 19, 270–276. [Google Scholar] [CrossRef]
- Erramreddy, V.V.; Tu, S.; Ghosh, S. Rheological Reversibility and Long-Term Stability of Repulsive and Attractive Nanoemulsion Gels. RSC Adv. 2017, 7, 47818–47832. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Gui, R.; Hu, S.; Huang, Y.; Feng, Z.; Ping, Q. Preparation and Characterization of Novel Drug-Inserted-Montmorillonite Chitosan Carriers for Ocular Drug Delivery. Adv. Nanoparticles 2015, 4, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Shilpa, A.; Agrawal, S.S.; Ray, A.R. Controlled Delivery of Drugs from Alginate Matrix. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 187–221. [Google Scholar] [CrossRef]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion Based Hydrogel for Enhanced Transdermal Delivery of Ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Bashir, M.; Ahmad, J.; Asif, M.; Khan, S.U.D.; Irfan, M.; Ibrahim, A.Y.; Asghar, S.; Khan, I.U.; Iqbal, M.S.; Haseeb, A.; et al. Nanoemulgel, an Innovative Carrier for Diflunisal Topical Delivery with Profound Anti-Inflammatory Effect: In Vitro and in Vivo Evaluation. Int. J. Nanomed. 2021, 16, 1457–1472. [Google Scholar] [CrossRef]
- Akhtar, N.; Rehman, M.U.; Khan, H.M.S.; Rasool, F.; Saeed, T.; Murtaza, G. Penetration Enhancing Effect of Polysorbate 20 and 80 on the in Vitro Percutaneous Absorption of L-Ascorbic Acid. Trop. J. Pharm. Res. 2011, 10, 281–288. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Yin, J.-J.; Fu, P.P.; Yu, H. Light-Induced Toxic Effects of Tamoxifen: A Chemotherapeutic and Chemopreventive Agent. J. Photochem. Photobiol. A Chem. 2013, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. Nanomaterials 2020, 10, 848. [Google Scholar] [CrossRef]
- Mahdi Jafari, S.; He, Y.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—A Comparison. Int. J. Food Prop. 2006, 9, 475–485. [Google Scholar] [CrossRef]
- Moin, A.; Wani, S.U.D.; Osmani, R.A.; Abu Lila, A.S.; Khafagy, E.S.; Arab, H.H.; Gangadharappa, H.V.; Allam, A.N. Formulation, Characterization, and Cellular Toxicity Assessment of Tamoxifen-Loaded Silk Fibroin Nanoparticles in Breast Cancer. Drug Deliv. 2021, 28, 1626–1636. [Google Scholar] [CrossRef]
Code | Smix Ratio (Tween 40)/(Transcutol HP) | Code | % Oil | % Smix | % Water |
---|---|---|---|---|---|
A | 1:1 | F1 | 30 | 40 | 30 |
B | 2:1 | F2 | 30 | 50 | 20 |
C | 3:1 | F3 | 20 | 40 | 40 |
D | 4:1 | F4 | 20 | 50 | 30 |
E | 1:2 | F5 | 20 | 60 | 20 |
F | 1:3 | F6 | 25 | 40 | 35 |
G | 1:4 | F7 | 25 | 50 | 25 |
Code | Oil Base | % Oil | % Smix | % Water | Mean Droplet Size (nm) | Mean Polydispersity Index (DPI) |
---|---|---|---|---|---|---|
NE1 | Olive Oil | 25 | 40 | 35 | 41.77 ± 1.23 | 0.248 ± 0.05 |
NE2 | 20 | 40 | 40 | 118.10 ± 2.13 | 0.297 ± 0.04 | |
NE3 | 25 | 40 | 35 | 188.37 ± 3.53 | 0.095 ± 0.02 | |
NE4 | 20 | 40 | 40 | 168.93 ± 2.13 | 0.285 ± 0.01 | |
NE5 | 20 | 40 | 40 | 126.63 ± 3.06 | 0.088 ± 0.03 | |
NE6 | 20 | 40 | 40 | 95.73 ± 3.21 | 0.163 ± 0.02 | |
NE7 | 20 | 40 | 40 | 111.77 ± 3.44 | 0.229 ± 0.03 | |
NE8 | 25 | 40 | 35 | 153.77 ± 4.51 | 0.844 ± 0.04 | |
NE9 | Sesame Oil | 25 | 40 | 35 | 73.47 ± 2.09 | 0.177 ± 0.03 |
NE10 | 30 | 40 | 30 | 81.43 ± 1.66 | 0.071 ± 0.03 | |
NE11 | 20 | 40 | 40 | 143.87 ± 1.89 | 0.075 ± 0.01 | |
NE12 | 25 | 40 | 35 | 132.80 ± 2.44 | 0.231 ± 0.02 | |
NE13 | 30 | 40 | 30 | 109.23 ± 3.01 | 0.155 ± 0.04 | |
NE14 | 20 | 40 | 40 | 117.67 ± 3.23 | 0.179 ± 0.02 | |
NE15 | 25 | 40 | 35 | 32.22 ± 2.56 | 0.356 ± 0.03 | |
NE16 | 20 | 40 | 40 | 45.51 ± 2.89 | 0.324 ± 0.05 | |
NE17 | 25 | 40 | 35 | 176.23 ± 3.50 | 0.779 ± 0.02 | |
NE18 | 25 | 40 | 35 | 55.25 ± 2.21 | 0.175 ± 0.01 | |
NE19 | 20 | 40 | 40 | 46.22 ± 1.21 | 0.332 ± 0.05 | |
NE20 | 25 | 40 | 35 | 59.26 ± 1.28 | 0.193 ± 0.03 | |
NE21 | 20 | 40 | 40 | 102.60 ± 2.43 | 0.203 ± 0.02 | |
NE22 | 25 | 40 | 35 | 69.82 ± 2.11 | 0.168 ± 0.04 | |
NE23 | 20 | 40 | 40 | 54.26 ± 1.88 | 0.138 ± 0.01 |
No | Formula | Heating-Cooling | Centrifugation | Freeze-Thaw |
---|---|---|---|---|
NE1 | OF3F | ✓ | ✓ | ✓ |
NE9 | SF6B | ✓ | ✓ | ✓ |
NE18 | SF6F | ✓ | ✓ | ✓ |
No | Size (nm) | Zeta Potential (mv) | PDI | Calculated Drug Amount Mg/mL | % Encapsulation Efficiency |
---|---|---|---|---|---|
NE1 | 95.73 + 4.3 | 16.3 + 1.4 | 0.163 + 0.08 | 2.16 + 0.16 | 97% |
NE9 | 55.25 + 2.8 | 12.3 + 2.1 | 0.178 + 0.90 | 2.55 + 0.64 | 96% |
NE18 | 29.65 + 2.6 | 8.1 + 2.60 | 0.351 + 0.13 | 2.41 + 0.23 | 99% |
Formulation | Zero Order R2 | First Order R2 | Higuchi Model R2 | Korsmeyer–Peppas Model R2 |
---|---|---|---|---|
TAM-NE1 | 0.595 | 0.272 | 0.871 | 0.398 |
TAM-NE9 | 0.590 | 0.317 | 0.865 | 0.545 |
TAM-NE18 | 0.709 | 0.365 | 0.929 | 0.527 |
Parameters | Placebo Gel | TAM-NEG1 | TAM-NEG9 | TAM-NEG18 |
---|---|---|---|---|
Gel strength | 41.66 + 1.53 | 48.77 + 0.58 | 46.33 + 2.08 | 46.33 + 1.53 |
Spreadability factor | 1.23 + 0.03 | 1.27 + 0.02 | 1.29 + 0.03 | 1.27 + 0.04 |
Drug content uniformity | - | 97% + 0.36 | 96% + 0.26 | 99% + 0.15 |
pH | 5.49 + 0.02 | 5.55 + 0.03 | 5.56 + 0.03 | 5.57 + 0.03 |
Code | PH | Appearance | Viscosity (cp) | Days Drug Content % |
---|---|---|---|---|
NEG1 | 5.52 + 0.02 | +++ | 2.93 + 0.03 | 97% + 0.39 |
NEG9 | 5.51 + 0.02 | +++ | 2.96 + 0.02 | 96% + 0.44 |
NEG18 | 5.48 + 0.02 | +++ | 2.82 + 0.03 | 99% + 0.41 |
Cumulative Amount of Drug Permeated (μg/cm2) | Cumulative Amount of Drug Permeated (μg/cm2) | Drug Deposited in Skin (μg/cm2) | Lag Time (h) a | Flux b (μg/cm2 h) | Permeability Coefficient c (Kp × 10−3) | Permeation Enhancement Ratio (ER d) | Local Accumulation Efficiency (LAE) e |
---|---|---|---|---|---|---|---|
NEG1 | 2232.8 ± 3.24 | 796.24 ± 2.11 | 0.46 ± 0.02 | 53.16 ± 3.21 | 4.25 ± 0.11 | 10.95 ± 0.78 | 0.36 ± 0.02 |
NEG9 | 2143.1 ± 3.34 | 915.8 ± 2.57 | 0.51 ± 0.03 | 51.02 ± 4.13 | 4.82 ± 0.09 | 8.03 ± 0.55 | 0.42 ± 0.03 |
NEG18 | 2880.9 ± 2.52 | 864.44 ± 1.65 | 0.58 ± 0.03 | 68.59 ± 4.41 | 5.48 ± 0.20 | 5.71 ± 0.78 | 0.29 ± 0.02 |
TAM Gel | 516.90 ± 1.95 | 219.47 ± 2.36 | 1.65 ± 0.47 | 4.39 ± 0.50 | 0.96 ± 0.01 | - | 0.89 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyami, M.H.; Alyami, H.S.; Alshehri, A.A.; Alsharif, W.K.; Shaikh, I.A.; Algahtani, T.S. Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022, 8, 456. https://doi.org/10.3390/gels8070456
Alyami MH, Alyami HS, Alshehri AA, Alsharif WK, Shaikh IA, Algahtani TS. Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels. 2022; 8(7):456. https://doi.org/10.3390/gels8070456
Chicago/Turabian StyleAlyami, Mohammad H., Hamad S. Alyami, Abdullah A. Alshehri, Wijdan K. Alsharif, Ibrahim Ahmed Shaikh, and Thamer S. Algahtani. 2022. "Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation" Gels 8, no. 7: 456. https://doi.org/10.3390/gels8070456
APA StyleAlyami, M. H., Alyami, H. S., Alshehri, A. A., Alsharif, W. K., Shaikh, I. A., & Algahtani, T. S. (2022). Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels, 8(7), 456. https://doi.org/10.3390/gels8070456