Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM
Abstract
:1. Introduction
1.1. Autogenous Healing
1.2. Mechanism of Self-Healing due to Further Hydration of Un-Hydrated Cement Particles
1.3. Supplementary Cementitious Materials (Slag and Fly Ash)
1.4. Objectives and Problem Statements
1.5. Significance of Study
2. Methodology
2.1. Material
2.2. Hydrogel
2.3. Encapsulation of Bio-Reagents into the Hydrogel (HA)
2.4. Adaptive Network Fuzzy Inference System (ANFIS)
2.5. Developing of Support Vector Machine (SVM)
3. Results and Discussions
3.1. Compressibility and General Stress–Strain Behavior
3.2. Elasticity
3.3. Model Performance Indicators
3.4. Discussion Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Hong, J.; Xu, C. Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement. J. Clean. Prod. 2015, 103, 61–69. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, L.; Guo, B.; Chen, Y.; Fan, G.; Jin, Z.; Guan, X.; Zhu, J. Unveiling substitution preference of chromium ions in sulphoaluminate cement clinker phases. Compos. Part B: Eng. 2021, 222, 109092. [Google Scholar] [CrossRef]
- Armstrong, T.; Bal, M.; Bell, P.; Fernandes, J.; Starbuck, S. The global cement report. Int. Cem. Rev. 2013, 13. [Google Scholar]
- Supino, S.; Malandrino, O.; Testa, M.; Sica, D. Sustainability in the EU cement industry: The Italian and German experiences. J. Clean. Prod. 2016, 112, 430–442. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodríguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- World Health Organization. Health Risks of Air Pollution in Europe—HRAPIE Project Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Van Goethem, T.; Azevedo, L.; van Zelm, R.; Hayes, F.; Ashmore, M.; Huijbregts, M. Plant Species Sensitivity Distributions for ozone exposure. Environ. Pollut. 2013, 178, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.; Dewar, J.D.; McKee, H.; Treasaden, I. Manual of Ready-Mixed Concrete; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Stefanidou, M.; Kamperidou, V.; Konstandinidis, A.; Koltsou, P.; Papadopoulos, S. Rheological properties of biofibers in cementitious composite matrix. In Advances in Bio-Based Fiber; Elsevier: Amsterdam, The Netherlands, 2022; pp. 553–573. [Google Scholar]
- Nakic, D. Environmental evaluation of concrete with sewage sludge ash based on LCA. Sustain. Prod. Consum. 2018, 16, 193–201. [Google Scholar] [CrossRef]
- Gmünder, S.; Myers, N.; Laffley, J.; Rubio, L.; Belizario Silva, F. Life Cycle Inventories of Cement, Concrete and Related Industries-Colombia and Peru for the SRI Project; Ecoinvent Association: Zürich, Switzerland, 2017. [Google Scholar]
- Bushi, L.; Meil, J. An Environmental Life Cycle Assessment of Portland-Limestone and Ordinary Portland Cements in Concrete; Cement Association of Canada: Ottawa, ON, Canada, 2014; 10p. [Google Scholar]
- Hossain, M.U.; Cai, R.; Ng, S.T.; Xuan, D.; Ye, H. Sustainable natural pozzolana concrete—A comparative study on its environmental performance against concretes with other industrial by-products. Constr. Build. Mater. 2021, 270, 121429. [Google Scholar] [CrossRef]
- Ke, X.; Hou, H.; Zhou, M.; Wang, Y.; Zhou, X. Effect of particle gradation on properties of fresh and hardened cemented paste backfill. Constr. Build. Mater. 2015, 96, 378–382. [Google Scholar] [CrossRef]
- Peyronnard, O.; Benzaazoua, M. Alternative by-product based binders for cemented mine backfill: Recipes optimisation using Taguchi method. Miner. Eng. 2012, 29, 28–38. [Google Scholar] [CrossRef]
- Cihangir, F.; Akyol, Y. Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag. Int. J. Mining, Reclam. Environ. 2016, 32, 123–143. [Google Scholar] [CrossRef]
- Zhang, J.W.; He, W.D.; Ni, W.; Hu, W.; Chen, J. Research on the fluidity and hydration mechanism of mine backfilling material prepared in steel slag gel system. Chem. Eng. Trans. 2016, 51, 1039–1044. [Google Scholar]
- Huang, Y.; Wang, Q.; Shi, M. Characteristics and reactivity of ferronickel slag powder. Constr. Build. Mater. 2017, 156, 773–789. [Google Scholar] [CrossRef]
- Li, Y.-C.; Min, X.-B.; Ke, Y.; Chai, L.-Y.; Shi, M.-Q.; Tang, C.-J.; Wang, Q.-W.; Liang, Y.-J.; Lei, J.; Liu, D.-G. Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J. Hazard. Mater. 2018, 344, 343–349. [Google Scholar] [CrossRef]
- Shi, C.; Qian, J. High performance cementing materials from industrial slags—A review. Resour. Conserv. Recycl. 2000, 29, 195–207. [Google Scholar] [CrossRef]
- Purdon, A. The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. 1940, 59, 191–202. [Google Scholar]
- Glukhovsky, V. Slag-Alkali Concretes Produced from Fine-Grained Aggregate; Vishcha Shkolay: Kiev, Ukraine, 1981. [Google Scholar]
- Wang, C.-L.; Ren, Z.-Z.; Huo, Z.-K.; Zheng, Y.-C.; Tian, X.-P.; Zhang, K.-F.; Zhao, G.-F. Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag. Alex. Eng. J. 2021, 60, 4961–4971. [Google Scholar] [CrossRef]
- Fall, M.; Benzaazoua, M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization. Cem. Concr. Res. 2005, 35, 301–314. [Google Scholar] [CrossRef]
- Hu, S.; Wu, H.; Liang, X.; Xiao, C.; Zhao, Q.; Cao, Y.; Han, X. A preliminary study on the eco-environmental geological issue of in-situ oil shale mining by a physical model. Chemosphere 2022, 287, 131987. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Fall, M.; Belem, T. A contribution to understanding the hardening process of cemented pastefill. Miner. Eng. 2004, 17, 141–152. [Google Scholar] [CrossRef]
- Koohestani, B.; Koubaa, A.; Belem, T.; Bussière, B.; Bouzahzah, H. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr. Build. Mater. 2016, 121, 222–228. [Google Scholar] [CrossRef]
- Ercikdi, B.; Baki, H.; İzki, M. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill. J. Environ. Manag. 2013, 115, 5–13. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J. Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 1999, 29, 455–458. [Google Scholar] [CrossRef]
- Jaquin, P.; Augarde, C. Earth Building—History, Science and Conservation; IHS BRE Press: Watford, UK, 2012; p. 740. [Google Scholar]
- Plank, J. Applications of biopolymers and other biotechnological products in building materials. Appl. Microbiol. Biotechnol. 2004, 66, 1–9. [Google Scholar] [CrossRef]
- Bouazza, A.; Gates, W.; Ranjith, P. Hydraulic conductivity of biopolymer-treated silty sand. Géotechnique 2009, 59, 71–72. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Canakci, H. Direct shear tests on sand treated with xanthan gum. Proc. Inst. Civ. Eng.-Ground Improv. 2011, 164, 57–64. [Google Scholar] [CrossRef]
- Qureshi, M.U.; Chang, I.; Al-Sadarani, K. Strength and durability characteristics of biopolymer-treated desert sand. Géoméch. Eng. 2017, 12, 785–801. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.-Y.; Liu, C.-N.; Chen, J.-N.; Zhang, C. A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites. Soil Tillage Res. 2021, 212, 105074. [Google Scholar] [CrossRef]
- Chudzikowski, R. Guar gum and its applications. J. Soc. Cosmet. Chem. 1971, 22, 43. [Google Scholar]
- Xu, J.; Zhou, L.; Hu, K.; Li, Y.; Zhou, X.; Wang, S. Influence of Wet-Dry Cycles on Uniaxial Compression Behavior of Fissured Loess Disturbed by Vibratory Loads. KSCE J. Civ. Eng. 2022, 26, 2139–2152. [Google Scholar] [CrossRef]
- Wei, J.; Xie, Z.; Zhang, W.; Luo, X.; Yang, Y.; Chen, B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng. Struct. 2021, 230, 111599. [Google Scholar] [CrossRef]
- Lan, M.Y.; Zheng, B.; Shi, T.; Ma, C.; Liu, Y.; Zhao, Z. Crack resistance properties of carbon nanotube-modified concrete. Mag. Concr. Res. 2022. [Google Scholar] [CrossRef]
- Edvardsen, C. Water permeability and autogenous healing of cracks in concrete. In Innovation in Concrete Structures: Design and Construction; Thomas Telford Publishing: London, UK, 1999; pp. 473–487. [Google Scholar]
- Xu, J.; Wu, Z.; Chen, H.; Shao, L.; Zhou, X.; Wang, S. Influence of dry-wet cycles on the strength behavior of basalt-fiber reinforced loess. Eng. Geol. 2022, 302, 106645. [Google Scholar] [CrossRef]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- Cailleux, E.; Pollet, V. Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars. In Proceedings of the 2nd International Conference on Self-Healing Materials, Chicago, IL, USA, 1 January–1 July 2009. [Google Scholar]
- Matthews, S.; Ueda, T. Fib Model Code 2020. Struct. Concr. 2019, 20, 860–866. [Google Scholar]
- Cheng, H.; Sun, L.; Wang, Y.; Chen, X. Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures. Int. J. Fatigue 2021, 151, 106386. [Google Scholar] [CrossRef]
- Teplý, B. Interrelation among service life, reliability index, and costs of concrete structures subjected to aggressive exposure. J. Perform. Constr. Facil. 2014, 28, 04014003. [Google Scholar] [CrossRef]
- Neville, A. Autogenous healing—A concrete miracle? Concr. Int. 2002, 24, 76–82. [Google Scholar]
- Nijland, T.G.; Larbi, J.A.; van Hees, R.P.; Lubelli, B.; de Rooij, M. Self healing phenomena in concretes and masonry mortars: A microscopic study. In Proceedings of the First International Conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20 April 2007. [Google Scholar]
- Hager, M.D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U.S. Self-healing materials. Adv. Mater. 2010, 22, 5424–5430. [Google Scholar] [CrossRef]
- Shi, T.; Liu, Y.; Zhang, Y.; Lan, Y.; Zhao, Q.; Zhao, Y.; Wang, H. Calcined Attapulgite Clay as Supplementary Cementing Material: Thermal Treatment, Hydration Activity and Mechanical Properties. Int. J. Concr. Struct. Mater. 2022, 16, 10. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; Gruyaert, E.; Rahier, H.; De Belie, N. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 2012, 37, 349–359. [Google Scholar] [CrossRef]
- Ghasemi, M.; Abedini, M. Development of PI model for FRP composite retrofitted RC columns subjected to high strain rate loads using LBE function. Eng. Struct. 2021, 252, 113580. [Google Scholar]
- Wang, K.; Jansen, D.C.; Shah, S.P.; Karr, A.F. Permeability study of cracked concrete. Cem. Concr. Res. 1997, 27, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583. [Google Scholar] [CrossRef]
- Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 2007, 37, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Lepech, M.D. A Paradigm for Integrated Structures and Materials Design for Sustainable Transportation Infrastructure. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2006. [Google Scholar]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Damidot, D. Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 2013, 52, 71–81. [Google Scholar] [CrossRef]
- Reddy, T.C.S.; Theja, R. Macro mechanical properties of self healing concrete with crystalline admixture under different environments. Ain Shams Eng. J. 2019, 10, 23–32. [Google Scholar] [CrossRef]
- Lothenbach, B.; Le Saout, G.; Ben Haha, M.; Figi, R.; Wieland, E. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cem. Concr. Res. 2012, 42, 410–423. [Google Scholar] [CrossRef]
- Snoeck, D.; Dewanckele, J.; Cnudde, V.; De Belie, N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem. Concr. Compos. 2016, 65, 83–93. [Google Scholar] [CrossRef]
- Bijen, J. Benefits of slag and fly ash. Constr. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Sangadji, S.; Schlangen, E. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete. Procedia Eng. 2013, 54, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Efe, M.O. A comparison of ANFIS, MLP and SVM in identification of chemical processes. In Proceedings of the 2009 IEEE Control Applications, (CCA) & Intelligent Control (ISIC), St. Petersburg, Russia, 8–10 July 2009. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Wang, H.; Habibi, M.; Marzouki, R.; Majdi, A.; Shariati, M.; Denic, N.; Zakić, A.; Khorami, M.; Khadimallah, M.A.; Ebid, A.A.K. Improving the Self-Healing of Cementitious Materials with a Hydrogel System. Gels 2022, 8, 278. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, G.; Peng, Y.; Chen, L.; Fu, S. Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel. Cellulose 2019, 26, 8813–8827. [Google Scholar] [CrossRef]
- Cihangir, F.; Akyol, Y. Effect of desliming of tailings on the fresh and hardened properties of paste backfill made from alkali-activated slag. Adv. Mater. Sci. Eng. 2020, 2020, 4536257. [Google Scholar] [CrossRef]
NO. | Hydrogel | Distilled Water | AA * | AM | NaOH | MBA | Alg | APS | NSi Fine (gr) | Colloidal NSi (gr) | Water- Lass (gr) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | H-2 | 45 | 10 | 10 | 1.35 | 0.05 | - | 0.128 | - | - | - |
2 | H-3 | 43 | 2 | 15 | 0.27 | 0.05 | - | 0.128 | - | - | - |
3 | H-a | 54 | - | 30 | - | 0.05 | 0.6 | 0.128 | - | - | - |
4 | 0%- Reference Hydrogel | 65 | - | 10 | - | 0.05 | - | 0.64 | - | - | - |
5 | 5%-NSi | 90 | - | 10 | - | 0.04 | - | 0.53 | 1 | - | - |
6 | 10%-NSi | 90 | - | 10 | - | 0.04 | - | 0.53 | 2 | - | - |
7 | 20%-NSi | 100 | - | 10 | - | 0.04 | - | 0.53 | 4 | - | - |
8 | 50%-NSi | 100 | - | 10 | - | 0.04 | - | 0.53 | 10 | - | - |
9 | CNSi | 20 | - | 10 | - | 0.04 | - | 0.53 | - | 50 | - |
10 | WG | 34 | - | 10 | 14 | 0.04 | - | 0.53 | - | - | 30 |
Paste Designation | Water/Binder | Superplasticizer (%) | Hydrogel (%) | Flowability (cm) |
---|---|---|---|---|
Ctrl-0.3 | 0.3 | 0.4 | - | 20 |
Ctrl-0.35 | 0.34 | 0.4 | - | 22 |
0%-Ctrl | 0.34 | 0.4 | 0.3 | 21 |
C-5%-NSi | 0.34 | 0.4 | 0.35 | 21 |
C-10%-NSi | 0.34 | 0.4 | 0.4 | 21 |
C-20%-NSi | 0.34 | 0.4 | 0.5 | 21 |
C-50%-NSi | 0.34 | 0.4 | 0.7 | 21 |
Models | RMSE | r | R2 | RMSE | r | R2 |
---|---|---|---|---|---|---|
ANFIS | 0.6568 | 0.960 | 0. 8765 | 0.7888 | 0. 9654 | 0.9187 |
SVM | 1.2564 | 0.0868 | 0.7786 | 1.310 | 0.7654 | 0.9079 |
ANFIS-SVM | 0.6643 | 0.8754 | 0.9311 | 0.5603 | 0.6543 | 0.9547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Peng, K.; Zandi, Y.; Agdas, A.S.; Al-Tamimi, H.M.; Assilzadeh, H.; Khalek Ebid, A.A.; Khadimallah, M.A.; Ali, H.E. Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM. Gels 2022, 8, 455. https://doi.org/10.3390/gels8070455
Liu Q, Peng K, Zandi Y, Agdas AS, Al-Tamimi HM, Assilzadeh H, Khalek Ebid AA, Khadimallah MA, Ali HE. Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM. Gels. 2022; 8(7):455. https://doi.org/10.3390/gels8070455
Chicago/Turabian StyleLiu, Qi, Kang Peng, Yousef Zandi, Alireza Sadighi Agdas, Haneen M. Al-Tamimi, Hamid Assilzadeh, Ahmed Abdel Khalek Ebid, Mohamed Amine Khadimallah, and H. Elhosiny Ali. 2022. "Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM" Gels 8, no. 7: 455. https://doi.org/10.3390/gels8070455
APA StyleLiu, Q., Peng, K., Zandi, Y., Agdas, A. S., Al-Tamimi, H. M., Assilzadeh, H., Khalek Ebid, A. A., Khadimallah, M. A., & Ali, H. E. (2022). Mechanical Characteristics and Self-Healing Soil-Cementitious Hydrogel Materials in Mine Backfill Using Hybridized ANFIS-SVM. Gels, 8(7), 455. https://doi.org/10.3390/gels8070455