Short Peptide-Based Smart Thixotropic Hydrogels †
Abstract
:1. Introduction
2. Amino Acid (AA)-Based Thixotropic Hydrogel
3. Dipeptide (D2P)-Based Thixotropic Hydrogel
4. Cyclic Dipeptide (CDP)-Based Thixotropic Hydrogel
5. Tripeptide (T3P)-Based Thixotropic Hydrogel
6. Tetrapeptide (T4P)-Based Thixotropic Hydrogel
7. Co-Assembled Thixotropic Hydrogel
8. Thixotropic Composite Hydrogel
9. Biological Applications
10. Challenges and Future Directions
11. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Li, H.; Yao, L.; Yu, Y.; Ma, G. Amyloid-Based Injectable Hydrogel Derived from Hydrolyzed Hen Egg White Lysozyme. ACS Omega 2019, 4, 8071–8080. [Google Scholar] [CrossRef] [PubMed]
- Arokianathan, J.F.; Ramya, K.A.; Janeena, A.; Deshpande, A.P.; Ayyadurai, N.; Leemarose, A.; Shanmugam, G. Non-proteinogenic amino acid based supramolecular hydrogel material for enhanced cell proliferation. Colloids Surf. B Biointerfaces 2020, 185, 110581. [Google Scholar] [CrossRef]
- Dowari, P.; Pramanik, B.; Das, D. pH and secondary structure instructed aggregation to a thixotropic hydrogel by a peptide amphiphile. Bull. Mater. Sci. 2020, 43, 70. [Google Scholar] [CrossRef]
- Kuddushi, M.; Pandey, D.K.; Singh, D.K.; Mata, J.; Malek, N. An ionic hydrogel with stimuli-responsive, self-healable and injectable characteristics for the targeted and sustained delivery of doxorubicin in the treatment of breast cancer. Mater. Adv. 2022, 3, 632–646. [Google Scholar] [CrossRef]
- Pramanik, B.; Ahmed, S.; Singha, N.; Das, B.K.; Dowari, P.; Das, D. Unorthodox Combination of Cation−π and Charge-Transfer Interactions within a Donor–Acceptor Pair. Langmuir 2019, 35, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Basu, K.; Nandi, N.; Mondal, B.; Dehsorkhi, A.; Hamley, I.W.; Banerjee, A. Peptide-based ambidextrous bifunctional gelator: Applications in oil spill recovery and removal of toxic organic dyes for waste water management. Interface Focus 2017, 7, 20160128. [Google Scholar] [CrossRef]
- Zhuang, P.; Greenberg, Z.; He, M. Biologically Enhanced Starch Bio-Ink for Promoting 3D Cell Growth. Adv. Mater. Technol. 2021, 6, 2100551. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Matsumura, K. Thixotropic injectable hydrogel using a polyampholyte and nanosilicate prepared directly after cryopreservation. Mater. Sci. Eng. C 2016, 69, 1273–1281. [Google Scholar] [CrossRef]
- Reddy, S.M.M.; Shanmugam, G.; Duraipandy, N.; Kiran, M.S.; Mandal, A.B. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized l-lysine induces pH-controlled ambidextrous gelation with significant advantages. Soft Matter 2015, 11, 8126–8140. [Google Scholar] [CrossRef]
- Shaheen, A.; Maswal, M.; Dar, A.A. Synergistic effect of various metal ions on the mechanical, thixotropic, self-healing, swelling and water retention properties of bimetallic hydrogels of alginate. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127223. [Google Scholar] [CrossRef]
- Giuri, D.; Jurković, L.; Fermani, S.; Kralj, D.; Falini, G.; Tomasini, C. Supramolecular Hydrogels with Properties Tunable by Calcium Ions: A Bio-Inspired Chemical System. ACS Appl. Bio Mater. 2019, 2, 5819–5828. [Google Scholar] [CrossRef]
- Thakur, N.; Chaudhary, A.; Chakraborty, A.; Kumar, R.; Sarma, T.K. Ion Conductive Phytic Acid-G Quadruplex Hydrogel as Electrolyte for Flexible Electrochromic Device. ChemNanoMat 2021, 7, 613–619. [Google Scholar] [CrossRef]
- Wang, X.; Song, R.; Johnson, M.; Sigen, A.; He, Z.; Milne, C.; Wang, X.; Lara-Sáez, I.; Xu, Q.; Wang, W. An Injectable Chitosan-Based Self-Healable Hydrogel System as an Antibacterial Wound Dressing. Materials 2021, 14, 5956. [Google Scholar] [CrossRef] [PubMed]
- Arokianathan, J.F.; Ramya, K.A.; Deshpande, A.P.; Leemarose, A.; Shanmugam, G. Supramolecular organogel based on di-Fmoc functionalized unnatural amino acid: An attempt to develop a correlation between molecular structure and ambidextrous gelation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126430. [Google Scholar] [CrossRef]
- Nelson, C.; Tuladhar, S.; Launen, L.; Habib, A. 3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels. Int. J. Mol. Sci. 2021, 22, 13481. [Google Scholar] [CrossRef]
- Marić, I.; Šijaković Vujičić, N.; Pustak, A.; Gotić, M.; Štefanić, G.; Grenèche, J.-M.; Dražić, G.; Jurkin, T. Rheological, Microstructural and Thermal Properties of Magnetic Poly(Ethylene Oxide)/Iron Oxide Nanocomposite Hydrogels Synthesized Using a One-Step Gamma-Irradiation Method. Nanomaterials 2020, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Pal, V.K.; Roy, S. Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach. Biomacromolecules 2020, 21, 4180–4193. [Google Scholar] [CrossRef]
- Yan, C.; Pochan, D.J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010, 39, 3528–3540. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Das, S.; Nandi, A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Das, D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front. Chem. 2021, 9, 770102. [Google Scholar] [CrossRef]
- Ni, M.; Zhuo, S. Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Adv. 2019, 9, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016, 11, 41–60. [Google Scholar] [CrossRef]
- Mayr, J.; Saldías, C.; Díaz Díaz, D. Release of small bioactive molecules from physical gels. Chem. Soc. Rev. 2018, 47, 1484–1515. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Zhu, S.; Liu, H.; Chen, J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv. 2019, 9, 28299–28311. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, P.; Diba, M.; Mooney, D.J.; Leeuwenburgh, S.C.G. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem. Rev. 2022. [Google Scholar] [CrossRef]
- Dasgupta, A.; Mondal, J.H.; Das, D. Peptide hydrogels. RSC Adv. 2013, 3, 9117–9149. [Google Scholar] [CrossRef]
- Pramanik, B.; Ahmed, S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022, 8, 533. [Google Scholar] [CrossRef]
- Correa, S.; Grosskopf, A.K.; Lopez Hernandez, H.; Chan, D.; Yu, A.C.; Stapleton, L.M.; Appel, E.A. Translational Applications of Hydrogels. Chem. Rev. 2021, 121, 11385–11457. [Google Scholar] [CrossRef]
- Yadav, N.; Chauhan, M.K.; Chauhan, V.S. Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater. Sci. 2020, 8, 84–100. [Google Scholar] [CrossRef]
- Gačanin, J.; Hedrich, J.; Sieste, S.; Glaßer, G.; Lieberwirth, I.; Schilling, C.; Fischer, S.; Barth, H.; Knöll, B.; Synatschke, C.V.; et al. Autonomous Ultrafast Self-Healing Hydrogels by pH-Responsive Functional Nanofiber Gelators as Cell Matrices. Adv. Mater. 2019, 31, 1805044. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Liu, S.; Guo, J.; Jia, Y.-G. Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater. 2020, 113, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent Advances in Poly(α-L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef]
- Zanna, N.; Tomasini, C. Peptide-Based Physical Gels Endowed with Thixotropic Behaviour. Gels 2017, 3, 39. [Google Scholar] [CrossRef]
- Wahid, F.; Zhou, Y.-N.; Wang, H.-S.; Wan, T.; Zhong, C.; Chu, L.-Q. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int. J. Biol. Macromol. 2018, 114, 1233–1239. [Google Scholar] [CrossRef]
- Fichman, G.; Gazit, E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater. 2014, 10, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Jervis, P.J.; Amorim, C.; Pereira, T.; Martins, J.A.; Ferreira, P.M.T. Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. Soft Matter 2020, 16, 10001–10012. [Google Scholar] [CrossRef]
- Nolan, M.C.; Fuentes Caparrós, A.M.; Dietrich, B.; Barrow, M.; Cross, E.R.; Bleuel, M.; King, S.M.; Adams, D.J. Optimising low molecular weight hydrogels for automated 3D printing. Soft Matter 2017, 13, 8426–8432. [Google Scholar] [CrossRef]
- Shao, T.; Falcone, N.; Kraatz, H.-B. Supramolecular Peptide Gels: Influencing Properties by Metal Ion Coordination and Their Wide-Ranging Applications. ACS Omega 2020, 5, 1312–1317. [Google Scholar] [CrossRef]
- Afzal, S.; Maswal, M.; Lone, M.S.; Ashraf, U.; Mushtaq, U.; Dar, A.A. Metal–ligand-based thixotropic self-healing poly (vinyl alcohol) metallohydrogels: Their application in pH-responsive drug release and selective adsorption of dyes. J. Mater. Res. 2021, 36, 3293–3308. [Google Scholar] [CrossRef]
- Singha, N.; Srivastava, A.; Pramanik, B.; Ahmed, S.; Dowari, P.; Chowdhuri, S.; Das, B.K.; Debnath, A.; Das, D. Unusual confinement properties of a water insoluble small peptide hydrogel. Chem. Sci. 2019, 10, 5920–5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saydé, T.; El Hamoui, O.; Alies, B.; Gaudin, K.; Lespes, G.; Battu, S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials 2021, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Agent. Available online: https://physicsworld.com/a/nanotechnology-takes-on-microbial-drug-resistance/ (accessed on 14 December 2017).
- Drug-Delivery. Available online: https://www.aiche.org/chenected/2014/02/evolution-drug-delivery (accessed on 19 February 2014).
- Atherosclerosis. Available online: https://www.thehealthsite.com/diseases-conditions/atherosclerosis/ (accessed on 10 August 2020).
- Wound Dressing. Available online: https://www.123rf.com/clipart-vector/wound_dressing.html (accessed on 16 August 2022).
- Chen, H.; Cheng, R.; Zhao, X.; Zhang, Y.; Tam, A.; Yan, Y.; Shen, H.; Zhang, Y.S.; Qi, J.; Feng, Y.; et al. An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Mater. 2019, 11, 3. [Google Scholar] [CrossRef]
- Tissue Engineering. Available online: https://www.nist.gov/programs-projects/tissue-engineering (accessed on 21 October 2008).
- Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017, 5, 17014. [Google Scholar] [CrossRef]
- Zhou, Z.; Samperi, M.; Santu, L.; Dizon, G.; Aboarkaba, S.; Limón, D.; Tuck, C.; Pérez-García, L.; Irvine, D.J.; Amabilino, D.B.; et al. An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels. Mater. Des. 2021, 206, 109792. [Google Scholar] [CrossRef]
- Zou, Q.; Chang, R.; Xing, R.; Yuan, C.; Yan, X. Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. J. Control. Release 2020, 319, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Panwar, V.; Babu, A.; Sharma, A.; Thomas, J.; Chopra, V.; Malik, P.; Rajput, S.; Mittal, M.; Guha, R.; Chattopadhyay, N.; et al. Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. J. Mater. Chem. B 2021, 9, 6260–6270. [Google Scholar] [CrossRef]
- Adak, A.; Das, G.; Khan, J.; Mukherjee, N.; Gupta, V.; Mallesh, R.; Ghosh, S. Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomater. Sci. Eng. 2020, 6, 2287–2296. [Google Scholar] [CrossRef]
- Raymond, D.M.; Abraham, B.L.; Fujita, T.; Watrous, M.J.; Toriki, E.S.; Takano, T.; Nilsson, B.L. Low-Molecular-Weight Supramolecular Hydrogels for Sustained and Localized in Vivo Drug Delivery. ACS Appl. Bio Mater. 2019, 2, 2116–2124. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.M.; Augustine, G.; Ayyadurai, N.; Shanmugam, G. Biocytin-Based pH-Stimuli Responsive Supramolecular Multivariant Hydrogelator for Potential Applications. ACS Appl. Bio Mater. 2018, 1, 1382–1388. [Google Scholar] [CrossRef]
- Das, A.K.; Gavel, P.K. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020, 16, 10065–10095. [Google Scholar] [CrossRef]
- Singha, N.; Gupta, P.; Pramanik, B.; Ahmed, S.; Dasgupta, A.; Ukil, A.; Das, D. Hydrogelation of a Naphthalene Diimide Appended Peptide Amphiphile and Its Application in Cell Imaging and Intracellular pH Sensing. Biomacromolecules 2017, 18, 3630–3641. [Google Scholar] [CrossRef]
- Pramanik, B.; Singha, N.; Das, D. Sol-, Gel-, and Paper-Based Detection of Picric Acid at Femtogram Level by a Short Peptide Gelator. ACS Appl. Polym. Mater. 2019, 1, 833–843. [Google Scholar] [CrossRef]
- Abraham, B.L.; Liyanage, W.; Nilsson, B.L. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Langmuir 2019, 35, 14939–14948. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Onesto, V.; Marasco, D. Self-Assembling Peptides: From Design to Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 12662. [Google Scholar] [CrossRef]
- Ahmed, S.; Mondal, J.H.; Behera, N.; Das, D. Self-Assembly of Peptide-Amphiphile Forming Helical Nanofibers and in Situ Template Synthesis of Uniform Mesoporous Single Wall Silica Nanotubes. Langmuir 2013, 29, 14274–14283. [Google Scholar] [CrossRef]
- Singh, P.; Misra, S.; Das, A.; Roy, S.; Datta, P.; Bhattacharjee, G.; Satpati, B.; Nanda, J. Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine. ACS Appl. Bio Mater. 2019, 2, 4881–4891. [Google Scholar] [CrossRef]
- Falcone, N.; Shao, T.; Rashid, R.; Kraatz, H.-B. Enzyme Entrapment in Amphiphilic Myristyl-Phenylalanine Hydrogels. Molecules 2019, 24, 2884. [Google Scholar] [CrossRef]
- Chakraborty, P.; Gazit, E. Amino Acid Based Self-assembled Nanostructures: Complex Structures from Remarkably Simple Building Blocks. ChemNanoMat 2018, 4, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, W.; Nilsson, B.L. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives. Langmuir 2016, 32, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Martí-Centelles, R.; Escuder, B. Morphology Diversity of L-Phenylalanine-Based Short Peptide Supramolecular Aggregates and Hydrogels. ChemNanoMat 2018, 4, 796–800. [Google Scholar] [CrossRef]
- Aviv, M.; Cohen-Gerassi, D.; Orr, A.A.; Misra, R.; Arnon, Z.A.; Shimon, L.J.W.; Shacham-Diamand, Y.; Tamamis, P.; Adler-Abramovich, L. Modification of a Single Atom Affects the Physical Properties of Double Fluorinated Fmoc-Phe Derivatives. Int. J. Mol. Sci. 2021, 22, 9634. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Snigdha, K.; Singh, C.; Sinha, N.; Thakur, A.K. Understanding the self-assembly of Fmoc–phenylalanine to hydrogel formation. Soft Matter 2015, 11, 5353–5364. [Google Scholar] [CrossRef]
- Quigley, E.; Johnson, J.; Liyanage, W.; Nilsson, B.L. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels. Soft Matter 2020, 16, 10158–10168. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.A.; Reddy, S.M.M.; Shanmugam, G.; Deshpande, A.P. Fibrillar Network Dynamics during Oscillatory Rheology of Supramolecular Gels. Langmuir 2020, 36, 13342–13355. [Google Scholar] [CrossRef] [PubMed]
- Rajbhandary, A.; Brennessel, W.W.; Nilsson, B.L. Comparison of the Self-Assembly Behavior of Fmoc-Phenylalanine and Corresponding Peptoid Derivatives. Cryst. Growth Des. 2018, 18, 623–632. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef]
- Nandi, N.; Gayen, K.; Ghosh, S.; Bhunia, D.; Kirkham, S.; Sen, S.K.; Ghosh, S.; Hamley, I.W.; Banerjee, A. Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity. Biomacromolecules 2017, 18, 3621–3629. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.K.; Maji, K.; Haldar, D. Self-Healing Hydrogel from a Dipeptide and HCl Sensing. ACS Omega 2018, 3, 3744–3751. [Google Scholar] [CrossRef]
- Colquhoun, C.; Draper, E.R.; Schweins, R.; Marcello, M.; Vadukul, D.; Serpell, L.C.; Adams, D.J. Controlling the network type in self-assembled dipeptide hydrogels. Soft Matter 2017, 13, 1914–1919. [Google Scholar] [CrossRef]
- Brown, N.; Lei, J.; Zhan, C.; Shimon, L.J.W.; Adler-Abramovich, L.; Wei, G.; Gazit, E. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. ACS Nano 2018, 12, 3253–3262. [Google Scholar] [CrossRef]
- Jain, R.; Khandelwal, G.; Roy, S. Unraveling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles. Langmuir 2019, 35, 5878–5889. [Google Scholar] [CrossRef]
- Kaur, H.; Jain, R.; Roy, S. Pathway-Dependent Preferential Selection and Amplification of Variable Self-Assembled Peptide Nanostructures and Their Biological Activities. ACS Appl. Mater. Interfaces 2020, 12, 52445–52456. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Zhang, L.; Li, Y.; Li, B.; Yang, Y. Alignment of twisted nanoribbons formed by C17H35CO-Val-Ala sodium salts. Soft Matter 2018, 14, 6353–6359. [Google Scholar] [CrossRef]
- Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of Peptide-Based Biocompatible Injectable Shape-Memory Hydrogels: Differential Biological Effects on Bacterial and Human Blood Cells. ACS Appl. Mater. Interfaces 2018, 10, 10729–10740. [Google Scholar] [CrossRef]
- Falcone, N.; Shao, T.; Andoy, N.M.O.; Rashid, R.; Sullan, R.M.A.; Sun, X.; Kraatz, H.-B. Multi-component peptide hydrogels—A systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials. Biomater. Sci. 2020, 8, 5601–5614. [Google Scholar] [CrossRef]
- Mondal, B.; Bairagi, D.; Nandi, N.; Hansda, B.; Das, K.S.; Edwards-Gayle, C.J.C.; Castelletto, V.; Hamley, I.W.; Banerjee, A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb2+ and Cd2+ Ions from Wastewater and Oil Spill Recovery. Langmuir 2020, 36, 12942–12953. [Google Scholar] [CrossRef]
- Das, B.K.; Pramanik, B.; Chowdhuri, S.; Scherman, O.A.; Das, D. Light-triggered syneresis of a water insoluble peptide-hydrogel effectively removes small molecule waste contaminants. Chem. Commun. 2020, 56, 3393–3396. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Tang, Y.; Yamamoto, T.; Yao, Y.; Guterman, T.; Zilberzwige-Tal, S.; Adadi, N.; Ji, W.; Dvir, T.; Ramamoorthy, A.; et al. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator. Adv. Mater. 2020, 32, 1906043. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Li, J.; Zhao, L.; Wang, A.; Wang, M.; Li, J.; Jian, H.; Li, X.; Yan, X.; Bai, S. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS Appl. Mater. Interfaces 2020, 12, 21433–21440. [Google Scholar] [CrossRef]
- Fu, W.; Farhadi Sabet, Z.; Liu, J.; You, M.; Zhou, H.; Wang, Y.; Gao, Y.; Li, J.; Ma, X.; Chen, C. Metal ions modulation of the self-assembly of short peptide conjugated nonsteroidal anti-inflammatory drugs (NSAIDs). Nanoscale 2020, 12, 7960–7968. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Roy, S. Enzyme-Induced Supramolecular Order in Pyrene Dipeptide Hydrogels for the Development of an Efficient Energy-Transfer Template. Biomacromolecules 2021, 22, 2393–2407. [Google Scholar] [CrossRef]
- Najafi, H.; Tamaddon, A.M.; Abolmaali, S.; Borandeh, S.; Azarpira, N. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells. Soft Matter 2021, 17, 57–67. [Google Scholar] [CrossRef]
- Ahmed, S.; Pramanik, B.; Sankar, K.N.A.; Srivastava, A.; Singha, N.; Dowari, P.; Srivastava, A.; Mohanta, K.; Debnath, A.; Das, D. Solvent Assisted Tuning of Morphology of a Peptide-Perylenediimide Conjugate: Helical Fibers to Nano-Rings and their Differential Semiconductivity. Sci. Rep. 2017, 7, 9485. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Amba Sankar, K.N.; Pramanik, B.; Mohanta, K.; Das, D. Solvent Directed Morphogenesis and Electrical Properties of a Peptide–Perylenediimide Conjugate. Langmuir 2018, 34, 8355–8364. [Google Scholar] [CrossRef]
- Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe Motif for Peptide Self-Assembly in Nanomedicine. Molecules 2015, 20, 19775–19788. [Google Scholar] [CrossRef]
- Dasgupta, A.; Das, D. Designer Peptide Amphiphiles: Self-Assembly to Applications. Langmuir 2019, 35, 10704–10724. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Arakawa, H.; Takeda, K.; Higashi, S.L.; Shibata, A.; Kitamura, Y.; Ikeda, M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym. J. 2020, 52, 923–930. [Google Scholar] [CrossRef]
- Smith, A.M.; Williams, R.J.; Tang, C.; Coppo, P.; Collins, R.F.; Turner, M.L.; Saiani, A.; Ulijn, R.V. Fmoc-Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked β-Sheets. Adv. Mater. 2008, 20, 37–41. [Google Scholar] [CrossRef]
- Tamamis, P.; Adler-Abramovich, L.; Reches, M.; Marshall, K.; Sikorski, P.; Serpell, L.; Gazit, E.; Archontis, G. Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophys. J. 2009, 96, 5020–5029. [Google Scholar] [CrossRef] [Green Version]
- Adler-Abramovich, L.; Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 2014, 43, 6881–6893. [Google Scholar] [CrossRef]
- Fan, T.; Yu, X.; Shen, B.; Sun, L. Peptide Self-Assembled Nanostructures for Drug Delivery Applications. J. Nanomater. 2017, 2017, 4562474. [Google Scholar] [CrossRef]
- Ji, W.; Tang, Y.; Makam, P.; Yao, Y.; Jiao, R.; Cai, K.; Wei, G.; Gazit, E. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. J. Am. Chem. Soc. 2021, 143, 17633–17645. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Cai, H.; Cui, Y.; He, M.; Cao, W.; Chen, X.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X. Temperature and ion dual responsive biphenyl-dipeptide supramolecular hydrogels as extracellular matrix mimic-scaffolds for cell culture applications. J. Mater. Chem. B 2017, 5, 3667–3674. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rasale, D.B.; Das, A.K. Blue light emitting self-healable graphene quantum dot embedded hydrogels. RSC Adv. 2016, 6, 54793–54800. [Google Scholar] [CrossRef]
- Pramanik, B.; Das, D. Aggregation-Induced Emission or Hydrolysis by Water? The Case of Schiff Bases in Aqueous Organic Solvents. J. Phys. Chem. C 2018, 122, 3655–3661. [Google Scholar] [CrossRef]
- Singha, N.; Das, B.K.; Pramanik, B.; Das, S.; Das, D. Freeze the dynamicity: Charge transfer complexation assisted control over the reaction pathway. Chem. Sci. 2019, 10, 10035–10039. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Saha, A.; Pramanik, B.; Das, S.; Dowari, P.; Ukil, A.; Das, D. Smart Thixotropic Hydrogels by Disulfide-Linked Short Peptides for Effective Three-Dimensional Cell Proliferation. Langmuir 2020, 36, 15450–15462. [Google Scholar] [CrossRef]
- Najafi, H.; Abolmaali, S.S.; Heidari, R.; Valizadeh, H.; Jafari, M.; Tamaddon, A.M.; Azarpira, N. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J. Control. Release 2021, 337, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, X.; Ye, L.; Zhang, A.-y.; Bezuidenhout, D.; Feng, Z.-g. Rapidly Recoverable Thixotropic Hydrogels from the Racemate of Chiral OFm Monosubstituted Cyclo(Glu-Glu) Derivatives. Langmuir 2017, 33, 13821–13827. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Xing, R.; Zou, Q.; Shi, F.; Yan, X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein J. Nanotechnol. 2019, 10, 1894–1901. [Google Scholar] [CrossRef]
- Scarel, M.; Marchesan, S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules 2021, 26, 3376. [Google Scholar] [CrossRef]
- Yang, M.; Xing, R.; Shen, G.; Yuan, C.; Yan, X. A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 259–265. [Google Scholar] [CrossRef]
- Zhao, K.; Xing, R.; Yan, X. Cyclic dipeptides: Biological activities and self-assembled materials. Pept. Sci. 2021, 113, e24202. [Google Scholar] [CrossRef]
- Choi, S.-j.; Jeong, W.-j.; Kang, S.-K.; Lee, M.; Kim, E.; Ryu, D.Y.; Lim, Y.-b. Differential Self-Assembly Behaviors of Cyclic and Linear Peptides. Biomacromolecules 2012, 13, 1991–1995. [Google Scholar] [CrossRef]
- Wojciechowski, J.P.; Martin, A.D.; Mason, A.F.; Fife, C.M.; Sagnella, S.M.; Kavallaris, M.; Thordarson, P. Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Three-Dimensional Cell Culture of Tumor Spheroids. ChemPlusChem 2017, 82, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.; Zhang, J.; Zhang, X.; Yang, Z.; Chen, M. Phenothiazine as an aromatic capping group to construct a short peptide-based ‘super gelator’. Chem. Commun. 2013, 49, 1853–1855. [Google Scholar] [CrossRef]
- Bairagi, D.; Biswas, P.; Basu, K.; Hazra, S.; Hermida-Merino, D.; Sinha, D.K.; Hamley, I.W.; Banerjee, A. Self-Assembling Peptide-Based Hydrogel: Regulation of Mechanical Stiffness and Thermal Stability and 3D Cell Culture of Fibroblasts. ACS Appl. Bio Mater. 2019, 2, 5235–5244. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Qi, W.; Xing, R.; Yang, X.; Xing, Q.; Su, R.; He, Z. Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. J. Mater. Chem. B 2019, 7, 2981–2988. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, Y. Self-Assembled Fmoc-Arg-Phe-Phe Peptide Gels with Highly Potent Bactericidal Activities. ACS Biomater. Sci. Eng. 2020, 6, 5507–5518. [Google Scholar] [CrossRef]
- Li, X.; Bian, S.; Zhao, M.; Han, X.; Liang, J.; Wang, K.; Jiang, Q.; Sun, Y.; Fan, Y.; Zhang, X. Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extracellular matrix scaffolds for cartilage tissue engineering. Acta Biomater. 2021, 131, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Zhao, M.; Chen, Y.; Xu, Y.; Wang, K.; Bian, S.; Jiang, Q.; Fan, Y.; Zhang, X. Bioinspired supramolecular nanofiber hydrogel through self-assembly of biphenyl-tripeptide for tissue engineering. Bioact. Mater. 2022, 8, 396–408. [Google Scholar] [CrossRef]
- Tiwari, P.; Gupta, A.; Shukla, D.N.; Mishra, A.K.; Basu, A.; Dutt Konar, A. Chiral Orchestration: A Tool for Fishing Out Tripeptide-Based Mechanoresponsive Supergelators Possessing Anti-Inflammatory and Antimicrobial Properties. ACS Appl. Bio Mater. 2021, 4, 4119–4130. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Lin, D.; Hu, Y.; Jin, B.; Wang, Y.; Wang, J.; Vakal, S.; Li, X. Dexamethasone-peptide prodrug supramolecular hydrogel effectively alleviates experimental autoimmune uveitis (EAU). Chem. Eng. J. 2021, 421, 129623. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Jonker, A.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Peptide- and Protein-Based Hydrogels. Chem. Mater. 2012, 24, 759–773. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, Q.; Yang, C.; Wang, H.; He, T.; Wang, Y.; Wang, Z.; Chen, H.; Li, X.; Gong, C.; et al. A Powerful CD8+ T-Cell Stimulating D-Tetra-Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Adv. Mater. 2017, 29, 1601776. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Yan, Y.; Cheng, B.; Deng, L.; Shao, Z.; Sun, Z.; Li, X. Enzymatic Formation of an Injectable Hydrogel from a Glycopeptide as a Biomimetic Scaffold for Vascularization. ACS Appl. Mater. Interfaces 2018, 10, 6180–6189. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Mei, C.; Jiang, Z.; Feng, Y.; Gao, R.; Wang, Q.; Huang, J. Protein Enables Conformation Transition of a Hydrogel Based on Pentapeptide and Boosts Immune Response In Vivo. Bioconjug. Chem. 2018, 29, 1519–1524. [Google Scholar] [CrossRef]
- Kaur, H.; Sharma, P.; Patel, N.; Pal, V.K.; Roy, S. Accessing Highly Tunable Nanostructured Hydrogels in a Short Ionic Complementary Peptide Sequence via pH Trigger. Langmuir 2020, 36, 12107–12120. [Google Scholar] [CrossRef]
- Prasad Dewangan, R.; Kumari, S.; Kumar Mahto, A.; Jain, A.; Pasha, S. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus. Bioorg. Chem. 2020, 102, 104052. [Google Scholar] [CrossRef] [PubMed]
- Makam, P.; Gazit, E. Minimalistic peptide supramolecular co-assembly: Expanding the conformational space for nanotechnology. Chem. Soc. Rev. 2018, 47, 3406–3420. [Google Scholar] [CrossRef]
- Chakraborty, P.; Aviv, M.; Netti, F.; Cohen-Gerassi, D.; Adler-Abramovich, L. Molecular Co-Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional Supramolecular Hydrogel. Macromol. Biosci. 2022, 22, 2100439. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Guo, Y.; Li, X.; Xue, H.; Fei, J.; Li, J. Co-assembled Supramolecular Gel of Dipeptide and Pyridine Derivatives with Controlled Chirality. Angew. Chem. Int. Ed. 2021, 60, 2099–2103. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Ok, M.; Kim, J.; Jung, S.H.; Seo, M.L.; Jung, J.H. Pyrene-Based Co-Assembled Supramolecular Gel; Morphology Changes and Macroscale Mechanical Property. Gels 2020, 6, 16. [Google Scholar] [CrossRef]
- Giraud, T.; Bouguet-Bonnet, S.; Stébé, M.-J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.-C.; Stefan, L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale 2021, 13, 10566–10578. [Google Scholar] [CrossRef]
- Zhai, Z.; Xu, K.; Mei, L.; Wu, C.; Liu, J.; Liu, Z.; Wan, L.; Zhong, W. Co-assembled supramolecular hydrogels of cell adhesive peptide and alginate for rapid hemostasis and efficacious wound healing. Soft Matter 2019, 15, 8603–8610. [Google Scholar] [CrossRef]
- Mantooth, S.M.; Munoz-Robles, B.G.; Webber, M.J. Dynamic Hydrogels from Host–Guest Supramolecular Interactions. Macromol. Biosci. 2019, 19, 1800281. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, Q.; Hollett, G.; Zhao, W.; Kang, Y.; Wu, J. Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym. Chem. 2018, 9, 3436–3449. [Google Scholar] [CrossRef]
- Xiong, H.; Li, Y.; Ye, H.; Huang, G.; Zhou, D.; Huang, Y. Self-healing supramolecular hydrogels through host–guest interaction between cyclodextrin and carborane. J. Mater. Chem. B 2020, 8, 10309–10313. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Hao, J.; Wang, X. Host-Fueled Transient Supramolecular Hydrogels. ChemSystemsChem 2022, 4, e202100050. [Google Scholar] [CrossRef]
- Madl, A.C.; Myung, D. Supramolecular Host–Guest Hydrogels for Corneal Regeneration. Gels 2021, 7, 163. [Google Scholar] [CrossRef]
- Chu, C.-W.; Ravoo, B.J. Hierarchical supramolecular hydrogels: Self-assembly by peptides and photo-controlled release via host–guest interaction. Chem. Commun. 2017, 53, 12450–12453. [Google Scholar] [CrossRef]
- Dowari, P.; Saha, S.; Pramanik, B.; Ahmed, S.; Singha, N.; Ukil, A.; Das, D. Multiple Cross-Linking of a Small Peptide to Form a Size Tunable Biopolymer with Efficient Cell Adhesion and Proliferation Property. Biomacromolecules 2018, 19, 3994–4002. [Google Scholar] [CrossRef]
- Larik, F.A.; Fillbrook, L.L.; Nurttila, S.S.; Martin, A.D.; Kuchel, R.P.; Al Taief, K.; Bhadbhade, M.; Beves, J.E.; Thordarson, P. Ultra-Low Molecular Weight Photoswitchable Hydrogelators. Angew. Chem. Int. Ed. 2021, 60, 6764–6770. [Google Scholar] [CrossRef] [PubMed]
- Stricker, L.; Fritz, E.-C.; Peterlechner, M.; Doltsinis, N.L.; Ravoo, B.J. Arylazopyrazoles as Light-Responsive Molecular Switches in Cyclodextrin-Based Supramolecular Systems. J. Am. Chem. Soc. 2016, 138, 4547–4554. [Google Scholar] [CrossRef]
- Redondo-Gómez, C.; Abdouni, Y.; Becer, C.R.; Mata, A. Self-Assembling Hydrogels Based on a Complementary Host–Guest Peptide Amphiphile Pair. Biomacromolecules 2019, 20, 2276–2285. [Google Scholar] [CrossRef]
- Jain, M.; Nowak, B.P.; Ravoo, B.J. Supramolecular Hydrogels Based on Cyclodextrins: Progress and Perspectives. ChemNanoMat 2022, 8, e202200077. [Google Scholar] [CrossRef]
- Lange, S.C.; Unsleber, J.; Drücker, P.; Galla, H.-J.; Waller, M.P.; Ravoo, B.J. pH response and molecular recognition in a low molecular weight peptide hydrogel. Org. Biomol. Chem. 2015, 13, 561–569. [Google Scholar] [CrossRef]
- Himmelein, S.; Ravoo, B.J. A Self-Assembled Sensor for Carbohydrates on the Surface of Cyclodextrin Vesicles. Chem. Eur. J. 2017, 23, 6034–6041. [Google Scholar] [CrossRef] [PubMed]
- Volarić, J.; Szymanski, W.; Simeth, N.A.; Feringa, B.L. Molecular photoswitches in aqueous environments. Chem. Soc. Rev. 2021, 50, 12377–12449. [Google Scholar] [CrossRef]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Fong, W.-K.; Graham, B.; Boyd, B.J. Photoswitchable Molecules in Long-Wavelength Light-Responsive Drug Delivery: From Molecular Design to Applications. Chem. Mater. 2018, 30, 2873–2887. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Liu, S.; Yan, Y.; Li, X. Consecutive dephosphorylation by alkaline phosphatase-directed in situ formation of porous hydrogels of SF with nanocrystalline calcium phosphate ceramics for bone regeneration. J. Mater. Chem. B 2020, 8, 9043–9051. [Google Scholar] [CrossRef]
- Thota, C.K.; Berger, A.A.; Elomaa, L.; Nie, C.; Böttcher, C.; Koksch, B. Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties. ACS Omega 2020, 5, 8557–8563. [Google Scholar] [CrossRef]
- Gavel, P.K.; Kumar, N.; Parmar, H.S.; Das, A.K. Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. ACS Appl. Bio Mater. 2020, 3, 3326–3336. [Google Scholar] [CrossRef]
- Toledano, S.; Williams, R.J.; Jayawarna, V.; Ulijn, R.V. Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. J. Am. Chem. Soc. 2006, 128, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Criado-Gonzalez, M.; Rodon Fores, J.; Wagner, D.; Schröder, A.P.; Carvalho, A.; Schmutz, M.; Harth, E.; Schaaf, P.; Jierry, L.; Boulmedais, F. Enzyme-assisted self-assembly within a hydrogel induced by peptide diffusion. Chem. Commun. 2019, 55, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Kumar, S.; Aswal, V.K.; Ravindranathan, S.; Rajamohanan, P.R.; Prabhune, A.; Nisal, A. Silk Fibroin-Sophorolipid Gelation: Deciphering the Underlying Mechanism. Biomacromolecules 2016, 17, 3318–3327. [Google Scholar] [CrossRef]
- Chouhan, D.; Lohe, T.-u.; Samudrala, P.K.; Mandal, B.B. In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds. Adv. Healthc. Mater. 2018, 7, 1801092. [Google Scholar] [CrossRef]
- Hai, Z.; Li, J.; Wu, J.; Xu, J.; Liang, G. Alkaline Phosphatase-Triggered Simultaneous Hydrogelation and Chemiluminescence. J. Am. Chem. Soc. 2017, 139, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Li, X.; Li, C.; Yang, Z.; Wang, L. A Peptide-Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs. Chem. Asian J. 2018, 13, 3460–3463. [Google Scholar] [CrossRef]
- Bartocci, S.; Berrocal, J.A.; Guarracino, P.; Grillaud, M.; Franco, L.; Mba, M. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene–Naphthalenediimide Donor–Acceptor Interactions. Chem. Eur. J. 2018, 24, 2920–2928. [Google Scholar] [CrossRef] [PubMed]
- Kobaisi, M.A.; Bhosale, R.S.; El-Khouly, M.E.; La, D.D.; Padghan, S.D.; Bhosale, S.V.; Jones, L.A.; Antolasic, F.; Fukuzumi, S.; Bhosale, S.V. The sensitivity of donor—Acceptor charge transfer to molecular geometry in DAN—NDI based supramolecular flower-like self-assemblies. Sci. Rep. 2017, 7, 16501. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Pramanik, B.; Das, D. Self-Aggregation of a Naphthalene-Monoimide Amphiphile and Its Charge-Transfer-Complex Driven Morphogenesis in Water. ChemNanoMat 2018, 4, 867–873. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Chen, S. Donor–acceptor charge transfer assemblies based on naphthalene diimides(NDIs). J. Incl. Phenom. Macrocycl. Chem. 2021, 99, 131–154. [Google Scholar] [CrossRef]
- Nalluri, S.K.M.; Berdugo, C.; Javid, N.; Frederix, P.W.J.M.; Ulijn, R.V. Biocatalytic Self-Assembly of Supramolecular Charge-Transfer Nanostructures Based on n-Type Semiconductor-Appended Peptides. Angew. Chem. Int. Ed. 2014, 53, 5882–5887. [Google Scholar] [CrossRef]
- Nandi, S.K.; Sarkar, R.; Jaiswar, A.; Roy, S.; Haldar, D. Miniature β-Hairpin Mimetic by Intramolecular Hydrogen Bond and C–H···π Interactions. ACS Omega 2022, 7, 17245–17252. [Google Scholar] [CrossRef]
- Sonallya, T.; Sruthi, L.; Deshpande, A.P.; Shanmugam, G. Tweaking of supramolecular hydrogel property of single and two-component gel systems by a bifunctional molecule. J. Mol. Liq. 2021, 342, 116945. [Google Scholar] [CrossRef]
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 1415. [Google Scholar] [CrossRef]
- Radvar, E.; Azevedo, H.S. Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications. Macromol. Biosci. 2019, 19, 1800221. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Ghosh, M.; Adler-Abramovich, L.; Das, D. The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels. Pharmaceutics 2021, 13, 1602. [Google Scholar] [CrossRef]
- Tang, C.; Smith, A.M.; Collins, R.F.; Ulijn, R.V.; Saiani, A. Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent pKa Shifts. Langmuir 2009, 25, 9447–9453. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Kang, J.; Yun, S.I. Chitosan–dipeptide hydrogels as potential anticancer drug delivery systems. Int. J. Biol. Macromol. 2021, 187, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Choe, R.; Yun, S.I. Fmoc-diphenylalanine-based hydrogels as a potential carrier for drug delivery. e-Polymers 2020, 20, 458–468. [Google Scholar] [CrossRef]
- Xing, R.; Li, S.; Zhang, N.; Shen, G.; Möhwald, H.; Yan, X. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Biomacromolecules 2017, 18, 3514–3523. [Google Scholar] [CrossRef]
- Abbas, M.; Xing, R.; Zhang, N.; Zou, Q.; Yan, X. Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs. ACS Biomater. Sci. Eng. 2018, 4, 2046–2052. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zou, Q.; Xing, R.; Jiao, T.; Yan, X. An injectable dipeptide–fullerene supramolecular hydrogel for photodynamic antibacterial therapy. J. Mater. Chem. B 2018, 6, 7335–7342. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Guterman, T.; Adadi, N.; Yadid, M.; Brosh, T.; Adler-Abramovich, L.; Dvir, T.; Gazit, E. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS Nano 2019, 13, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Halperin-Sternfeld, M.; Grinberg, I.; Adler-Abramovich, L. Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration. Nanomaterials 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Ghosh, M.; Schnaider, L.; Adadi, N.; Ji, W.; Bychenko, D.; Dvir, T.; Adler-Abramovich, L.; Gazit, E. Composite of Peptide-Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bio-Inspired Soft Material. Macromol. Rapid Commun. 2019, 40, 1900175. [Google Scholar] [CrossRef] [PubMed]
- Das Mahapatra, R.; Dey, J.; Weiss, R.G. Poly(vinyl alcohol)-induced thixotropy of an l-carnosine-based cytocompatible, tripeptidic hydrogel. Soft Matter 2019, 15, 433–441. [Google Scholar] [CrossRef]
- Malhotra, K.; Shankar, S.; Chauhan, N.; Rai, R.; Singh, Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Mater. Sci. Eng. C 2020, 110, 110648. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.N.; Joseph, S.; Trivedi, R.; Karle, M. Injectable dextran-fluorenylmethoxycarbonyl phenylalanine composite hydrogels with improved mechanical properties. Polym. Int. 2021, 70, 222–229. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Xiong, Y.; Wu, Y.; Yang, F.; Guo, Y.; Chen, Z.; Gao, L.; Deng, W. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 58329–58339. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Cui, H. Peptide-based supramolecular hydrogels for delivery of biologics. Bioeng. Transl. Med. 2016, 1, 306–322. [Google Scholar] [CrossRef]
- Ma, C.; Feng, K.; Yang, X.; Yang, Z.; Wang, Z.; Shang, Y.; Fan, G.; Liu, L.; Yang, S.; Li, X.; et al. Targeting macrophage liver X receptors by hydrogel-encapsulated T0901317 reduces atherosclerosis without effect on hepatic lipogenesis. Br. J. Pharmacol. 2021, 178, 1620–1638. [Google Scholar] [CrossRef]
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Fmoc-Lys-Bct (AA1) [54] | 0.30 | Water (pH 7.4) | 60 | 103–104 | 102–103 | ~101 | 101–102 | 103–104 | 102–103 | Fibrous networks | Cell proliferation and bacterial activity |
2. | Fmoc-Tyr-3NO2 (AA2) [61] | 0.25 | Water (pH 7.0) | NR | ~103 | ~102 | ~100 | ~101 | ~103 | ~102 | Fibrillar networks | Antimicrobial activity |
3 | Myr-Phe-COOH (AA3, L-form) [62] | 0.25 | PB (pH 7.0) | 37 | ~102 | ~102 | 100–101 | 100–101 | 101–102 | 101–102 | Long fibers | Enzyme entrapment |
4. | Myr-Phe-COOH (AA3, D-form) [62] | 0.25 | PB (pH 7.0) | 37 | 102–103 | 102–103 | 100–101 | ~101 | 101–102 | 101–102 | Long fibers | Enzyme entrapment |
5. | Fmoc-Phe-DAP (AA5) [53] | 1.42 | Water | NR | ~103 | ~102 | 100–101 | ~101 | ~103 | ~102 | Flat, tape-like structures | In Vivo Drug delivery |
6. | Fmoc-3F-Phe-DAP (AA6) [53] | ~1.48 | Water | NR | ~104 | 103–104 | 101–102 | 102–103 | ~104 | 103–104 | Fibrils/tapes | In Vivo Drug delivery |
7. | Fmoc-F5-Phe-DAP (AA7) [53] | 1.71 | Water | NR | 103–104 | 102–103 | 101–102 | 102–103 | 103–104 | 102–103 | Twisted fibers and tapes | In Vivo Drug delivery |
8. | Fmoc-Phe-COOH (AA8) [68] | 0.19 | Water: DMSO (98:2, v/v) | NR | NR | NR | NR | NR | NR | NR | NR | NR |
0.19 | Water (NaOH-GdL) | NR | NR | NR | NR | NR | NR | NR | NR | NR | ||
9. | Fmoc-3F-Phe-COOH (AA9) [68] | 0.20 | Water: DMSO (98:2, v/v) | NR | 103–105 | 103–104 | ~102 | 102–103 | 103–105 | 103–104 | Fibrillar networks | NR |
0.20 | Water (NaOH-GdL) | NR | 102–103 | 101–102 | ~101 | 101–102 | 102–103 | 101–102 | Fibrillar networks | NR | ||
10. | Fmoc-F5-Phe-COOH (AA10) [68] | ~0.24 | Water: DMSO (98:2, v/v) | NR | 103–104 | ~103 | 100–101 | ~102 | ~103 | ~102 | Fibrillar networks | NR |
~0.24 | Water (NaOH-GdL) | NR | 102–103 | 101–102 | ~101 | 101–102 | 102–103 | 101–102 | Fibrillar networks | NR | ||
11. | Fmoc-Lys (Fmoc)-COOH (AA11) [69] | 0.30 | PB (pH 6.0) | NR | 103–104 | ~102 | ~101 | 101–102 | ~103 | ~102 | Fibrous networks | NR |
0.30 | PB (pH 7.4) | NR | ~103 | 101–102 | ~100 | ~100 | 101–102 | 100–101 | Fibrous networks | NR |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | H2N-Gly-Phe-C12 (D2P1) [72] | 0.83 | Water (pH 6.6) | 48 | NA | NA | NA | NA | NA | NA | Intertwined nanofibrillar networks | Antimicrobial activity |
2. | H2N-β-Ala-Phe-C12 (D2P2) [72] | 1.12 | Water (pH 6.6) | 52 | ~102 | ~101 | ~10−1 | 10−1–100 | 100–102 | 100–101 | Intertwined nanofibrillar networks | Antimicrobial activity |
3. | H2N-GABA-Phe-C12 (D2P3) [72] | 0.99 | Water (pH 6.6) | 58 | ~102 | ~101 | ~10−1 | 10−1–100 | 100–102 | 100–101 | Intertwined nanofibrillar networks | Antimicrobial activity |
4. | H2N-AVAB-Phe-C12 (D2P4) [72] | 0.90 | Water (pH 6.6) | 64 | ~102 | ~101 | ~10−1 | 10−1–100 | 100–102 | 100–101 | Intertwined nanofibrillar networks | Antimicrobial activity |
5. | H2N-EACA-Phe-C12 (D2P5) [72] | 0.77 | Water (pH 6.6) | 68 | 102–103 | 101–102 | ~10−1 | 10−1–100 | 100–103 | 100–102 | Intertwined nanofibrillar networks | Antimicrobial activity |
6. | Boc-Phe-Aib (D2P6) [73] | 0.4 | Water | 67.8 | ~3 × 105 | ~0.0–0.5 × 105 | ~0.0 × 105 | ~0.5 × 105 | ~2.5–3 × 105 | ~0.5 × 105 | Rod-like fibrillar network | HCl sensing |
7. | Nap-Phe-Phe-COOH (D2P7) [74] | 0.1 | Water/Ca2+ (pH 3.9) | NR | ~105 | ~104 | ~102 | ~102 | 104–105 | 103–104 | Mat of fibrous networks | NR |
0.1 | Water/GdL (pH 3.9) | NR | 104–105 | 103–104 | ~102 | ~102 | 104–105 | 103–104 | Mat of fibrous networks | NR | ||
0.1 | Water/DMSO (pH 3.9) | NR | 104–105 | 103–104 | ~101 | ~102 | ~103 | ~102 | Crystalline morphology | NR | ||
8. | Cbz-Phe-Phe-COOH (D2P9) [75] | 0.5 | Water: MeOH (3:1, v/v) | NR | 102–103 | 101–102 | 100–101 | ~101 | ~103 | 101–102 | Nanofibers | NR |
Cbz-Phe-Phe-COOH (D2P9) [76] | ~1.78 | Water (pH 7.4) | NR | ~102 | 101–102 | ~100 | ~100 | 101–102 | 100–101 | Fibrous networks | NR | |
Cbz-Phe-Phe-COOH (D2P9) [77] | 1.3 | PB (pH ~8) Heat-Cool | 50 | ~104 | ~103 | ~102 | 102–103 | 103–104 | ~103 | Long entangled nanofibrous networks | Cellular adhesion | |
Cbz-Phe-Phe-COOH (D2P9) [77] | 1.3 | PB (pH ~8) Sonication | 40 | ~102 | NR | NR | NR | NR | NR | Short twisted ribbons | Cellular adhesion | |
9. | Ste-DVal-DAla-COONa (D2P11) [78] | 0.02 | Water | NR | ~4–5 × 102 | ~2 × 102 | ~100 | ~101 | ~5 × 102 | ~2 × 102 | Left-handed twist nanoribbons | NR |
10. | Amoc-Phe-Leu-COOH (D2P12) [79] | 20 mM | Water (pH 7.4) | NR | 104–105 | ~103 | ~102 | 102–103 | ~104 | ~103 | Nanofibrillar networks | Cell proliferation and antibacterial efficacy |
11. | Amoc-Phe-Tyr-COOH (D2P13) [79] | 20 mM | Water (pH 7.4) | NR | 103–104 | 102–103 | 101–102 | 101–102 | 103–104 | 102–103 | Nanofibrillar networks | Cell proliferation and antibacterial activity |
12. | Fmoc-Phe-Phe-COOH (D2P14) [76] | ~0.13 | Water (pH 7.4) | NR | 103–104 | ~103 | 101–102 | ~102 | 103–104 | ~103 | Fibrous networks | NR |
13. | Nap-Phe-Phe-COOH (D2P15) [76] | ~0.25 | Water (pH 7.4) | NR | ~103 | 102–103 | ~102 | ~102 | ~103 | 102–103 | Fibrous networks | NR |
14. | Fmoc-Phe-Tyr-COOH (D2P16) [76] | ~0.54 | Water (pH 7.4) | NR | ~103 | ~102 | NR | NR | NR | NR | Nanotubes | NR |
15. | Nap-Phe-Tyr-COOH (D2P17) [76] | ~1.02 | Water (pH 7.4) | NR | ~103 | ~102 | NR | NR | NR | NR | Fibrous networks | NR |
16. | Cbz-Phe-Tyr-COOH (D2P18) | NA | Water (pH 7.4) | NA | NA | NA | NA | NA | NA | NA | Spherical aggregates | NR |
17. | Fmoc-Phe-Leu-COOH (D2P19) [76] | ~0.50 | Water (pH 7.4) | NR | ~103 | ~102 | NR | NR | NR | NR | Fibrous networks | NR |
18. | Nap-Phe-Leu-COOH (D2P20) [76] | ~0.92 | Water (pH 7.4) | NR | 101–102 | 101–102 | NR | NR | NR | NR | Nanoribbons | NR |
19. | Cbz-Phe-Leu-OH (D2P21) [76] | NA | Water (pH 7.4) | NA | NA | NA | NA | NA | NA | NA | Spherical aggregates | NR |
20. | Fmoc-Phe-Ser-COOH (D2P22) [76] | ~0.71 | Water (pH 7.4) | NR | 102–103 | ~102 | NR | NR | NR | NR | Interwoven fibrous network | NR |
21. | Nap-Phe-Ser-COOH (D2P23) [76] | ~1.74 | Water (pH 7.4) | NR | 101–102 | ~101 | NR | NR | NR | NR | Fibrous networks | NR |
22. | Cbz-Phe-Ser-COOH (D2P24) [76] | NA | Water (pH 7.4) | NA | NA | NA | NA | NA | NA | NA | Spherical aggregates | NR |
23. | Myr-Phe-Phe-COOH (D2P25) [80] | 0.05 | Water (pH 7.4) | 48 ± 4 | ~104 | ~103 | ~10−1 | 100–101 | 103–104 | 102–103 | Nanofiber networks | Biocompatibility |
24. | Myr-Trp-Phe-COOH (D2P26) [81] | 0.25 | Water (pH 7.46) | NR | ~103 | 102–103 | ~100 | ~101 | ~103 | 102–103 | Cross-linked nanofiber network | NR |
25. | Py-Lys-Cys-CONH2(D2P27) [40] | 1.0 | Tris buffer (pH 8) | 75 ± 0.5 | ~102 | 101–102 | NR | NR | NR | NR | Densely packed thin nanofibrous network | Enzyme entrapment |
26. | Azo-Lys-Cys-CONH2(D2P28) [82] | 1.15 | Water (pH 10) | 57 | 103–104 | 102–103 | ~102 | ~101 | 103–104 | 102–103 | Thin nanofibrous network | Dye removal |
27. | Fmoc-Lys(Fmoc)-Asp-COOH (D2P29) [83] | 0.002 | Water | NR | 102–103 | ~102 | ~10−1 | ~100 | 102–103 | ~102 | Entangled fibrous networks | NR |
28. | Fmoc-Phe-Leu-COOH (D2P30) [84] | 1.001 | PBS (pH ~8) | NR | ~104 | ~103 | NR | NR | NR | NR | A mixture of nanofibers and straight rods | Endoscopic submucosal dissection filler |
29. | Fmoc-Tyr-Leu-COOH (D2P31) [84] | 1.033 | PBS (pH ~8) | NR | ~104 | ~103 | NR | NR | NR | NR | Long nano fibrous networks | |
30. | Fmoc-Leu-Leu-COOH (D2P32) [84] | 0.933 | PBS (pH ~8) | NR | ~103 | 102–103 | NR | NR | NR | NR | Long nano fibrous networks | |
31. | Fmoc-Tyr-Leu-COOH (D2P33) [84] | 0.949 | PBS (pH ~8) | NR | ~103 | ~102 | NR | NR | NR | NR | Long nano fibrous networks | |
32. | Naproxen-Phe-Phe-COOH (D2P34) [85] | 0.5 | Water: DMSO (98:2, v/v) | 202 | ~104 | ~103 | NR | NR | NR | NR | Nanofibrous networks | NR |
33. | Py-Val-Val-COOMe(D2P35) [86] | 1.0 | PB: DMSO (90:10, v/v), pH 8 | NR | ~103 | 102–103 | 100–101 | 101–102 | ~103 | 102–103 | Entangled nanofibrous networks | NR |
34. | Py-Leu-Leu-COOMe(D2P36) [86] | 0.528 | PB: DMSO (90:10, v/v), pH 8 | NR | ~102 | 101–102 | NR | NR | NR | NR | Entangled nanofibrous networks | NR |
35. | Py-Phe-Phe-COOMe(D2P37) [86] | 0.298 | PB: DMSO (90:10, v/v) pH 8 | NR | ~103 | ~102 | 100–101 | 101–102 | ~103 | ~102 | Entangled nanofibrous networks | NR |
36. | Fmoc-Phe-Val-COOH (D2P38) [87] | 0.972 | Water (pH 7.4) | NR | 104–106 | 104–106 | NR | NR | NR | NR | Fibrous networks | 3D cell culture |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Cyclo[L-Glu(OFmoc)-L-Glu] (CDP-1) [105] | 0.4 | PBS: DMSO (5:1, v/v) | 161 | ~103 | ~102 | NR | NR | ~103 | ~102 | Tangled fibrous networks | NR |
2. | Cyclo[D-Glu(OFmoc)-D-Glu] (CDP-2) [105] | 0.4 | PBS: DMSO (5:1, v/v) | 160 | NR | NR | NR | NR | NR | NR | Tangled fibrous networks | NR |
3. | Cyclo-(Leu-Phe) (CDP-3) [108] | 0.2 | Water: DMSO (9:1, v/v) | NR | 104–105 | ~103 | ~101 | 101–102 | 104–105 | ~103 | Fibrous networks | NR |
4. | Cyclo-(Trp-Tyr) (CDP-4) [106] | 0.5 | Water | NR | ~104 | ~104 | ~101 | ~102 | ~104 | ~104 | Fibrous networks | NR |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Fmoc-Gly-Phe-Phe-COOH (T3P1) [111] | 0.1 | DMEM (pH 7.4) | NR | 103–104 | ~102 | ~100 | ~100 | 102–103 | 101–102 | Nanofibrous networks | 3D Cell Culture of Tumor Spheroids |
2. | PTZ-Gly-Phe-Phe-COOH (T3P2) [111] | 0.05 | DMEM (pH 7.4) | NR | 103–104 | 102–103 | ~101 | ~101 | ~103 | 102–103 | Nanofibrous networks | 3D Cell Culture of Tumor Spheroids |
3. | Py-PhePhe-Lys-CONH2 (T3P3) [57] | 1.8 | 1:1 Water:ACN | 51 | ~103 | ~102 | 100–101 | 101–102 | ~103 | ~102 | Tightly knitted fibrous networks | PA sensing |
4. | NH2-His-Ile-AUDA-COOMe (T3P4) [113] | 0.4 | PBS (pH 7.46) | 44 | ~104 | ~103 | ~101 | ~102 | ~104 | ~103 | Nanospheres | 3D Cell Culture of Fibroblasts |
5. | Fmoc-Phe-Phe-Cys-COOH (T3P5) [114] | 2.8 | Water (pH 11) | NR | 104–105 | 103–104 | ~102 | ~103 | 104–105 | 103–104 | Coiled and interlaced fibrous networks | Printable Hydrogels |
6. | Fmoc-His-DPhe-DPhe-CONH2 (T3P6) [115] | 1.0 | Water:DMSO (35:65, v/v) | NR | ~103 | 102–103 | ~102 | ~102 | ~103 | ~102 | Thin and long wavy threads/fibers | Bactericidal Activities |
7. | Fmoc-Arg-DPhe-DPhe-CONH2 (T3P7) [115] | 1.0 | Water:DMSO (35:65, v/v) | NR | ~104 | ~103 | 101–102 | 101–102 | 103–104 | 102–103 | Nanofiber/thread-like structures | Bactericidal Activities |
8. | BPAA-β-Ala-Phe-Phe-COOH (T3P8) [116] | 0.023 | PBS (pH 7) | NR | 103–104 | ~103 | 100–101 | ~101 | 103–104 | ~103 | Nanotubes | Cartilage tissue engineering |
9. | BPAA-Phe-Phe-β-Ala-COOH (T3P9) [116] | 0.023 | PBS (pH 7) | NR | 101–102 | 100–101 | NR | NR | NR | NR | Fibrous networks | Cartilage tissue engineering |
10. | BPAA-Phe-Phe-Ala-COOH (T3P10) [117] | 0.023 | Water (pH 7) | NR | ~104 | ~103 | 100–101 | 101–102 | ~104 | ~103 | Short nanoribbons | Tissue engineering |
11. | BPAA-Phe-Phe-Gly-COOH (T3P11) [117] | 0.002 | Water (pH 7) | NR | 102–103 | 101–102 | ~101 | 101–102 | ~103 | ~102 | Nanofibrous networks | Tissue engineering |
12. | BPAA-Phe-Gly-Phe-COOH (T3P12) [117] | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13. | BPAA-Gly-Phe-Phe COOH (T3P13) [117] | 0.002 | Water (pH 7) | NR | 103–104 | 102–103 | ~101 | 101–102 | 103–104 | 102–103 | Nanofibrous networks | Tissue engineering |
14. | BPAA-Ala-Phe-Phe-COOH (T3P14) [117] | 0.023 | Water (pH 7) | NR | ~104 | ~103 | ~101 | ~102 | ~104 | ~103 | Nanofibrous networks | Tissue engineering |
15. | BPAA-Phe-Ala-Phe-COOH (T3P15) [117] | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
16. | Boc-Ava-Phe-Phe-COOH (T3P16) [118] | PB pH 7.5 | 0.07 | 33 | 103–104 | 102–103 | ~101 | ~102 | 103–104 | 102–103 | Fibrillar networks | Anti-Inflammatory and Anti-bacterial activity |
17. | Boc-Ava-LPhe-DPhe-COOH (T3P17) [118] | PB pH 7.5 | 0.15 | 32 | ~103 | 102–103 | ~101 | ~101 | ~103 | 102–103 | Fibrillar networks | Anti-Inflammatory and Anti-bacterial activity |
18. | Boc-Ava-DPhe-LPhe-COOH (T3P18) [118] | PB pH 7.5 | 0.15 | 35 | 103–104 | ~103 | 101–102 | 100–101 | ~103 | ~103 | Fibrillar networks | Anti-Inflammatory and Anti-bacterial activity |
19. | Boc-Ava-DPhe-DPhe-COOH (T3P19) [118] | PB pH 7.5 | 0.08 | 34 | 104–105 | 103–104 | ~102 | ~103 | 104–105 | 103–104 | Fibrillar networks | Anti-Inflammatory and Anti-bacterial activity |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Nap-Gly-Phe-Phe-Tyr-COOH (T4P1) [122] | NR | PBS (pH 7.4) | NR | 101–102 | ~101 | NR | NR | NR | NR | Nanofibrillar structures | Vaccine Adjuvant |
2. | Nap-DGly-DPhe-DPhe-DTyr-COOH (T4P2) [122] | NR | PBS (pH 7.4) | NR | 101–102 | 100–101 | NR | NR | NR | NR | Nanofibrillar structures | Vaccine Adjuvant |
3. | Nap-Phe-Phe-Asp (GlCN)Tyr-COOH (T4P4) [123] | 0.6 | Water (pH 7.4) | NR | 101–102 | ~101 | 100–10−1 | ~100 | 101–102 | ~101 | Nanofibrous structures | Vascularization |
4. | Nap-His-His-Phe-Phe-COOH (T4P5) [124] | 0.5 | PBS (pH 8.5) | NR | 101–102 | 100–10−1 | 10−1–10−2 | 10−1–100 | 101–102 | 100–10−1 | Nanofibrous networks | In Vivo Boosts Immune Response |
5. | Ac-Phe-Phe-Lys-Cys-CONH2 (T4P6) [103] | 0.5 | Tris buffer (pH 8) | 69 | ~104 | ~103 | 101–102 | ~102 | ~104 | ~103 | Nanofibrous networks | 3D Cell Proliferation |
6. | Ac-Val-Val-Lys-Cys-CONH2 (T4P7) [103] | 0.5 | Tris buffer (pH 8) | 61 | 101–102 | ~101 | ~10−2 | ~10−1 | 101–102 | ~101 | Nanofibrous networks | 3D Cell Proliferation |
7. | Nap-Phe-Glu-Phe-Lys-COOH (T4P8) [125] | 1.51 | Water (pH 2) | NR | 102–103 | NR | NR | NR | NR | NR | Nanofibrous networks | NR |
1.13 | Water (pH 5) | NR | 103–104 | NR | NR | NR | NR | NR | Nanofibrous networks | NR | ||
0.75 | Water (pH 6) | NR | ~104 | NR | NR | NR | NR | NR | Nanofibrous networks | NR | ||
0.75 | Water (pH 7) | NR | ~104 | ~103 | 102–103 | 102–103 | ~104 | ~103 | Nanofibrous networks | NR | ||
0.75 | Water (pH 8) | NR | 104–105 | NR | NR | NR | NR | NR | Nanofibrous networks | NR | ||
1.51 | Water (pH 10) | NR | 103–104 | NR | NR | NR | NR | NR | Nanofibrous networks | NR | ||
1.88 | Water (pH 12) | NR | 103–104 | NR | NR | NR | NR | NR | Nanofibrous networks | NR | ||
8. | NH2-Lys-Leu-Ile-Ile-COOH (T4P9) [126] | NA | Water | NA | NA | NA | NA | NA | NA | NA | NA | NA |
9. | NH2-Lys-Leu-Ile-Ile-COOH (T4P10) [126] | 0.5% | Water | NR | ~3 × 104 | ~9 × 103 | NR | NR | NR | NR | NR | Antibacterial activity |
10. | NH2-Lys-Leu-Ile-Ile-COOH (T4P11) [126] | NA | Water | NA | NA | NA | NA | NA | NA | NA | NA | NA |
11. | Ca-Lys-Leu-Ile-Ile-COOH (T4P12) [126] | NA | Water | NR | NA | NA | NA | NA | NA | NA | NA | NA |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress) | Moduli (After Mechanical Stress) | Moduli (Stress-Free Conditions) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Fmoc-Arg-Gly-Asp-Ser-COOH(T4P13) [138]/ | 2.5 | Water | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Fmoc-Arg-Gly-Asp-Ser-COOH (T4P14) [138] | 0.25 | NR | NR | NR | ~10−2 | NR | 100–101 | NR | Cross-linked Fibrous network | Payloads release | ||
2. | Nap-Gly-Phe-Phe-Tyr (H2PO3)-OH/ SF [149] | 0.08 0.1 | Water (pH 7.4) | NR | 103–104 | ~103 | ~101 | ~102 | 103–104 | 102–103 | Entangled nanofibrous networks | Bone regeneration |
3. | Py-Phe-Phe-Lys-CONH2 (T3P3)/ NDTA [5] | 1.0 | Water | ∼64 | 103–104 | 102–103 | ~100 | ~101 | ~104 | 102–103 | Sheetlike structures | NR |
4. | Cbz-Phe-Leu-COOH/ Lipase 1 [17] | 2.06 | Water (pH 7.4) | NR | 103–104 | ~103 | ~102 | ~102 | 103–104 | 102–103 | Nanofibrous networks | NR |
Cbz-Phe-Leu-COOH/Lipase 2 [17] | 2.06 | Water (pH 7.4) | NR | ~104 | ~103 | ~102 | ~102 | ~104 | ~103 | Nanofibrous networks | NR | |
Cbz-Phe-Leu-COOH/Thermolysin [17] | 2.06 | Water (pH 7.4) | NR | 103–104 | 102–103 | ~102 | ~102 | 103–104 | 102–103 | Nanofibrous networks | NR | |
5. | Cbz-Phe-Val-COOH/ Lipase 1 [17] | 3.19 | Water (pH 7.4) | NR | ~103 | ~102 | NR | NR | NR | NR | Nanofibrous networks | NR |
Cbz-Phe-Val-COOH /Lipase 2 [17] | 3.19 | Water (pH 7.4 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Cbz-Phe-Val-COOH/Thermolysin [17] | 3.98 | Water (pH 7.4 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
6. | Cbz-Phe-Ile-COOH/ Lipase 1 [17] | 4.26 | Water (pH 7.4) | NR | 102–103 | 101–102 | NR | NR | NR | NR | Nanofibrous networks | NR |
Cbz-Phe-Ile-COOH/ Lipase 2 [17] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Cbz-Phe-Ile-COOH/ Thermolysin [17] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
7. | Cbz-Phe-Tyr-COOH/ Lipase 1 [17] | 3.7 | Water (pH 7.4) | NR | ~103 | ~102 | NR | NR | NR | NR | Nanofibrous networks | NR |
Cbz-Phe-Tyr-COOH Lipase 2 [17] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Cbz-Phe-Tyr-COOH/Thermolysin [17] | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
8. | NH2-Leu-Phe-COOH/ N-Form-Met-Leu-Phe-COOH [150] | 1 0.25 | Sodium acetate buffer (pH 7.4) | NR | ~200 | 0–50 | ~1 | ~1 | ~200 | 0–50 | Nanofibrous networks | Wound dressing |
9. | Amoc-Phe-Phe-COOH/β-CD [151] | 20 mM | Water (pH 7.4) | NR | ~102 | 101–102 | 100–102 | ~101 | ~102 | 101–102 | Entangled fibrillar networks | Wound healing |
SL No. | Peptide Sequence | MGC (wt%) | Gelation Media | Tgel (°C) | Moduli (Before Mechanical Stress, Pa) | Moduli (After Mechanical Stress, Pa) | Moduli (Stress-Free Conditions, Pa) | Morphology | Application | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′ | G″ | G′ | G″ | G′ | G″ | |||||||
1. | Fmoc-Phe-Phe-COOH/PLL-SH | 0.4 | Na2B4O7-EDTA buffer | NR | ~103 | ~102 | ~101 | ~101 | ~103 | ~102 | Nanofibrous networks | Antitumor Immune Response |
2. | Fmoc-Phe-Phe-COOH/PLL | 0.4 | Tris-HCl buffer (pH 7.8) | NR | ~103 | ~102 | ~101 | ~101 | ~102 | ~101 | Nanofibrous networks | Antitumor Photodynamic Therapy |
3. | Fmoc-Phe-Phe-COOH/C60-PTC | 0.4 | Water | NR | ~104 | ~103 | NR | NR | ~104 | ~103 | Nanofibrous Networks and dispersed nanoparticles | Antibacterial therapy |
4. | Fmoc-Phe-Phe-COOH/Aniline | 0.5 | Water | NR | ~106 | ~105 | ~102 | ~104 | ~106 | ~105 | Fibrous networks | Pressure Sensor and Electrogenic Cell Soft Substrate |
5. | Fmoc-Arg-Gly-Asp-COOH/Chitosan | 1.0 | Water | NR | ~104 | ~103 | ~101 | ~101 | ~104 | ~103 | Nanofibrous networks | Antibacterial activity |
6. | Boc-D-Phe-γ4-L-Phe-PEA/Chitosan | 1.0 | Water:DMSO (50:50, v/v) | NR | 104–105 | 103–104 | 102–103 | ~102 | ~104 | ~103 | Porous networks with lettuce-like morphology | Antibacterial activity |
7. | Boc-L-Phe-γ4-L-Phe-PEA/Chitosan | 1.0 | Water:DMSO (50:50, v/v) | NR | ~104 | ~103 | ~102 | ~102 | ~104 | ~103 | Porous networks with lettuce-like morphology | Antibacterial activity |
8. | Fmoc-Phe-COOH/Dextran | 0.6 | PBS (pH 7.4) | NR | ~103 | 102–103 | ~101 | ~101 | 103–104 | ~103 | Fibrous networks | NR |
9. | Py-Lys-Cys-CONH2/Alg | 1.0 | Tris-buffer (pH 8.0) | 80 | ~103 | 102–103 | ~100 | ~101 | ~103 | 102–103 | Bundle-like morphology | Osteogenesis |
10. | Py-Lys-Cys-CONH2/Chitosan | 1.0 | Tris-buffer (pH 8.0) | 72 | ~102 | ~102 | ~101 | 101–102 | ~102 | ~102 | Entangled fibrillar networks | Osteogenesis |
11. | Py-Lys-Cys-CONH2/Gelatin | 1.0 | Tris-buffer (pH 8.0) | ~90 | 103–104 | ~103 | 100–10−1 | ~101 | 103–104 | ~103 | Bundle-like morphology | Osteogenesis |
12. | Py-Lys-Cys-CONH2/HA | 1.0 | Tris-buffer (pH 8.0) | ~90 | ~104 | ~103 | ~100 | ~101 | ~104 | ~103 | Brick-like structures | Osteogenesis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramanik, B. Short Peptide-Based Smart Thixotropic Hydrogels. Gels 2022, 8, 569. https://doi.org/10.3390/gels8090569
Pramanik B. Short Peptide-Based Smart Thixotropic Hydrogels. Gels. 2022; 8(9):569. https://doi.org/10.3390/gels8090569
Chicago/Turabian StylePramanik, Bapan. 2022. "Short Peptide-Based Smart Thixotropic Hydrogels" Gels 8, no. 9: 569. https://doi.org/10.3390/gels8090569
APA StylePramanik, B. (2022). Short Peptide-Based Smart Thixotropic Hydrogels. Gels, 8(9), 569. https://doi.org/10.3390/gels8090569