An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Analysis
2.2. FTIR Analysis
2.3. XRD Analysis
2.4. XPS Analysis
2.5. TGA Explanation
2.6. FESEM Assessment
2.7. Adsorption of Pb(II) by MXTP
2.8. Comparison of the Results
2.9. Desorption of Pb(II) from Pb(II)-MXTP and Reusability Studies of MXTP
2.10. Capacitance Studies from CV Experiments
2.11. Conductance of MXTP and Pb(II)-MXTP
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of MXene-Grafted Terpolymer Hydrogel
4.2.1. Synthesis of Mxene from MAX
4.2.2. Synthesis of TP and MXTP
4.3. Characterization
4.4. Estimation of pH at Point of Zero Charge (pHPZC)
4.5. Adsorption Methodology
4.6. Electrochemical Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singha, N.R.; Karmakar, M.; Mahapatra, M.; Mondal, H.; Dutta, A.; Roy, C.; Chattopadhyay, P.K. Systematic Synthesis of Pectin-g-(Sodium Acrylate-co-N-Isopropylacrylamide) Interpenetrating Polymer Network for Superadsorption of Dyes/M(II): Determination of Physicochemical Changes in Loaded Hydrogels. Polym. Chem. 2017, 8, 3211–3237. [Google Scholar] [CrossRef]
- Karmakar, M.; Mondal, H.; Ghosh, T.; Chattopadhyay, P.K.; Maiti, D.K.; Singha, N.R. Chitosan-Grafted Tetrapolymer Using Two Monomers: pH-Responsive High-Performance Removals of Cu(II), Cd(II), Pb(II), Dichromate, and Biphosphate and Analyses of Adsorbed Microstructures. Environ. Res. 2019, 179, 108839. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjumf, M.Z. Lead Toxicity in Plants: Impacts and Remediation. J. Environ. Manag. 2019, 250, 109557. [Google Scholar] [CrossRef]
- Usman, K.; Abu-Dieyeh, M.H.; Zouari, N.; Al-Ghouti, M.A. Lead (Pb) Bioaccumulation and Antioxidative Responses in Tetraena Qataranse. Sci. Rep. 2020, 10, 17070. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; et al. Bioaccumulation of Lead (Pb) and its Effects in Plants: A Review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Karmakar, M.; Mondal, H.; Mahapatra, M.; Chattopadhyay, P.K.; Chatterjee, S.; Singha, N.R. Pectin-Grafted Terpolymer Superadsorbent via N–H Activated Strategic Protrusion of Monomer for Removals of Cd(II), Hg(II), and Pb(II). Carbohydr. Polym. 2019, 206, 778–791. [Google Scholar] [CrossRef]
- Singh, N.B.; Susan, A.B.H. Polymer Nanocomposites for Water Treatments. In Polymer-Based Nanocomposites for Energy and Environmental Applications, 1st ed.; Jawaid, M.H., Khan, M.M., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2018; Volume 21, pp. 569–595. [Google Scholar]
- Ahmadun, F.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of Technologies for Oil and Gas Produced Water Treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar]
- Mondal, H.; Karmakar, M.; Dutta, A.; Mahapatra, M.; Deb, M.; Mitra, M.; Roy, J.S.D.; Roy, C.; Chattopadhyay, P.K.; Singha, N.R. Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N-H/C-H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions. ACS Omega 2018, 3, 10692–10708. [Google Scholar] [CrossRef]
- Mondal, H.; Karmakar, M.; Chattopadhyay, P.K.; Singha, N.R. New Property-Performance Optimization of Scalable Alginate-g-Terpolymer for Ce(IV), Mo(VI), and W(VI) Exclusions. Carbohydr. Polym. 2020, 245, 116370. [Google Scholar] [CrossRef]
- Mondal, H.; Karmakar, M.; Chattopadhyay, P.K.; Halder, A.; Singha, N.R. Scale-up One-Pot Synthesis of Waste Collagen and Apple Pomace Pectin Incorporated Pentapolymer Biocomposites: Roles of Waste Collagen for Elevations of Properties and Unary/ Ternary Removals of Ti(IV), As(V), and V(V). J. Hazard. Mater. 2021, 409, 124873. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Xu, X.; Su, Y.; Yue, Q.; Gao, B. Characterization, Swelling and Slow-Release Properties of a New Controlled Release Fertilizer Based on Wheat Straw Cellulose Hydrogel. J. Taiwan Inst. Chem. Eng. 2016, 60, 564–572. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, A. Superadsorbent with Three-Dimensional Networks: From Bulk Hydrogel to Granular Hydrogel. Eur. Polym. J. 2015, 72, 661–686. [Google Scholar] [CrossRef]
- Arkaban, H.; Barani, M.; Akbarizadeh, M.R.; Pal Singh Chauhan, N.; Jadoun, S.; Dehghani Soltani, M.; Zarrintaj, P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Pavlinec, J.; Novák, I.; Rychlý, J.; Kleinová, A.; Nógellová, Z.; Pret’o, J.; Vanko, V.; Žigo, O.; Chodák, I. Hot Melt Adhesives Prepared by Grafting of Acrylic and Crotonic Acids onto Metallocene Ethylene-Octene Copolymers. J. Plast. Film Sheeting 2019, 35, 239–259. [Google Scholar] [CrossRef]
- Dashtizadeh, A.; Abdouss, M.; Khorassani, M.; Mahdavi, H. Preparation of Silica-Filled Water-Based Acrylic Nanocomposite Paints with Improved Scratch Resistance. J. Plast. Film Sheeting 2012, 28, 120–135. [Google Scholar] [CrossRef]
- Mori, H.; Müller, A.H.; Klee, J.E. Intelligent Colloidal Hybrids via Reversible pH-Induced Complexation of Polyelectrolyte and Silica Nanoparticles. J. Am. Chem. Soc. 2003, 125, 3712–3713. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, J.; Bhattacharjee, S.; Wijeratne, S.; Bruening, M.L.; Baker, G.L. Increased Protein Sorption in Poly(Acrylic Acid)-Containing Films Through Incorporation of Comb-Like Polymers and Film Adsorption at Low pH and High Ionic Strength. Langmuir 2013, 29, 2946–2954. [Google Scholar] [CrossRef]
- Mondal, H.; Karmakar, M.; Ghosh, N.N.; Maiti, D.K.; Chattopadhyay, P.K.; Singha, N.R. One-Pot Synthesis of Sodium Alginate-Grafted-Terpolymer Hydrogel for As(III) and V(V) Removal: In Situ Anchored Comonomer and DFT Studies on Structures. J. Environ. Manag. 2021, 294, 112932. [Google Scholar] [CrossRef]
- Mondal, H.; Karmakar, M.; Chattopadhyay, P.K.; Singha, N.R. Synthesis of PH-Responsive Sodium Alginate-g-Tetrapolymers via N–C and O–C Coupled in Situ Monomers: A Reusable Optimum Hydrogel for Removal of Plant Stressors. J. Mol. Liq. 2020, 319, 114097. [Google Scholar] [CrossRef]
- Idumah, C.I. Recent Trends in MXene Polymeric Hydrogel Bionanoarchitectures and Applications. Clean. Mater. 2022, 5, 100103. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Xiao, X. Intedrcalation in Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) Toward Electrochemical Capacitor and Beyond. Energy Environ. Sci. 2020, 3, 306–322. [Google Scholar]
- Han, M.; Liu, Y.; Rakhmanov, R.; Israel, C.; Tajin, M.A.S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K.R.; Gogotsi, Y. Solution-Processed Ti3C2Tx MXene Antennas for Radio-Frequency Communication. Adv. Mater. 2020, 33, 2003225–2003231. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2Tx MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef]
- Li, S.; Yu, Z.; Guo, B.; Guo, K.; Li, Y.; Gong, L.; Zhao, L.; Bae, J.; Tang, L. Environmentally Stable, Mechanically Flexible, Self-Adhesive, and Electrically Conductive Ti3C2Tx MXene Hydrogels for Wide-Temperature Strain Sensing. Nano Energy 2021, 90, 106502. [Google Scholar] [CrossRef]
- Zhang, Y.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene Hydrogels: Fundamentals and Applications. Chem. Soc. Rev. 2020, 49, 7229–7251. [Google Scholar] [CrossRef] [PubMed]
- Damiri, F.; Rahman, M.H.; Zehravi, M.; Awaji, A.A.; Nasrullah, M.Z.; Gad, H.A.; Bani-Fwaz, M.Z.; Varma, R.S.; Germoush, M.O.; Al-malky, H.S.; et al. MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. Materials 2022, 15, 1666. [Google Scholar] [CrossRef] [PubMed]
- Rafieerad, A.; Sequiera, G.L.; Yan, W.; Kaur, P.; Amiri, A.; Dhingra, S. Sweet-MXene Hydrogel with Mixed-Dimensional Components for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2020, 101, 103440. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Li, Y.; Lan, J.; Yan, B.; Shi, L.; Ran, R. High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Appl. Mater. Interfaces 2019, 11, 47350–47357. [Google Scholar] [CrossRef]
- Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv. Func. Mater. 2019, 29, 1904507. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, X.; Li, P.; Zhao, Y.; Niu, Q.J. Fabrication of Novel MXene (Ti3C2)/Polyacrylamide Nanocomposite Hydrogels with Enhanced Mechanical and Drug Release Properties. Soft Matter 2020, 16, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Singha, N.R.; Karmakar, M.; Mahapatra, M.; Mondal, H.; Dutta, A.; Deb, M.; Mitra, M.; Roy, C.; Chattopadhyay, P.K. An In Situ Approach for the Synthesis of a Gum Ghatti-g-Interpenetrating Terpolymer Network Hydrogel for the High-Performance Adsorption Mechanism Evaluation of Cd(II), Pb(II), Bi(III) and Sb(III). J. Mater. Chem. A 2018, 6, 8078–8100. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Tallapragada, R.M.; Branton, A.; Trivedi, D.; Nayak, G.; Latiyal, O.; Jana, S. Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment. J. Aeronaut. Aerospace Eng. 2015, 4, 1. [Google Scholar] [CrossRef]
- Huang, X.; Mu, W.; Chang, C. Two-dimensional Ti3C2 MXene-derived Ti3C2-Ti2C-TiO2 materials for improved diclofenac sodium adsorption performance. Environmental Science and Pollution Research. Environ. Sci. Pollut. Res. 2023, 30, 52157–52168. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons Ltd.: Sussex, UK, 2001; pp. 50–134. [Google Scholar]
- Mahmood, M.; Rasheed, A.; Ayman, I.; Rasheed, T.; Munir, S.; Ajmal, S.; Agboola, P.O.; Warsi, M.F.; Shahid, M. Synthesis of Ultrathin MnO2 Nanowire-Intercalated 2D-MXenes for High-Performance Hybrid Supercapacitors. Energy Fuels 2021, 35, 3469–3478. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Petrus, M.; Lachowski, A.; Pawlak, W.; Adamczyk-Cieślak, B.; Jastrzębska, A.; Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; et al. Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phase. Materials 2021, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Sangu, S.S.; Illias, N.M.; Ong, C.C.; Gopinath, S.C.B.; Saheed, M.S.M. MXene-Based Aptasensor: Characterization and High-Performance Voltammetry Detection of Deoxynivalenol. Bionanoscience 2021, 11, 314–323. [Google Scholar] [CrossRef]
- Singha, N.R.; Mahapatra, M.; Karmakar, M.; Dutta, A.; Mondal, H.; Chattopadhyay, P.K. Synthesis of Guar Gum-g-(Acrylic Acid-co-Acrylamide-co-3-Acrylamido Propanoic Acid) IPN via In Situ Attachment of Acrylamido Propanoic Acid for Analyzing Superadsorption Mechanism of Pb(II)/Cd(II)/Cu(II)/MB/MV. Polym. Chem. 2017, 8, 6750–6777. [Google Scholar] [CrossRef]
- Fang, H.; Pan, Y.; Yin, M.; Pan, C. Enhanced Visible Light Photocatalytic Activity of CdS with Alkalized Ti3C2 Nano-Sheets as Co-Catalyst for Degradation of Rhodamine B. J. Mater. Sci. Mater. Electron 2019, 30, 14954–14966. [Google Scholar] [CrossRef]
- Näslund, L.; Persson, P.O.Å.; Rosen, J. X-ray Photoelectron Spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in MAX-Phase Materials. J. Phys. Chem. C 2020, 124, 27732–27742. [Google Scholar] [CrossRef]
- Roy, A.; Mukhopadhyay, A.K.; Das, S.C.; Bhattacharjee, G.; Majumdar, A.; Hippler, R. Surface Stoichiometry and Optical Properties of Cux–TiyCz Thin Films Deposited by Magnetron Sputtering. Coatings 2019, 9, 551. [Google Scholar] [CrossRef]
- Minale, M.; Gu, Z.; Guadie, A.; Li, Y.; Wang, Y.; Meng, Y.; Wang, X. Hydrous Manganese Dioxide Modified Poly(Sodium Acrylate) Hydrogel Composite as A Novel Adsorbent for Enhanced Removal of Tetracycline and Lead from Water. Chemosphere 2021, 272, 129902. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.R.; Beamson, G.; Blomfield, C.J.; Leggett, G.; Duc, T.M. Interaction of Carboxylic Acids with the Oxyhydroxide Surface of Aluminium: Poly(Acrylic Acid), Acetic Acid and Propionic Acid on Pseudoboehmite. J. Electron Spectrosc. Relat. Phenom. 2001, 121, 19–32. [Google Scholar] [CrossRef]
- He, S.; Zhang, F.; Cheng, S.; Wang, W. Synthesis of Sodium Acrylate and Acrylamide Copolymer/GO Hydrogels and Their Effective Adsorption for Pb2+ and Cd2+. ACS Sustain. Chem. Eng. 2016, 4, 3948–3959. [Google Scholar] [CrossRef]
- Yang, W.; Huang, B.; Li, L.; Zhang, K.; Li, Y.; Huang, J.; Tang, X.; Hu, T.; Yuan, K.; Chen, Y. Covalently Sandwiching MXene by Conjugated Microporous Polymers with Excellent Stability for Supercapacitors. Small Methods 2020, 4, 2000434. [Google Scholar] [CrossRef]
- Bekiari, V.; Lianos, P. Poly (Sodium Acrylate) Hydrogels as Potential pH-Sensitive Sorbents for the Removal of Model Organic and Inorganic Pollutants from Water. Glob. Nest J. 2010, 12, 262–269. [Google Scholar]
- Rittikulsittichai, S.; Kolhatkar, A.G.; Sarangi, S.; Vorontsova, M.A.; Vekilov, P.G.; Brazdeikis, A.; Lee, T.R. Multi-Responsive Hybrid Particles: Thermo-, pH-, Photo-, and Magneto-Responsive Magnetic Hydrogel Cores with Gold Nanorod Optical Triggers. Nanoscale 2016, 8, 11851–11861. [Google Scholar] [CrossRef]
- Tai, Z.; Yang, J.; Qi, Y.; Yan, X.; Xue, Q. Synthesis of a Graphene Oxide–Polyacrylic Acid Nanocomposite Hydrogel and its Swelling and Electroresponsive Properties. RSC Adv. 2013, 3, 12751. [Google Scholar] [CrossRef]
- Martínez-Casado, F.J.; Ramos-Riesco, M.; Rodríguez-Cheda, J.A.; Cucinotta, F.; Matesanz, E.; Miletto, I.; Gianotti, E.; Marchese, L.; Matěj, Z. Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence. Inorg. Chem. 2016, 55, 8576–8586. [Google Scholar] [CrossRef]
- Sajadi, S.A.A.; Alamolhoda, A.A.; Hashemian, S.J. Thermal Behavior of Alkaline Lead Acetate, A Study of Thermogravimetry and Differential Scanning Calorimetry. Sci. Iran 2008, 15, 435–439. [Google Scholar]
- Thirumavalavan, M.; Lai, Y.; Lin, L.; Lee, J. Cellulose-Based Native and Surface Modified Fruit Peels for the Adsorption of Heavy Metal Ions from Aqueous Solution: Langmuir Adsorption Isotherms. J. Chem. Eng. Data 2010, 55, 1186–1192. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Immobilization of Pb(II), Cd(II) and Ni(II) Ions on Kaolinite and Montmorillonite Surfaces from Aqueous Medium. J. Environ. Manag. 2008, 87, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Harahsheh, M.; Shawabkeh, R.; Al-Harahsheh, A.; Tarawneh, K.; Batiha, M.M. Surface Modification and Characterization of Jordanian Kaolinite: Application for Lead Removal from Aqueous Solutions. Appl. Surf. Sci. 2009, 255, 8098–8103. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Simultaneous Adsorption of Cd, Cr, Cu, Pb, and Zn by an Iron-Coated Australian Zeolite in Batch and Fixed-Bed Column Studies. Chem. Eng. J. 2015, 270, 393–404. [Google Scholar] [CrossRef]
- Saha, B.; Chakraborty, S.; Das, G. A Rational Approach for Controlled Adsorption of Metal Ions on Bovine Serum Albumin-Malachite Bionanocomposite. J. Phys. Chem. C 2010, 114, 9817–9825. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.; Zeng, G.; Huang, B.; Dong, H.; Huang, J.; Yang, Z.; Wei, J.; Hu, L.; Zhang, Q. Phase Transformation of Crystalline Iron Oxides and Their Adsorption Abilities for Pb and Cd. Chem. Eng. J. 2016, 284, 247–259. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef]
- Rao, S.S.; Kanaka Durga, I.; Naresh, B.; Jin-Soo, B.; Krishna, T.N.V.; In-Ho, C.; Ahn, J.-W.; Kim, H.-J. One-Pot Hydrothermal Synthesis of Novel Cu-MnS with PVP Cabbage-Like Nanostructures for High-Performance Supercapacitors. Energies 2018, 11, 1590. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, L.; Li, C.; Yan, C.; Lee, P.S.; Ma, J. High-Rate Electrochemical Capacitors from Highly Graphitic Carbon–Tipped Manganese Oxide/Mesoporous Carbon/ Manganese Oxide Hybrid Nanowires. Energy Environ. Sci. 2011, 4, 1813–1819. [Google Scholar] [CrossRef]
- Gupta, H.; Chakrabarti, S.; Mothkuri, S.; Padya, B.; Rao, T.N.; Jain, P.K. High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 2020, 26, 20–24. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
Peaks (cm−1) | Explanation | ||||
---|---|---|---|---|---|
MAX | MXene | TP | MXTP | Pb(II)-MXTP | |
Absent | 3455 | 3340/3193 | 3442–3108 (br) | 3341/3185 | Hydrogen-bonded O–H str. (originated from terminal O–H and –COOH in MXene and TP/MXTP/Pb(II)-MXTP, respectively [33,35,36,39] |
Absent | 2970 | 2947 | 2946 | 2941 | C–H str. [10,11] |
Absent | Absent | 1703 | 1675 | 1685 | Hydrogen-bonded >C=O str. of –COOH, shifting indicated the presence of coordinate bonding with Ti(IV) of MXene [1,36,40] |
Absent | Absent | 1554 | 1540 | 1535 | >C=O asym. str. of –COO− [10,11,19,36] |
Absent | Absent | 1396 | 1390 | 1396 | –CH2– def. band of –CH2–CO–O– group of ester [36] |
Absent | 1350 | Absent | 1330/1037 | 1332 | C–F band (formed in MXene due to F− terminal group) [36,37] |
Absent | Absent | 1186 | 1182 | 1188 | C–O–C asym. str. (Proof of O–C coupled grafting of third comonomer) [19,36] |
Absent | Absent | 1111 | 1081 | 1080 | C–O–C sym. str. (Proof of O–C coupled grafting of third comonomer) [36] |
Absent | 528 | Absent | 525 | 525 | Ti–O band (formed in MXene due to –OH terminal group) [37,38] |
497/420 | Absent | Absent | Absent | Absent | Al–C [34] |
463 | 463 | Absent | 463 | 465 | Ti–C [34] |
Orbitals | BEs (eV) | Assignment | Explanation | ||
---|---|---|---|---|---|
MXene | MXTP | Pb(II)-MXTP | |||
C1s | NP * | 283.99 | 283.83 | Carbide from Mxene [43] | After Pb(II) adsorption, all the saturated carbon moieties appeared at an intermediate BE. |
NP | 284.48 | 284.61 | –CH2–/–CH< [40,44] | ||
NP | 285.60 | 285.91 | C–O–C [11,20] | Shifting by +0.31 eV indicated the involvement of oxygen atom in coordinate bonding with Pb(II) | |
NP | 287.38 | 287.53 | –COOH/–COO−[6,40,45,46] | Shifting by +0.15 eV indicated the involvement of oxygen atom in coordinate bonding with Pb(II) | |
O1s | NP | 530.36 | Absent | –C=(O)–OH [9] | Because of deprotonation at pH > pHPZC, the population of –COOH would be negligible |
NP | 531.09 | 532.37 | –COO− [11,45] | Shifting by +1.28 eV after Pb(II) adsorption indicated strong coordinate bonding of Pb(II) with –COO− of MXTP | |
NP | 532.06/532.88 | 534.83 | –OH termination group of Mxene [47]/–C=(O)–OH [11,48,49] | Since Pb(II) adsorption was carried out at pH > pHPZC, all –OH became deprotonated. Therefore, shifting by +2.77 and +1.95 eV inferred coordinate bonding of Pb(II) with –O− of both polymer and MXene terminal –OH. | |
Ti2p3/2/ Ti2p1/2 | 453.65/459.69 | 450.91/455.93 | NP | Ti–C–To [42] | –OH termination group, Strong coordinate bonding with –COO− of TP |
454.91/460.95 | 451.89/458.08 | NP | Ti–C–To,F [42] | F− termination group | |
457.76/463.48 | – | NP | Ti–C–To [42] | –OH termination group | |
Pb4f | – | – | 138.25/139.66 | Pb4f7/2 [1,6] | Shifting by −1.05/+0.36 and −0.64/+0.55 eV from 139.30 and 143.80 eV for Pb 4f7/2 and Pb 4f5/2, respectively, of Pb(NO3)2 indicate stronger coordinate bonding/weaker ion-exchange-type interactions within –COO− of MXTP and Pb(II) |
– | – | 143.16/144.35 | Pb4f5/2 [1,6] |
Temperature (K) | ||||
---|---|---|---|---|
Model/Parameters | 298 | 303 | 308 | 313 |
Langmuir (adsorption isotherm parameters) | ||||
qmax (mg g−1)/pHi/C0 (mg L−1) | 175.36/7/10–100 | 162.44/7/10–100 | 154.21/7/10–100 | 145.41/7/10–100 |
kL (L mg−1) | 0.2951 | 0.2145 | 0.1632 | 0.1688 |
R2/F | 0.9981/4632.99 | 0.9976/4082.77 | 0.9937/1554.25 | 0.9996/23,505.24 |
χ2 | 8.1245 | 7.8969 | 18.1518 | 1.1116 |
Pseudo-second-order (adsorption kinetics parameters) | ||||
qe,cal (mg g−1)/pHi/C0 (mg L−1) | 166.69/7/100 | 151.69/7/100 | 137.04/7/100 | 131.29/7/100 |
qe,exp (mg g−1) | 160.46 ± 4.82 | 148.44 ± 4.31 | 138.61 ± 4.29 | 129.56 ± 4.16 |
k2 (g mg−1 min−1) | 3.81 × 10−4 | 6.18 × 10−4 | 10.50 × 10−4 | 13.31 × 10−4 |
R2/F | 0.9883/5501.01 | 0.9841/4329.76 | 0.9829/3258.39 | 0.9981/55,434.29 |
χ2 | 2.5779 | 2.8968 | 3.2276 | 1.6262 |
Concentration (ppm)/Temperature (K) | −ΔG0 (kJ mol−1) | −ΔH0 (kJ mol−1) | −ΔS0 (J mol−1 K−1) |
---|---|---|---|
5/298 | 9.68 | 47.07 | 125.46 |
5/303 | 9.05 | ||
5/308 | 8.43 | ||
5/313 | 7.79 | ||
10/298 | 8.72 | 36.51 | 93.45 |
10/303 | 8.22 | ||
10/308 | 7.77 | ||
10/313 | 7.3 | ||
15/298 | 7.82 | 45.38 | 126.04 |
15/303 | 7.19 | ||
15/308 | 6.56 | ||
15/313 | 5.93 | ||
20/298 | 6.39 | 43.86 | 125.79 |
20/303 | 5.77 | ||
20/308 | 5.14 | ||
20/313 | 4.51 | ||
25/298 | 4.84 | 32.05 | 91.29 |
25/303 | 4.39 | ||
25/308 | 3.93 | ||
25/313 | 3.48 | ||
30/298 | 3.69 | 26.26 | 75.74 |
30/303 | 3.32 | ||
30/308 | 2.94 | ||
30/313 | 2.56 |
Adsorbate | Name of Adsorbents | Adsorption Capacities (mg g−1) /pHo/C0 (ppm)/Temperatures (K) | Reference |
---|---|---|---|
Pb(II) | IPNS a | 54.86/7.00/5–30/303 | [1] |
Bare malachite nanoparticle | 7.20/5.0–6.0/10–100/– | [53] | |
Kaolinite | 11.50/5.7/10–50/303 | [54] | |
Montmorillonite | 31.10/5.7/10–50/303 | [54] | |
Jordanian kaolinite | 13.32/5.0/50–400/295 | [55] | |
GGAAAMAPA b | 41.98/7.00/5–25/303 | [40] | |
ICZ c | 2.28/6.5/50/298 | [56] | |
APAN d | 60.60/4.0/40–1000/303 | [57] | |
Fe3O4 e | 22.83/5 ± 0.2/20/303 | [58] | |
Lemon peel | 37.87/5.0/100–300/301 | [59] | |
MXTP f | 175.36/7.00/10–100/298 | PS ^ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, H.; Karmakar, M.; Datta, B. An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel. Gels 2023, 9, 827. https://doi.org/10.3390/gels9100827
Mondal H, Karmakar M, Datta B. An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel. Gels. 2023; 9(10):827. https://doi.org/10.3390/gels9100827
Chicago/Turabian StyleMondal, Himarati, Mrinmoy Karmakar, and Bhaskar Datta. 2023. "An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel" Gels 9, no. 10: 827. https://doi.org/10.3390/gels9100827
APA StyleMondal, H., Karmakar, M., & Datta, B. (2023). An MXene-Grafted Terpolymer Hydrogel for Adsorptive Immobilization of Toxic Pb(II) and Post-Adsorption Application of Metal Ion Hydrogel. Gels, 9(10), 827. https://doi.org/10.3390/gels9100827