Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field
Abstract
:1. Introduction
2. The Preparation and Application of Hydrogel Based on α-CD Cross-Linking Agent
3. The Preparation and Application of Hydrogel Based on β-CD Cross-Linking Agent
4. The Preparation and Application of Hydrogel Based on γ-CD Cross-Linking Agent
5. Conclusions and Outlook
- (1)
- The conventional hydrogel has poor deformability due to the fixed cross-linking points, which limits the application of gel materials. However, polyrotaxane cross-linking agents with a “slide ring” structure can overcome the disadvantage and show high deformability and high recovery properties, which can effectively expand the application fields of gel materials.
- (2)
- At present, the preparation methods of polyrotaxane cross-linking agents based on α-CD are more mature than β-CD and γ-CD. However, some factors also limit the use of the cross-linking agent. On the one hand, the expensive price of α-CD limits its application, so the cheaper β-CD has become a potential material for development. On the other hand, it is necessary to find a convenient and simple method to prepare polyrotaxane cross-linking agent to avoid the cumbersome preparation process. Furthermore, some CD may fall out from the long-chain molecule during the preparation process, which may affect the properties of the hydrogel.
- (3)
- The single chain of the guest molecule passes through the cavity of α-CD or β-CD, whereas the situation that two chains pass through the cavity may occur in γ-CD. The difference makes γ-CD polyrotaxane cross-linking agents have some special preparation methods and properties.
- (4)
- Due to the unique structures of CD polyrotaxane cross-linking agents, researchers should actively seek effective and low-cost synthesis methods and explore the application. In the future, the development and application of CD polyrotaxane cross-linking agents will be more diversified and in-depth.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular coordination: Self-assembly of finite two-and three-dimensional ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef] [PubMed]
- Tahara, K.; Lei, S.; Adisoejoso, J.; Feyter, S.; Tobe, Y. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene–ethynylene macrocycles via van der Waals interaction. Chem. Comm. 2010, 46, 8507–8525. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Meng, Z.; Ma, Y.; Chen, C. Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc. Chem. Res. 2014, 47, 2026–2040. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R. The C−H···O hydrogen bond: Structural implications and supramolecular design. Acc. Chem. Res. 1996, 29, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Pati, S.K. Dipolar interactions and hydrogen bonding in supramolecular aggregates: Understanding cooperative phenomena for 1st hyperpolarizability. Chem. Soc. Rev. 2006, 35, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Kamachi, M. Complex formation between poly (ethylene glycol) and α-cyclodextrin. Macromolecules 1990, 23, 2821–2823. [Google Scholar] [CrossRef]
- Harada, A.; Li, J.; Kamachi, M. The molecular necklace: A rotaxane containing many threaded α-cyclodextrins. Nature 1992, 356, 325–327. [Google Scholar] [CrossRef]
- Wenz, G.; Keller, B. Threading cyclodextrin rings on polymer chains. Angew. Chem. Int. Ed. Engl. 1992, 31, 197–199. [Google Scholar] [CrossRef]
- Okumura, Y.; Ito, K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv. Mater. 2001, 13, 485–487. [Google Scholar] [CrossRef]
- Araki, J.; Zhao, C.; Ito, K. Efficient production of polyrotaxanes from α-cyclodextrin and poly (ethylene glycol). Macromolecules 2005, 38, 7524–7527. [Google Scholar] [CrossRef]
- Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokowama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 37, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Fleury, G.; Schlatter, G.; Brochon, C.; Hadziioannou, From high molecular weight precursor polyrotaxanes to supramolecular sliding networks. The ‘sliding gels’. Polymer 2005, 46, 8494–8501. [Google Scholar] [CrossRef]
- Ito, K. Novel cross-linking concept of polymer network: Synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym. J. 2007, 39, 489–499. [Google Scholar] [CrossRef]
- Zhou, W.; Xin, C.; Chen, Y.; Mouhouadi, D.; Chen, S. Nanoparticles for Enhancing Heavy Oil Recovery: Recent Progress, Challenges, and Future Perspectives. Energy Fuels 2023, 37, 8057–8078. [Google Scholar] [CrossRef]
- Nakayama, A.; Kakugo, A.; Gong, J.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128. [Google Scholar] [CrossRef]
- Li, D.; Li, F.; Liu, J.; Liu, C.; Su, G.; Yang, H.; Yu, X. Synthesis and properties of PAM/PLA composite degradable particle temporary plugging agent. J. Appl. Polym. Sci. 2022, 139, e53216. [Google Scholar] [CrossRef]
- Lei, S.; Sun, J.; Bai, Y.; Lyu, K.; Zhang, S.; Xu, C.; Cheng, R.; Liu, F. Formation mechanisms of fracture plugging zone and optimization of plugging particles. Pet. Explor. Dev. 2022, 49, 684–693. [Google Scholar] [CrossRef]
- Mayumi, K. Molecular dynamics and structure of polyrotaxane in solutio. Polym. J. 2021, 53, 581–586. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Phram. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef]
- Tfujita, H.; Ooya, T.; Yui, N. Thermally-Responsive Properties of a Polyrotaxane Consisting of β-Cyclodextrins and a Poly (ethylene glycol)-Poly (propylene glycol) Triblock-Copolymer. Polym. J. 1999, 31, 1099–1104. [Google Scholar] [CrossRef]
- Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeota, Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring poly-rotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 2014, 5, 5124. [Google Scholar] [CrossRef] [PubMed]
- Seale, J.; Song, B.; Qiu, Y.; Stoddart, J. Precise Non-Equilibrium Polypropylene Glycol Polyrotaxanes. J. Am. Chem. Soc. 2022, 144, 16898–16904. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Harada, K.; Chu, P.; Fujimori, A. Effect of Drawn Orientation on Polypropylene/Organo-Modified Carbon Nanotube Composites Containing Polyrotaxane and Nanocellulose. Appl. Compos. Mater. 2023, 30, 1513–1528. [Google Scholar] [CrossRef]
- Imran, A.; Seki, T.; Kataoka, T.; Kidowaki, M.; Ito, K.; Takeoka, Y. Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Chem. Comm. 2008, 41, 5227–5229. [Google Scholar] [CrossRef] [PubMed]
- Imran, A.; Seki, T.; Ito, K.; Takeoka, Y. Poly (N-isopropylacrylamide) gel prepared using a hydrophilic polyrotaxane-based movable cross-linker. Macromolecules 2010, 43, 1975–1980. [Google Scholar] [CrossRef]
- Fukasawa, M.; Sakai, T.; Chung, U.; Haraguchi, K. Synthesis and mechanical properties of a nanocomposite gel consisting of a tet-ra-PEG/clay network. Macromolecules 2010, 43, 4370–4378. [Google Scholar] [CrossRef]
- Gotoh, H.; Liu, C.; Imran, A.; Hara, M.; Seki, T.; Mayumi, K.; Ito, K.; Takeoka, Y. Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Sci. Adv. 2018, 4, eaat7629. [Google Scholar] [CrossRef]
- Koyanagi, K.; Takashima, Y.; Yamaguchi, H.; Harada, A. Movable cross-linked polymeric materials from bulk polymerization of re-active polyrotaxane cross-linker with acrylate monomers. Macromolecules 2017, 50, 5695–5700. [Google Scholar] [CrossRef]
- Lin, L.; Wang, A.; Dong, M.; Li, Q.; Zhang, C.; Zhang, L.; Liu, C.; Sun, H. Cyclodextrin-Based Osmotic Vaporization Membrane Modification and Its Ben-Zene/Cyclohexane Separation Properties. CN103483506A, 1 January 2014. [Google Scholar]
- Liu, C. Construction of Novel Crosslinked Modified Osmotic Vaporization Membranes Based on Macrocyclic Compounds and Study of Their Properties; Tianjin Polytechnic University: Tianjin, China, 2015. [Google Scholar]
- Chen, L. Construction of Cyclodextrin Crosslinking-Modified Osmotic Vaporization Membrane and Its Benzene/Cyclohexane Separation Properties; Tianjin Polytechnic University: Tianjin, China, 2018. [Google Scholar]
- Zhang, Y. Cyclodextrin-Based Osmotic Vaporization Membrane Modification and Its Benzene/Cyclohexane Separation Properties; Tianjin Polytechnic University: Tianjin, China, 2019. [Google Scholar]
- Arai, T.; Jang, K.; Koyama, Y.; Asai, S.; Takata, T. Versatile Supramolecular Cross-Linker: A Rotaxane Cross-Linker That Directly Endows Vinyl Polymers with Movable Cross-Links. Chem. Eur. J. 2013, 19, 5917–5923. [Google Scholar] [CrossRef]
- Sawada, J.; Aoki, D.; Uchida, S.; Otsuka, H.; Takata, T. Synthesis of vinylic macromolecular rotaxane cross-linkers endowing network polymers with toughness. ACS Macro Lett. 2015, 4, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Iijima, K.; Aoki, D.; Sogawa, H.; Asai, S.; Takata, T. Synthesis and characterization of supramolecular cross-linkers containing cyclodextrin dimer and trimer. Polym. Chem. 2016, 7, 3492–3495. [Google Scholar] [CrossRef]
- Seo, J.; Nakagawa, S.; Hirata, K.; Yui, N. Synthesis of a resin monomer-soluble poly-rotaxane crosslinker containing cleavable end groups. Beilstein, J. Org. Chem. 2014, 10, 2623–2629. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Fushimi, M.; Matsui, N.; Takagaki, T.; Tagami, J.; Yui, N. UV-cleavable polyrotaxane cross-linker for modulating mechanical strength of photo-curable resin plastics. ACS Macro Lett. 2015, 4, 1154–1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, Z.; Wang, W.; Chen, S.; Zhou, C.; Jia, Z. Preparation of Water-soluble Polyrotaxane Cross-linking Agent and Its Potential Applica-tion in Gel Particle Used for Profile Control and Displacement. Oil. Chem. 2019, 36, 107–111. [Google Scholar]
- Zhang, P.; Wang, W.; Tian, Y.; Zhang, C.; Li, T.; Huang, W.; Jia, Z.; Zhou, C.; Chen, S. A General-Purpose Gel-like Polyrotaxane Cross-Linking Agent and Its Preparation Method. CN107474162B, 19 July 2019. [Google Scholar]
- Tian, Y.; Zhang, C.; Wang, W.; Zhou, Y.; Lu, Y.; Zhang, P.; Jia, Z.; Zhou, C.; Chen, S. Preparation of Polyrotaxane Cross-linking Agent with “Pully” Effect and Its Potential Ap-plication in Swelling Grain Used as Profile Control and Water Plugging Agent. Chem. J. Chin. Uni. 2018, 39, 2098–2104. [Google Scholar]
- Zhang, P.; Wang, W.; Tian, Y.; Zhang, C.; Yang, Z.; Deng, B.; Zhou, C.; Jia, Z.; Chen, S. A Water-Soluble Polyrotaxane Cross-Linking Agent and Its Preparation Method. CN108948231B, 11 November 2020. [Google Scholar]
- Zhang, P.; Wang, W.; Yang, Z.; Dai, Y.; Zhang, C.; Li, T.; Deng, B.; Liao, W.; Zhou, C.; Jia, Z. A Simple Preparation Method of a Water-Soluble Polyrotaxane Cross-Linking Agent and Its Products. CN110330667B, 24 September 2021. [Google Scholar]
- Zhang, P.; Dai, Y.; Yang, Z.; Yu, H.; Zhang, C.; Wang, W.; Li, T.; Zhou, C. A Simple Synthesis Method of Water-Soluble Pseudo-Polyrotaxane Cross-Linkers Based on Cyclodextrin. Macromol. Chem. Phys. 2021, 222, 2100047. [Google Scholar] [CrossRef]
- Liu, S.; Xie, R.; Cai, J.; Wang, L.; Shi, X.; Wang, Y. Crosslinking of collagen using a controlled molecular weight bio-crosslinker: β-cyclodextrin poly-rotaxane multi-aldehydes. RSC Adv. 2015, 5, 46088–46094. [Google Scholar] [CrossRef]
- Zhao, X.; Song, W.; Li, W.; Liu, S.; Wang, L.; Ren, L. Collagen membranes crosslinked by β-cyclodextrin polyrotaxane monoaldehyde with good biocompatibilities and repair capabilities for cornea repair. RSC Adv. 2017, 7, 28865–28875. [Google Scholar] [CrossRef]
- Kubota, R.; Naritomi, M.; Fujimoto, I. Synthesis of a stretchable polymer crosslinker for reinforced atelocollagen threads. React. Funct. Polym. 2023, 182, 105462. [Google Scholar] [CrossRef]
- Cui, Y.; Tan, M.; Zhu, A.; Guo, M. Strain hardening and highly resilient hydrogels crosslinked by chain-extended reactive pseu-do-polyrotaxane. RSC Adv. 2014, 4, 56791–56797. [Google Scholar] [CrossRef]
- Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2011, 2, 511. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, T.; Takashima, Y.; Harada, A. Highly elastic supramolecular hydrogels using host–guest Inclusion complexes with cyclodextrins. Macromolecules 2013, 46, 4575–4579. [Google Scholar] [CrossRef]
- Kakuta, T.; Takashima, Y.; Nakahata, M.; Otsubo, M.; Yamaguchi, H.; Harada, A. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 2013, 25, 2849–2853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, W.; Yang, Z.; Dai, Y.; Zhang, C.; Li, T.; Deng, B.; Liao, W.; Zhou, C.; Jia, Z. A Method and Product for Preparing a Polyrotaxane Cross-Linking Agent Based on β Cy-Clodextrin. CN110746521A, 4 February 2020. [Google Scholar]
- Kato, K.; Karube, K.; Nakamura, N.; Ito, K. The effect of ring size on the mechanical relaxation dynamics of polyrotaxane gels. Polym. Chem. 2015, 6, 2241–2248. [Google Scholar] [CrossRef]
- Jang, K.; Iijima, K.; Koyama, Y.; Uchida, S.; Asai, S.; Takata, T. Synthesis and properties of rotaxane-cross-linked polymers using a double-stranded γ-CD-based inclusion complex as a supramolecular cross-linker. Polymer 2017, 128, 379–385. [Google Scholar] [CrossRef]
- Iijima, K.; Aoki, D.; Otsuka, H.; Takata, T. Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: The effect of the macromonomer structure on the polymer properties. Polymer 2017, 128, 392–396. [Google Scholar] [CrossRef]
- Malucelli, G.; Dore, J.; Sanna, D.; Nuvoli, D.; Rassu, M.; Mariani, A.; Alzari, V. Sliding crosslinked thermoresponsive materials: Polypseudorotaxanes made of poly (N-isopropylacrylamide) and acrylamide-γ-cyclodextrin. Front. Chem. 2018, 6, 585. [Google Scholar] [CrossRef]
- Cosola, A.; Conti, R.; Rana, V.; Sangermano, M.; Chiappone, A.; Grützmacher, J.; Grützmacher, H. Synthesis of γ-cyclodextrin substituted bis (acyl) phosphane oxide derivative (BAPO-γ-CyD) serving as multiple photoinitiator and crosslinking agent. Chem. Commun. 2020, 56, 4828–4831. [Google Scholar] [CrossRef]
- Meng, H.; Ye, W.; Wang, C.; Gao, Z.; Hu, B.; Wang, C. Crystalline micro-nanoparticles enhance cross-linked hydrogels via a confined assembly of chitosan and γ-cyclodextrin. Carbohydr. Polym. 2022, 298, 120145. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Z.; Sang, Y.; Zhang, F.; Zhang, Y.; Zhang, P. A simple preparation method of rotaxane cross-linker based on γ-cyclodextrin and its application in hydrogel materials. Mater. Today Commun. 2022, 33, 104760. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zheng, J.; Wang, J.; Liu, S.; Zhang, X.; Bao, D.; Zhang, P. Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field. Gels 2023, 9, 854. https://doi.org/10.3390/gels9110854
Liu S, Zheng J, Wang J, Liu S, Zhang X, Bao D, Zhang P. Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field. Gels. 2023; 9(11):854. https://doi.org/10.3390/gels9110854
Chicago/Turabian StyleLiu, Siyuan, Jingxi Zheng, Jiaqin Wang, Shanghao Liu, Xianli Zhang, Dan Bao, and Peng Zhang. 2023. "Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field" Gels 9, no. 11: 854. https://doi.org/10.3390/gels9110854
APA StyleLiu, S., Zheng, J., Wang, J., Liu, S., Zhang, X., Bao, D., & Zhang, P. (2023). Preparation and Application of Polyrotaxane Cross-Linking Agent Based on Cyclodextrin in Gel Materials Field. Gels, 9(11), 854. https://doi.org/10.3390/gels9110854