Evaluation of Oleogels Stabilized by Particles of Birch Outer Bark Extract through a Novel Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Obtained Oleogels
2.2. Effect of Vegetable Oil Type on Oleogel Properties
3. Conclusions
4. Materials and Methods
4.1. Raw Material
4.2. Obtaining Birch Outer Bark Extract
4.3. Oleogels Preparation
4.4. Rheological Properties
4.5. Triterpenoid Composition of Birch Outer Bark Extract
4.6. Fatty Acid Composition of Vegetable Oils
4.7. Fourier Transform Infrared (FTIR) Analysis
4.8. Particle Size Measurement
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, micelles, and functional gels: How colloids and soft matter preserve works of art. Angew. Chem. Int. Ed. 2018, 57, 7296–7303. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocoll. Health 2022, 2, 100058. [Google Scholar] [CrossRef]
- Shah, K.P.; Srivastava, R.S.; Karle, U.G. Natural gelling agents: A review. Int. J. Univers. Pharm. Bio Sci. 2014, 3, 318–337. [Google Scholar]
- Uslu, E.K.; Yılmaz, E. Preparation and characterization of glycerol monostearate and polyglycerol stearate oleogels with selected amphiphiles. Food Struct. 2021, 28, 100192. [Google Scholar] [CrossRef]
- Paže, A.; Zandersons, J.; Rižikovs, J.; Dobele, G.; Jurkjāne, V.; Spince, B.; Tardenaka, A. Apparatus and selective solvents for extraction of triterpenes from Silver birch (Betula pendula Roth.) outer bark. Balt. For. 2014, 20, 88–97. [Google Scholar]
- Rizhikovs, J.; Zandersons, J.; Dobele, G.; Paze, A. Isolation of Triterpene-Rich Extracts from Outer Birch Bark by Hot Water and Alkaline Pre-Treatment or the Appropriate Choice of Solvents. Ind. Crops Prod. 2015, 76, 209–214. [Google Scholar] [CrossRef]
- Rižikovs, J.; Zandersons, J.; Paže, A.; Tardenaka, A.; Spince, B. Isolation of suberinic acids from extracted outer birch bark depending on the application purposes. Balt. For. 2014, 20, 98–105. [Google Scholar]
- Bag, B.; Dash, S. Hierarchical Self-Assembly of a Renewable Nanosized Pentacyclic Dihydroxy-triterpenoid Betulin Yielding Flower-Like Architectures. Langmuir 2015, 31, 64–72. [Google Scholar] [CrossRef]
- Panja, S.K.; Patra, S.; Bag, B.G. Self-assembly of the monohydroxy triterpenoid lupeol yielding nano-fibers, sheets and gel: Environmental and drug delivery applications. RSC Adv. 2021, 11, 33500–33510. [Google Scholar] [CrossRef]
- Bag, B.; Dash, S. First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid. Nanoscale 2011, 3, 4564–4566. [Google Scholar] [CrossRef]
- Paze, A.; Vitolina, S.; Berzins, R.; Rizhikovs, J.; Makars, R.; Godina, D.; Teresko, A. The Study of Betulin Particles Containing Hydrogels Prepared by Antisolvent Precipitation. Key Eng. Mater. 2022, 933, 139–146. [Google Scholar] [CrossRef]
- Vitolina, S.; Paze, A.; Berzins, R.; Rizhikovs, J.; Makars, R.; Godina, D.; Teresko, A. Optimization of Betulin Colloidal Aqueous Suspension Pretreatment for Determination of Particle Characteristics. Key Eng. Mater. 2022, 933, 147–154. [Google Scholar] [CrossRef]
- Berzins, R.; Paze, A.; Vitolina, S.; Rizikovs, J.; Teresko, A. Optimisation of Antisolvent Precipitation Method to Obtain Colloidal Particles from Ethanol Solutions from Birch Outer Bark Extractives. In Proceedings of the 31st European Biomass Conference and Exhibition, Bologna, Italy, 5–8 June 2023. [Google Scholar]
- Laszczyk, M.; Jäger, S.; Simon-Haarhaus, B.; Scheffler, A.; Schempp, C.M. Physical, chemical and pharmacological characterization of a new oleogel-forming triterpene extract from the outer bark of birch (Betulae cortex). Planta Med. 2006, 72, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Grysko, M.; Daniels, R. Evaluation of the mechanism of gelation of an oleogel based on a triterpene extract from the outer bark of birch. Die Pharm.-Int. J. Pharm. Sci. 2013, 68, 572–577. [Google Scholar]
- Grysko, M. Herstellung und Charakterisierung von Halbfesten Systemen auf Basis von Triterpenextrakt aus Birkenkork. Ph.D. Thesis, Eberhard Karls Universität Tübingen, Tübingen, Germany, 2012. [Google Scholar]
- Scheffler, A. Emulsion Containing a Plant Extract, Method for Producing Said Emulsion and for Obtaining Said Plant Extract. U.S. Patent 7482383 B2, 27 January 2009. [Google Scholar]
- Amiri, S.; Dastghaib, S.; Ahmadi, M.; Mehrbod, P.; Khadem, F.; Behrouj, H.; Aghanoori, M.R.; Machaj, F.; Ghamsari, M.; Rosik, J.; et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol. Adv. 2020, 38, 107409. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, H.; Qiu, J.; Feng, H. Betulin protects mice from bacterial pneumonia and acute lung injury. Microb. Pathog. 2014, 75, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. J. Ethnopharmacol. 2008, 120, 272–276. [Google Scholar] [CrossRef]
- Salin, O.; Alakurtti, S.; Pohjala, L.; Siiskonen, A.; Maass, V.; Maass, M.; Yli-Kauhaluoma, J.; Vuorela, P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae. Biochem. Pharmacol. 2010, 80, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, T.; Zhang, Y.; Luo, H.Z.; Liu, Y.; Ma, S.C. Novel compounds discovery approach based on UPLC-QTOF-MS/MS chemical profile reveals birch bark extract anti-inflammatory, -oxidative, and -proliferative effects. J. Ethnopharmacol. 2023, 306, 116148. [Google Scholar] [CrossRef]
- Ci, X.; Zhou, J.; Lv, H.; Yu, Q.; Peng, L.; Hua, S. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis. 2017, 8, e2798. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Q.F.; Fang, N.N.; Yu, J.G. Betulin inhibits pro-inflammatory cytokines expression through activation STAT3 signaling pathway in human cardiac cells. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 455–460. [Google Scholar]
- Ebeling, S.; Naumann, K.; Pollok, S.; Wardecki, T.; Vidal-y-Sy, S.; Nascimento, J.M.; Boerries, M.; Schmidt, G.; Brandner, J.M.; Merfort, I. From a Traditional Medicinal Plant to a Rational Drug: Understanding the Clinically Proven Wound Healing Efficacy of Birch Bark Extract. PLoS ONE 2014, 9, e86147. [Google Scholar] [CrossRef] [PubMed]
- Metelmann, H.R.; Fimmers, R.; Böttger, K.; Brandner, J.M.; Scheffler, A.; Schumann, H.; Podmelle, F. Accelerated Reepithelialization by Triterpenes: Proof of Concept in the Healing of Surgical Skin Lesions. Ski. Pharmacol. Physiol. 2015, 28, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Riekstina, U.; Vitolina, S.; Goluba, K.; Jekabsons, K.; Muceniece, R.; Berzins, R.; Rizhikovs, J.; Godina, D.; Teresko, A.; Paze, A. Effect of Betulin Colloidal Particles on Proliferation and Cytokine Secretion of Human Skin Fibroblasts. Plants 2023, 12, 3088. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, A. Triterpene-Containing Oleogel-Forming Agent, Triterpene-Containing Oleogel and Method for Producing a Triterpene-Containing Oleogel. U.S. Patent 8828444 B2, 9 September 2014. [Google Scholar]
- Ghaffar, K.A.; Daniels, R. Oleogels with Birch Bark Dry Extract: Extract Saving Formulations through Gelation Enhancing Additives. Pharmaceutics 2020, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, M.; Mönckedieck, M.; Scherließ, R.; Daniels, R.; Wahl, M. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems. Appl. Sci. 2017, 7, 292. [Google Scholar] [CrossRef]
- Fridén, M.E.; Jumaah, F.; Gustavsson, C.; Enmark, M.; Fornstedt, T.; Turner, C.; Sjöberga, P.J.R.; Samuelsson, J. Evaluation and analysis of environmentally sustainable methodologies for extraction of betulin from birch bark with a focus on industrial feasibility. Green Chem. 2016, 18, 516–523. [Google Scholar] [CrossRef]
- Paze, A.; Rizhikovs, J.; Vitolina, S.; Berzins, R.; Teresko, A. Method for Obtaining Organogels and Pickering Emulsions Containing Birch Outer Bark Extract Substances and Their Colloidal Particles. LV Patent 15767, 20 September 2023. [Google Scholar]
- Perța-Crișan, S.; Ursachi, C.S.; Chereji, B.D.; Tolan, I.; Munteanu, F.D. Food-Grade Oleogels: Trends in Analysis, Characterization, and Applicability. Gels 2023, 9, 386. [Google Scholar] [CrossRef]
- Noonim, P.; Rajasekaran, B.; Venkatachalam, K. Structural Characterization and Peroxidation Stability of Palm Oil-Based Oleogel Made with Different Concentrations of Carnauba Wax and Processed with Ultrasonication. Gels 2022, 8, 763. [Google Scholar] [CrossRef]
- Wijarnprecha, K.; Aryusuk, K.; Santiwattana, P.; Sonwai, S.; Rousseau, D. Structure and rheology of oleogels made from rice bran wax and rice bran oil. Food Res. Int. 2018, 112, 199–208. [Google Scholar] [CrossRef]
- Doan, C.D.; van De Walle, D.; Dewettinck, K.; Patel, A.R. Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal, and microstructural study JAOCS. J. Am. Oil Chem. Soc. 2015, 92, 801–811. [Google Scholar] [CrossRef]
- Martín-Alfonso, M.A.; Rubio-Valle, J.F.; Hinestroza, J.P.; Martín-Alfonso, J.E. Impact of Vegetable Oil Type on the Rheological and Tribological Behavior of Montmorillonite-Based Oleogels. Gels 2022, 8, 504. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.H.; Chan, E.S.; Manja, M.; Tang, T.K.; Phuah, E.T.; Lee, Y.Y. Production, health implications and applications of oleogels as fat replacer in food system: A review. JAOCS J. Am. Oil Chem. Soc. 2023, 100, 681–697. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.-J.; Nan, Y.; Liu, G.-Q. The effects of oil type and crystallization temperature on the physical properties of vitamin C-loaded oleogels prepared by an emulsion-templated approach. Food Funct. 2020, 11, 8028–8037. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Babaahmadi, M.; Lesaffer, A.; Dewettinck, K. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J. Agric. Food Chem. 2015, 63, 4862–4869. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Dewettinck, K. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. Eur. J. Lipid Sci. Technol. 2015, 117, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Abyshev, A.Z.; Agaev, É.M.; Guseinov, A.B. Studies of the chemical composition of birch bark extracts (Cortex betula) from the Betulaceae family. Pharm. Chem. J. 2007, 41, 419–423. [Google Scholar] [CrossRef]
- Armbruster, M. Herstellung von Birkenkorkextrakten mit Überkritischer Fluidtechnologie Sowie Charakterisierung der Extrakte und deren Einsatz zur Stabilisierung Halbfester Systeme. Ph.D. Thesis, Eberhard Karls Universität Tübingen, Tübingen, Germany, 2017. [Google Scholar]
Total Content of Extractives in Oleogel, wt.% | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|
Betulin, wt.% | 1.01 | 1.87 | 2.83 | 3.77 | 4.71 |
Lupeol, wt.% | 0.14 | 0.24 | 0.36 | 0.49 | 0.60 |
Betulinic acid, wt.% | 0.38 | 0.16 | 0.24 | 0.31 | 0.40 |
Oleogel Sample | D10 µm | D50 µm | D90 µm | D[4;3] µm |
---|---|---|---|---|
2% | 1.35 ± 0.01 a | 2.1 ± 0.0 a | 15.7 ± 0.6 a | 6.4 ± 0.2 a |
4% | 1.44 ± 0.01 b | 8.0 ± 0.2 b | 32.7 ± 0.6 b | 13.1 ± 0.2 b |
6% | 1.48 ± 0.01 c | 11.2 ± 0.2 c | 44.8 ± 2.2 c | 17.4 ± 0.6 c |
8% | 1.65 ± 0.01 d | 17.0 ± 0.1 d | 40.9 ± 1.5 d | 21.5 ± 1.2 d |
10% | 1.79 ± 0.01 e | 46.2 ± 0.9 e | 93.7 ± 1.7 e | 44.3 ± 0.9 e |
Fatty Acid Species | Fatty Acid Composition (% of Total Fatty Acid) | |||
---|---|---|---|---|
Sunflower Oil | Olive Oil | Almond Oil | Hemp Seed Oil | |
Palmitic acid (C16:0) | 5.79 | 12.74 | 7.91 | 5.90 |
Stearic acid (C18:0) | 3.19 | 2.78 | 6.01 | 2.20 |
Oleic acid (C18:1) | 48.11 | 74.70 | 60.34 | 9.01 |
Linoleic acid (C18:2) | 40.12 | 6.70 | 27.19 | 55.30 |
Linolenic acid (C18:3) | 0.56 | 0.74 | 0.79 | 20.30 |
SFA | 8.98 | 15.52 | 13.92 | 8.10 |
MUFA | 48.11 | 74.70 | 60.34 | 9.01 |
PUFA | 40.68 | 7.44 | 27.98 | 75.60 |
Constituent | Amount, wt.% |
---|---|
Betulin | 52.0 |
Lupeol | 7.0 |
Betulinic acid | 2.0 |
Phenolic compounds | 3.4 |
Unidentified substances * | 35.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitolina, S.; Berzins, R.; Rizhikovs, J.; Godina, D.; Horváth, Z.M.; Logviss, K.; Teresko, A.; Paze, A. Evaluation of Oleogels Stabilized by Particles of Birch Outer Bark Extract through a Novel Approach. Gels 2023, 9, 911. https://doi.org/10.3390/gels9110911
Vitolina S, Berzins R, Rizhikovs J, Godina D, Horváth ZM, Logviss K, Teresko A, Paze A. Evaluation of Oleogels Stabilized by Particles of Birch Outer Bark Extract through a Novel Approach. Gels. 2023; 9(11):911. https://doi.org/10.3390/gels9110911
Chicago/Turabian StyleVitolina, Sanita, Rudolfs Berzins, Janis Rizhikovs, Daniela Godina, Zoltán Márk Horváth, Konstantins Logviss, Arturs Teresko, and Aigars Paze. 2023. "Evaluation of Oleogels Stabilized by Particles of Birch Outer Bark Extract through a Novel Approach" Gels 9, no. 11: 911. https://doi.org/10.3390/gels9110911
APA StyleVitolina, S., Berzins, R., Rizhikovs, J., Godina, D., Horváth, Z. M., Logviss, K., Teresko, A., & Paze, A. (2023). Evaluation of Oleogels Stabilized by Particles of Birch Outer Bark Extract through a Novel Approach. Gels, 9(11), 911. https://doi.org/10.3390/gels9110911